Home > CSC-OpenAccess Library > Manuscript Information
EXPLORE PUBLICATIONS BY COUNTRIES |
![]() |
| EUROPE | |
| MIDDLE EAST | |
| ASIA | |
| AFRICA | |
| ............................. | |
| United States of America | |
| United Kingdom | |
| Canada | |
| Australia | |
| Italy | |
| France | |
| Brazil | |
| Germany | |
| Malaysia | |
| Turkey | |
| China | |
| Taiwan | |
| Japan | |
| Saudi Arabia | |
| Jordan | |
| Egypt | |
| United Arab Emirates | |
| India | |
| Nigeria | |
Using the Chapman-Kolmogorov equation of random walks
to identify drift and diffusion of the Fokker-Planck equation
Mario Annunziato, Alfio Borzì
Pages - 1 - 13 | Revised - 15-10-2025 | Published - 31-10-2025
MORE INFORMATION
KEYWORDS
Reconstruction of diffusion and drift coefficients, Random Walk, Fokker- Planck equation, Calibration.
ABSTRACT
A novel approach for the reconstruction of the drift and diffusion coefficients of the Fokker-Planck
equation is presented. This approach is based on the Chapman-Kolmogorov equation of the inhomogeneous
random walk related to the Fokker-Planck equation. Two numerical algorithms are
formulated for the reconstruction problem. Results of numerical experiments demonstrate the ability
of the proposed methods to solve this inverse problem also in the case of discontinuous coefficients.
| Albeverio, S., Blanchard, P., Kusuoka, S., & Streit, L. (1989). An inverse problem for stochastic differential equations. Journal of Statistical Physics, 57(1), 347-356. doi: 10.1007/BF01023648. | |
| Annunziato, M., & Borzi, A. (2013). A Fokker-Planck control framework for multidimensional stochastic processes. Journal of Computational and Applied Mathematics, 237(1), 487-507. doi: 10.1016/j.cam.2012.06.019. | |
| Annunziato, M., & Gottschalk, H. (2018). Calibration of Lévy processes using optimal control of Kolmogorov equations with periodic boundary conditions. Mathematical Modelling and Analysis, 23(3), 390-413. doi: 10.3846/mma.2018.024. | |
| Banks, H. T., Tran, H. T., & Woodward, D. E. (1993). Estimation of variable coefficients in the Fokker-Planck equations using moving node finite elements. SIAM Journal on Numerical Analysis, 30(6), 1574-1602. | |
| Breitenbach, T., Annunziato, M., & Borzi, A. (2018). On the optimal control of a random walk with jumps and barriers. Methodology and Computing in Applied Probability, 20(1), 435-462. doi: 10.1007/s11009-017-9565-4. | |
| Chen, X., Yang, L., Duan, J., & Karniadakis, G. E. (2021). Solving inverse stochastic problems from discrete particle observations using the Fokker-Planck equation and physics-informed neural networks, SIAM Journal on Scientific Computing, 43(3), B811-B830. doi: 10.1137/20M1360153 | |
| Comte, F. (2020). From regression function to diffusion drift estimation in nonparametric setting. ESAIM: ProcS, 68, 20-34. | |
| Comte, F., & Genon-Catalot, V. (2025). New results for drift estimation in inhomogeneous stochastic differential equations. Journal of Multivariate Analysis, 208, 105415. doi: 10.1016/j.jmva.2025.105415. | |
| Cox, D., & Miller, H. (1992). The Theory of Stochastic Processes. London: Chapman & Hall. | |
| Dunker, F., & Hohage, T. (2014, Aug). On parameter identification in stochastic differential equations by penalized maximum likelihood. Inverse Problems, 30(9), 095001. | |
| Egger, H., & Engl, H. (2005, Apr). Tikhonov regularization applied to the inverse problem of option pricing: convergence analysis and rates. Inverse Problems, 21(3), 1027. | |
| Florens-Zmirou, D. (1989). Approximate discrete-time schemes for statistics of diffusion processes. Statistics, 20(4), 547-557. | |
| Florens-Zmirou, D. (1993). On estimating the diffusion coefficient from discrete observations. Journal of Applied Probability, 30(4), 790-804. | |
| Han, S., et al. (2025). System identification of Fokker-Planck equations via transport maps. arXiv preprint. Retrieved from https://arxiv.org/abs/2507.15091 doi: 10.48550/arXiv.2507.15091. | |
| Jamba, N. T., Subray, N., & Rodrigues, H. M. (2024). Estimation for stochastic differential equation mixed models using approximation methods. AIMS Mathematics, 9(4), 7866-7894. doi: 10.3934/math.2024383. | |
| Jäger, S., & Kostina, E. (2005, Dec). Parameter estimation for forward Kolmogorov equation with application to nonlinear exchange rate dynamics. Proceedings in Applied Mathematics and Mechanics, 5, 745-746. | |
| Jiang, G., & Knight, J. (1997). A nonparametric approach to the estimation of diffusion processes, with an application to a short-term interest rate model. Econometric Theory, 13(5), 615-645. | |
| Lamouroux, D., & Lehnertz, K. (2009). Kernel-based regression of drift and diffusion coefficients of stochastic processes. Physics Letters A, 373(39), 3507-3512. | |
| Lund, S. P., Hubbard, J. B., & Halter, M. (2014, 11). Nonparametric estimates of drift and diffusion profiles via Fokker-Planck algebra. The Journal of Physical Chemistry B, 118(44), 12743-12749. doi: 10.1021/jp5084357. | |
| Nicolau, J. (2003). Bias reduction in nonparametric diffusion coefficient estimation. Econometric Theory, 19(5), 754-777. | |
| Renò, R. (2008). Nonparametric estimation of the diffusion coefficient of stochastic volatility models. Econometric Theory, 24(5), 1174-1206. | |
| The MathWorks. (2021). MATLAB (Version R2021a) [Computer software]: Natick, Massachusetts, United States: The MathWorks Inc. | |
Mr. Mario Annunziato
Dipartimento di Fisica “E. R. Caianiello”, Università degli Studi di Salerno, Via G. Paolo II 132, Fisciano, 84084 - Italy
mannunzi@unisa.it
Mr. Alfio Borzì
Institut für Mathematik, Universität Würzburg, Emil-Fischer-Strasse 30, Würzburg, 97074 - Germany
|
|
|
|
| View all special issues >> | |
|
|



