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Abstract

A novel approach for the reconstruction of the drift and diffusion coefficients of the Fokker-Planck
equation is presented. This approach is based on the Chapman-Kolmogorov equation of the in-
homogeneous random walk related to the Fokker-Planck equation. Two numerical algorithms are
formulated for the reconstruction problem. Results of numerical experiments demonstrate the ability
of the proposed methods to solve this inverse problem also in the case of discontinuous coefficients.
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1. INTRODUCTION

The parabolic Fokker-Planck (FP) equation models the evolution of the probability density function
(PDF) of It6 stochastic differential equations (SDEs) driven by drift and diffusion Wiener processes,
and this fact can be easily verified by comparison of the PDFs obtained by direct simulation of the
parabolic FP problem and of the Monte Carlo (MC) simulation of the related SDE. Actually, this MC
approach can be used to numerically solve the FP problem.

Much more challenging is the inverse problem of obtaining the drift and diffusion coefficients based on
the (partial) knowledge of the PDFs. For this purpose, some methods have been proposed that we can
classify as follows.

Some methods belong to the class of PDE calibration problems. These methods provide satisfactory
reconstruction of one of the two coefficients subject to appropriate regularity conditions; see, e.g.,
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(Albeverio, Blanchard, Kusuoka, & Streit, 1989; Annunziato & Gottschalk, 2018; Banks, Tran, & Wood-
ward, 1993; Dunker & Hohage, 2014; Egger & Engl, 2005; Jager & Kostina, 2005; Lund, Hubbard, &
Halter, 2014).

On the other hand, there are calibration methods based on discretely sampled observations of real-
izations of continuous-time drift-diffusion processes. These methods use kernel-based or histogram-
based regression; see, e.g., (Comte, 2020; Comte & Genon-Catalot, 2025; Florens-Zmirou, 1989,
1993; Jamba, Subray, & Rodrigues, 2024; Jiang & Knight, 1997; Lamouroux & Lehnertz, 2009; Nico-
lau, 2003; Reno, 2008). Recently, machine learning techniques for reconstruction of FP drift and
diffusion coefficients have been proposed; see, e.g. (Chen, Yang, Duan, & Karniadakis, 2021; Han et
al., 2025), which could be extended based on our approach.

Our assessment of the existing literature is that the first class of PDE-based methods pursues a macro-
scopic approach and aims at identifying the coefficients from observations of the PDF. However, these
methods seem unable to identify both coefficients and have difficulties in recovering less regular ones,
like piecewise continuous functions. The other class of methods looks directly to path realizations of
the stochastic process and therefore has a microscopic character. For this reason, they can be applied
to recover the drift and diffusion coefficients only in a narrow window, and appear less accurate in the
reconstruction of less regular coefficients, which seems to be also a limitation in the machine-learning
approach.

We propose and validate a methodology that lies between the two classes mentioned above, in the
sense that: 1) we assume that the stochastic process is approximated by an inhomogeneous random
walk that is characterized by jump probabilities at each grid point where the random walk is defined; 2)
we observe multiple realizations of the random walk and construct the corresponding numerical PDF;
3) we use this PDF as data for the Chapman-Kolmogorov equation of the random walk, and perform
the reconstruction of the jump probabilities by inverting this equation. We infer the drift and diffusion
coefficients of the FP equation from these jump probabilities.

Notice that in (Lund et al., 2014) a similar approach based on the inversion of the FP equation jointly to
polynomial approximation is used. The authors discuss the volatility of the estimates of the coefficients
for critical values the PDF and its derivative. However, the results seems limited to smooth drift and
diffusion coefficients.

We remark that our strategy represents a consistent approximation of the continuous problem of in-
verting the Fokker-Planck equation. In fact, in the appropriate limit of a grid whose mesh size tends to
zero, we have that 1) the random walk will convergence to the continuous stochastic process; 2) the
numerical PDF converges to the continuous one; 3) the Chapman-Kolmogorov equation becomes the
Fokker-Planck equation. The advantage of our novel heuristic approach is that working with a coarse
grid drastically reduces the ill-posedness of the continuous inverse problem by acting as a regulariza-
tion framework.

We implement our strategy in a reconstruction algorithm that requires to solve a linear algebraic system
in a least squares sense. We successfully validate this algorithm with challenging test cases including
the case where the drift and the diffusion are discontinuous.

In the next section, we illustrate our inhomogeneous random walk, and define the jump probabilities.
In Section 3., we discuss our approach that determines the random walk parameters by inverting
the Chapman-Kolmogorov equation based on a finite set of data. Our algorithm is presented in this
section. Section 4. is devoted to the derivation of the Fokker-Planck equation as a continuous limit of
the random walk. In Section 5., we present results of numerical experiments that successfully validate
our methodology. A section of conclusion completes this work.

2. A RANDOM WALK WITH DRIFT

The discrete random walk is the basic stochastic process whose elementary set of events 2 has two
states, and two probabilities p € [0,1] and g € [0, 1], such that p+q = 1. Let W be the random variable
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related to these events, which takes the values Ax and —Ax with probability p and q respectively.

On the discrete set of points Moy = {Xm = mAx, m € Z}, we define the random walk (RW) on Ma4 as
the process resulting by summing up a discrete sequence of independent outcomes W;, i =1,...,n.
Therefore, if the process is initially placed at x(©) € Ma,, with probability 1, and at each step i the
position is displaced according to the outcomes of independent random jumps W;, then the value of
the RW at the step n is given by the following sum:

n
Xn=xO 43w, (1)
i=1

In the case of a two-dimensional RW, we consider MZAX,AY = {(Xm; = M1AX, Y, = M2Ay), for (my, my)

€ 72} with mesh sizes Ax and Ay, and define the RW X,, = (X, Yn) as composition of two independent
RW.

At each time step the process initially placed in (Xm,, Ym,) moves towards one of the 4 nearest neigh-
bour points of the grid according to the following random vector valued variable o (x) defined as follows:

(+1,0) with prob. p4(x) € [0, 1]
(0,-1) with prob. ps(x) € [0, 1]
(-1,0) with prob. p3(x) € [0, 1]
(0, +1) with prob. pg(x) € [0, 1]

()

We have the normalizing condition:

Po(X) +p1(X) + p2(X) + p3(x) = 1. )

The dependence of the jump probability on the grid point, defines an inhomogeneous RW. For a RW
starting from Xg = x(@, the position at the time n is

n
Xn = x4+ Axo Y o(Xy), (4)
j=1

where o is the Hadamard product. For convenience, in the following, in place of o (x) we shall use the
discrete random variable z(x) € {0, 1, 2, 3} to refer to the 4 possible outcomes with the corresponding
probabilites p,(x). For example, let z = 2 then according to (2) the outcome of o is o(z) = (0,—1).
Notice that since p,(x), i.e. o(x), is a function of the grid, then the RW is inhomogeneous.

In general, the RW is dispersive with finite velocity of propagation, that is, if we set the initial value of
the RW concentrated at the point x(9), then at the time step n the distribution of the process will be
contained in the discrete domain [x(© — nAx,x© + nAx] € May x [y©® = nAy,y©@ + nAy] € My,
whereas outside this domain the distribution will be surely vanishing, which defines a natural boundary
condition.

The further step of our analysis is writing the probability measure of the RW. For this purpose, let k4
be the number of positive jumps along the x direction, ny be the total number of jumps along the x
direction, kg be the number of positive jumps along the y direction, and n» be the total number of jumps
along the y direction. For this RW, we can write the conditional probability to find the process at time
n > 1 to the point (Xm, y|) = (Xok,—n, + x©), Yokg—n, + y(©)) as follows:

P{Xn =((2ky — n1)Ax, (2kg —n2)Ay) + x|X, = x©} =

n—1
S Ieae , ©)

2=C4(n,ny,nz k1 ko) i=0 x(i):x(°)+AxoZ}=1 a(z)
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where z = (zg, 21, ..., 2,) is a vector whose elements span over the set of all C4(...) combinations of
the digits 0, 1,2, 3 of length n, with kg the count of 0’s, kq the count of 1’s, n4 is the count of the odd
numbers 1 and 3, no the count of the even numbers 0 and 2, such that n = ny + no, and ky < nq,
ko < no. As an example, for z = 02213001, itisn=8,n1 =3,n2 =5,kg = 3, ky =

Notice that, from Eq. (5) for a given time step n and positive jumps kg, ky in the two dimensions, the
displacement from the initial position is not uniquely determined, since there is one degree of freedom
in the choice of ny and no setby n = ny +no.

3. THE COMPUTATION OF THE RW PARAMETERS

By many repetitions of our RW process of time length n, starting from the same position, we can collect
the probability distribution of the RW at the final time n. On the other hand, let the probability distribution
at the final time be given, then our purpose is to calculate the values of the jump probabilities at each
grid point.

The problem is to establish (2) for each point x of the domain, when the 2D probability distribution fm I

of the particle to be located at (xm, y)) € MAX Ay’ is given for some values of the time step n. In this
section, for the unknown probabilities we will use the notation pfﬁ)l = ps(Xm, Y))-

Our approach is based on the 2-dimensional Chapman-Kolmogorov equation given by

@ (2) 3

1 0
fn+ frr]n—1,l pm)—1,| + fnm,|+1 Prm,l+1 +fnm+1,| Pm)+1,| + fnm,|-1 psn,)l—r (6)

This equation governs the evolution of the probability such that the RW reaches the point (m,I) at
time n + 1 by jumping from the 4 nearest neighbours, according to the table (2). The total probability
distribution is subject to conservativeness condition

anm,l =1, for all n.
m,|

Notice that the four unknowns are not constrained by the normalizing condition, since they are related

to different locations of the grid, indeed the above condition applies to the pﬁﬁ)l related to the same grid
point.

One could propose to solve Eq. (6) for all (m, 1) of the grid domain for fixed time steps n and n + 1, but

this is not possibile because the number of unknowns pfn)l is greater than the number of equations (6)
for each grid point. In fact, suppose that at a certain time step the domain of the positive probabilities

f”*| is a square of side size M points, then there are M2 equations (6) and M2 normalizing equations
(3) that is 2M2, whereas 4M? unknowns.

The number of the unknowns can be reduced if we consider the vanishing values of ], | outside the
domain, that is, 4M the number of the nearest neighbours of the perimeter of the domaln Hence, there
are 2M2 equations and 4M? — 4M unknowns, which gives an underdetermined system of equations.

Indeed, it can be shown that with an additional constraint to pﬁn)l, i.e. with only 2 degrees of freedom
for the jump probabilities, it is possible to obtain a determined system of equations. Notice that this is

also possible in the 1D case.

Therefore, in order to solve the inverse problem for the 2D-RW, we must include in the system so many
time points to get enough equations to cover the number of unknowns. However, if the system of
equations results rank-deficient a least squares method can be used to find a solution, eventually by
including the normalizing constraints (3).

We can summarize the discussion above by noting that from Eq. (6) we get the following algebraic
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problem for the unknown probabilities:

N4 N4 nq N4 (1) ni+1
foctr fot Tmetn fmer) [Pt fn.
fl"lg fng fng fng (2) fn2+1
m-1, m,l+1 m+1,1 m,l-1 pm 1+1 _ m,| (7)
13 13 13 13 (35 - fn3+1 )
m-1,1  ‘'ml+1 'm+1l 'm,l-1 Pm+t ml
4 {4 {4 fN4 0 ng+1
m-tl Tmbt et Tmier/ \pr fon
We extend this equation to include more time points ny, ..., ng with K > 4, so that it reads as follows:
ny n4 ny ny ni+1
s it e T /0 fn,
fng fnz fn2 fng m—1, fn2+1
m-tl mhdCmetl m p(2)| . ml
3 3 3 3 m,l+ _ N3+
fctn ft fmetn T @ | = | (8)
Nk Nk nK nK 1
fm—1,| fm,I+1 fm+1,| fm,I—1 Prm,-1 frrLKr

This overdetermined system of equations can be solved as a least-squares problem represented as
ming [|Ap — b||§. That is, a system of K equations for 4 unknowns, solved by using the Moore-Penrose
pseudoinverse of the coefficient matrix. However, this method does not guarantee that the solution
satisfies the normalizing condition, which must be enforced after this calculation.

With this preparation, we can formulate the algorithm for the solution of our inverse problem as follows:

Algorithm 1

1. Input data: probability distribution f”m,| of the RW, forn = ny,no, ..., nk time steps. Set the matrix
pﬁﬁ)l to save the results. Set count_pﬁ)I = 0 matrix to flag the calculated values of pﬁﬁ)l.

. Start the iteration over all the values of (m, 1) of the grid domain given by the size off”mJ.

. Build the matrices of Eq. (8) for a given (m,l) and for alln = nq,no, ..., nk.

. If the system matrix has not rank 4, then jump the next step.

OO AN W N

. Solve the system (8) with the Moore-Penrose pseudoinverse. Cumulates the calculated values
of pﬁ?l and increments the counter count_pfﬁ?l + +. During the iteration over all points (m, |) of the
(s) (s)

m,l m,|
track of the calculated values of the corresponding p

domain, the p_’, could be calculated more than once repeatedly. The counters count_p

(s)

m,l”

keep

6. End of iteration 2.
(s)

m,|
tions of the calculated values of p

(s)

m,l’

7. Averages the calculated p: p..’,/count_p

(s)

m,l"

in order to take in account for the eventually repeti-

The solution of the system at the step 5 can be executed by using available routines, e.g., 1lsqminnorm,
1sqgnonneg of Matlab®, or using the 1sqlin function, setting the boundaries Ib = 0 and lu = 1 for the
unknown and the method interior-point.

The check on the rank at the step 4 is important because the system of equations can be rank deficient.
This occurrence depends on vanishing values of f at the boundary of the domain depending on the
choice of the time points n4,...,nk, and for resulting symmetries such that some equations of the
system result linearly dependent. However, notice that this algorithm does not automatically guarantee
the normalizing condition (3).
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In order to guarantee fulfilment of the normalizing condition (3), we consider the system of Chapman-
Kolmogorov equations for the 4 nearest neighbours of the point of calculation and require (3) for that
point. The resulting system in the form Ap = b is given by

o Tt fezr foene ] 0 r? ] 0 nO
Am_ | O 0 0 0 foim fag T fmpe
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
9)
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
(HAPYINS ASPETRI AT A ) 0 nO ) 0 r?
0 0 0 foetir Tz fneter T
foret.
(n) fnm+|1—1
o™ = | o (10)
m-1,|
fn+1
m,l+1

5 (1) (2 (3) (0) (1) (2) (3) (0)
p= ( Pmi Pmstiet Pmi2l Pmitit Pmotmt Pmi Pmiti1 Pmj
(1) (2) (3) (0) (1) (2) (3) (0) T
Pm=2; Pm-tis1 Pmi Pm-11 PmZt1i1 Pmi2  Pmitit Pmy

The matrices A and b(™ are stack according to at least 4 values of n, so that we get a system of 4K
equations for 16 unknowns. The normalizing equation (3) reads as follows:

3
> opmi=t. (12)
s=0

With these additions, the new algorithm including the normalizing conditions is given by

Algorithm 2

1. Input data: probability distribution f”m’| of the RW, forn = n4,...,ng time steps with K > 4. Set
(s)

mi to save the results.

the matrix p
Iterate over all the values of (m, ) of the domain given by the size off”mil.
Build the matrices of Eq. (9) and and the vector (10).

If the resulting system matrix (9) has not rank 16, then jump the next two steps.

o A W DN

Include the normalizing condition (12) in the system, by appending the corresponding coefficients
to (9) and (10), then solve it with the Moore-Penrose pseudoinverse.

6. From the calculated p of Eq. (11) save the values at the positions 1,6,11,16 of that vector

correspondingly to the matrix positions pg,)l, pﬁi)l, pg?l, pg?l.

7. End of iteration 2.

We remark that the outputs of our algorithms are post-processed in order to erase points that are sub-
ject to numerical errors due to a badly conditioned matrices. For this pourpose we use the Matlab®(The
MathWorks, 2021) function filloutliers with the options ’linear’, ’movmedian’,15,
>ThresholdFactor?,0.7.
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4. FROM RANDOM WALKS TO FOKKER-PLANCK EQUATIONS

It is well known that the FP equations can be obtained by a suitable limiting process of RW models
(Breitenbach, Annunziato, & Borzi, 2018; Cox & Miller, 1992). In this section, we refer to this fact in
order to formulate the inverse problem for the continuous FP model.

Let f(x,y,t) € M C R?2 x T C R and ps(X,y) € M be continuous and differentiable functions, by
writing Eq. (6) in terms of these functions, we get

f(Xk, Yjs tn + At) =f(xg + AX, yJ,tn 3
f

j)
f 0Xk: Yj— X)
+H(X, ¥j + AX, th) pa(Xk, ¥j + AX)

Xk + AX, Y;)

+

+

( )
( )
Xk Y = Axto)
( )

where we have defined the uniformly spaced time grid T a; of step size At, such that t, = tg + nAt for
positive integer n, and used the same step size Ax for both space dimensions, i.e. (xn,y|) € MAax Ax-

We define the dynamic parameters of the following limit equations:

143 (X!y) =p1 (Xiy)_pS(X!y) (14)

Therefore, we also have

1
P1(x,¥) =5 (alK,Y) + 11 5,)
P3(x,¥) =5 (8K, ¥) = 11, Y)

; (15)
Pa(x,y) =5 (-a(x,y) — p2(x,y) + 1)

1
Po(X.y) =5 (a(x.y) + p2(x.y) + 1)
Further, due to the normalizing conditions, we have the following conditions

0<a+u; <2
0<a—-pu <2
0<1—-a—-pup <2
0<t1-a+ux <2

By applying Taylor’s expansion in (13) up to second order, we get
0 =Ataf(x,y, 1) + Ax[Ox (11 (X, ) (X, . 1) + Oy (u2(x, y) (X, ¥, 1))]
_;M%ﬁumm—%A%maanwwdA»+%«vaumwwmﬁn (17)
+0((AX + At)?),
where o((Ax + At)2) means an infinitesimal order superior with respect to (Ax + At)2.

The classical approach to build the Fokker-Planck equation is the choice of the scaling in a such way
that Ax? o At. Hence, we set the quadratic scaling Ax2 = DALt jointly to the dependence on the grid
size Ax in the drift function, that is, the substitution i; = uD/Ax, as well as pi(x) = fj(x)Ax/D, where
D is a positive diffusion constant. From Eqg. (17) in the limit of vanishing At and neglecting the terms
o((Ax + At)?), we obtain the FP equation

D D
atf(X, Y, t) - Ea)%(a(xl y)f(X, Y, t)) - 585((1 - a(x, y))f(X, Y, t))
+ ax(ﬂ1 (X, y)f(X, Y, t)) + ay(ﬂZ(X! y)f(X, Y, t)) =0.

(18)

International Journal of Scientific and Statistical Computing (IJSSC), Volume (9) : Issue (1) : 2025 7
ISSN: 2180-1339, https://www.cscjournals.org/journals/I[JSSC/current-issue.php


https://www.cscjournals.org/journals/IJSSC/current-issue.php

M. Annunziato & A. Borzi

This equation is completed with the initial

f(x,y,0) = fo(x,Y) (19)
and normalization
/ f(x,y,t)dxdy = 1 (20)
M

conditions. Notice, that if the sum in Eq. (3) is less than 1, i.e. there is a positive probability that
the random walk does not jump, then the r.h.s. of Eq. (13) has the further addend f(x, y;, tn)(1 —

zg;o Ps(Xk,Yj))- As a consequence, after the vanishing step grid limit, the FP equation (18) has two
independent diffusion terms a1 (x,t) and ax(x,t). This means that the inverse problem could be solved,
by using the random walk approximation, also for this more general case, albeit the numerical solution
is much more sensitive to approximations due to the presence of one more unknown.

5. THE NUMERICAL SOLUTION OF THE INVERSE PROBLEM

Our goal is the estimation of the coefficients of the FP equation from observation of the PDF as follows:
let the PDF f(x,y, t) be given for (x,y,t) € M x T, then find (u1(x,y), uo(x,y)) and a(x, y) for the FP
equation (18).

In practice, we use numerical PDFs in the form of histograms related to a binning process as usual
in Monte Carlo experiments. Further, we work with synthetic data, which allows to test the accuracy
and robustness of our reconstruction strategy. For this purpose, we choose the functions object of
the reconstruction problem (u1(X,y), pa(x,y)) and a(x, y), then calculate numerically the PDF from the
solution of the FP equation. Such a PDF is coarse grained in the form of a histogram in order to
simulate the aforementioned case of measurements. The values f[l |, needed as input data for our
algorithms, are obtained by interpolation of the histogram values on the random-walk grid points. With
this data, the algorithms calculate /ﬂml ~ pi(Xm, y)) fori= 1,2, and am | ~ a(xm, X)), on Miax ax X Tat.
We remark that this procedure to construct the values ] | is motivated by our purpose to establish
convergence rates in the reconstruction process. ’

Next, we discuss results of numerical experiments obtained with Algorithm 2, since it shows overall
better performance as discussed at the end of this section, where we compare both algorithms.

In the following test, we consider a problem with two discontinuities along x = 0 and 2x =y, the latter is
a discontinuity that is not aligned with the RW grid. We set p;(x,y) = 0.25+5-1073|x|+2-10720(2x~y),
Po(X,y) = 0.2+2-107xy, ps(x,y) = 0.25-2- 1072 sin(y/5) -5 - 10720(x) and D = 1 that corresponds to
11(x,y) = 1073(5|x| + 200(2x — y) + 50 O(x) + 20 sin(y/5))
Uo(x,y) =0.3=(5-1073|x| +2- 1020 (2x —y) =5 - 10720 (x)
—2-102sin(y/5)) -2 - 10 7°xy (21)
ax,y) =0.5+5-10°x| +2 - 10720(2x —y) - 5 - 10720(x)
—2-1072sin(y/5)

for Eqg. (18), that is solved with a grid of 800x800x400 points for the domain (—40, 40) and time T = 20.
1
The initial PDF is fo(x, y) = ——e~0*+¥?)/(6Lo) with Ly = 20.
6 LO

The PDF is computed by solving the FP equation with the Chang-Cooper method (Annunziato & Borzi,
2013). Thereafter, a coarse grain binning of the PDF with a size of 400x400 bins is performed, where
a linear interpolation method is used.

With the aim to evaluate the convergence order of the reconstruction method, we repeat the procedure
with three RW grid sizes, namely of 52, 100 and 200 points for the space domain. The time steps of
discretization results from the scaling AT = Ax?/D. In the case of 200 points, with Ax = 0.4, having set
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40 40

Figure 1: Shapes of the parameters of the Fokker-Planck equation.  From left to right
11 (X, Y), p2(X, y), a(x, y).

Figure 2: The binned PDF at time T = 20.

D = 1, the time step of the RW results AT = 0.16, that corresponds to 124 time intervals. Hence, upon
the space-time grid of size 200x200x124 intervals, the PDF suitable for the input of the reconstruction
algorithms is evaluated by using the linear interpolation of the binned PDF.

In Fig. 1, we show the shapes of u1(X,y), uo(x,y) and a(x,y) of Eq. (21). Notice that this functions
have an entire line of discontinuity, which makes the application of other methods theoretically (at least)
impossible.

In Fig. 2, we show the shape of the calculated and binned PDF at the final time T = 20. Notice the
discontinuities on the surface due to the discontinuities in the drifts and diffusion coefficients.

In Fig. 3, we show the results for the reconstruction of u1(x, 16.6581). The calculated values are repre-
sented with circles, the post-processed with dots. This is valuable especially around the discontinuities
of the function, where the calculation is affected from bigger numerical errors. Nevertheless, we can
see the identification is in good agreement with the function used to generate the data.

In order to further illustrate the results of the reconstruction, we also plot the absolute error as the
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Figure 3: Plot of 1 (x, 16.7581) calculated with Alg. 2 for the first test. Circles are the calculated value,
black dots represent the reconstruction after post-processing.

modulus of the difference between the given functions (21) and the calculated/post-processed. The
same difference is evaluated with the L2—norm for the convergence order estimation. In Fig. 4 the
absolute error is depicted in colored regions of a level set representation.

Next, we perform a second test with a setting with the discontinuity along the line x = 0 only. We have
P1(X%,y) = 0.25+5 - 1073|x], pa(x,y) = 0.2 + 2 - 107°xy, p5(x,y) = 0.25 -2 - 1072 sin(y/5) = 5 - 10720 (x)
and D = 1 that corresponds to
111(X,y) = 1073(5|x| + 50 O(x) + 20 sin(y/5))
po(X,y) = 0.3=(5-1073|x| =5 - 10720(x) — 2 - 1072 sin(y/5)) — 2 - 10°xy (22)
a(x,y)=0.5+5-1073x|=5-10720(x) =2 - 1072 sin(y/5)
for Eq. (18). The other parameters of the numerical setting are the same of the former test. The

resulting reconstruction is shown in Fig. 5. In Fig. 6 we see the absolute errors for the reconstructed
11, to and a with the Alg. 2.

Figure 4: Plots of the absolute error between the given and reconstructed coefficients (21) as level
set. From left to right those corresponding to w1, uo,a. The darker regions are values of errors in the
interval (0,107%) and (1074,1073), bright regions are (1073,1072) and greather than 1072. In the white
regions the calculation has not been completed due to rank deficiency of the matrix system.
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Figure 5: Plot of u1(x,13.5661) calculated with Alg. 2 for the second test. Circles are the calculated
value, black dots represent the reconstruction after post-processing.
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Figure 6: Plots of the absolute error between the given and reconstructed coefficients (22) as level
set. From left to right those corresponding to w1, uo,a. The darker regions are values of errors in the
interval (0,107*) and (1074, 1073), bright regions are (1073, 1072) and greather than 1072. In the white
regions the calculation has not been completed due to rank deficiency of the matrix system.

Table 1: Convergence results for the setting (21). Left Alg. 1, right Alg. 2.

| Nx || 52 | 100 | 200 | | Ny || 100 | 200 |
e(uy) || 265 | 1.32 [ 0.70 e(uy) || 1.24 | 059
e(uo) || 4.83 | 1.86 | 0.96 e(up) || 1.28 | 0.56
e(a) || 4.80 | 1.40 | 0.59 e(a) || 1.28 | 0.50

Table 2: Convergence results for the setting (22). Left Alg. 1, right Alg. 2.

Nx || 52 | 100 | 200 | | Nx || 100 | 200 |
e(uy) |[ 2.09 [ 0.70 | 0.33 e(uy) || 0.69 | 0.31
e(up) || 3.06 | 1.55 | 1.02 e(up) || 1.22 | 0.92
e@) || 4.16 | 1.30 | 0.49 e@@ || 1.19 | 0.43
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Finally, we report in the tables the true L2—errors ¢ versus the grid size Ny of the random walk approx-
imation. In Tab. 1 we report the errors for the setting of Eq. (21) for both the algorithms. Notice that
we calculated the norms on the sub-domain (20, 20) x (—20, 20), where the errors are less subject to
fluctuations due to the vanishing values of the PDF on the boundary of its domain. We see that the
error scales at least linearly with the mesh size, moreover the results of Alg. 2 are more accurate than
the Alg. 1. Similar results are reported in Tab. 2 for the setting (22).

6. CONCLUSION

A novel numerical technique to reconstruct the drift and diffusion coefficients of the Fokker-Planck
equation was presented. This technique was based on the Chapman-Kolmogorov equation of the in-
homogeneous random walk related to the Fokker-Planck equation. Results of numerical experiments
demonstrated the ability of the proposed method to solve this reconstruction problem also in the case
of discontinuous coefficients. The proposed approach allows to calibrate Fokker-Planck equations with
discontinuous drift and diffusion coefficients that appear in the modeling populations with sudden envi-
ronmental changes, finance models with friction-like terms, and queueing theory.

7. REFERENCES
Albeverio, S., Blanchard, P., Kusuoka, S., & Streit, L. (1989). An inverse problem for stochastic
differential equations. Journal of Statistical Physics, 57(1), 347—-356. doi: 10.1007/BF01023648

Annunziato, M., & Borzi, A. (2013). A Fokker—Planck control framework for multidimensional
stochastic processes. Journal of Computational and Applied Mathematics, 237(1), 487-507. doi:
10.1016/j.cam.2012.06.019

Annunziato, M., & Gottschalk, H. (2018). Calibration of Lévy processes using optimal control of Kol-
mogorov equations with periodic boundary conditions. Mathematical Modelling and Analysis, 23(3),
390-413. doi: 10.3846/mma.2018.024

Banks, H. T., Tran, H. T., & Woodward, D. E. (1993). Estimation of variable coefficients in the Fokker-
Planck equations using moving node finite elements. SIAM Journal on Numerical Analysis, 30(6),
1574-1602.

Breitenbach, T., Annunziato, M., & Borzi, A. (2018). On the optimal control of a random walk with jumps
and barriers. Methodology and Computing in Applied Probability, 20(1), 435—462. doi: 10.1007/s11009
-017-9565-4

Chen, X, Yang, L., Duan, J., & Karniadakis, G. E. (2021). Solving inverse stochastic problems from dis-
crete particle observations using the Fokker—Planck equation and physics-informed neural networks.
SIAM Journal on Scientific Computing, 43(3), B811—B830. doi: 10.1137/20M1360153

Comte, F. (2020). From regression function to diffusion drift estimation in nonparametric setting.
ESAIM: ProcS, 68, 20-34.

Comte, F., & Genon-Catalot, V. (2025). New results for drift estimation in inhomogeneous stochastic
differential equations. Journal of Multivariate Analysis, 208, 105415. doi: 10.1016/j.jmva.2025.105415

Cox, D., & Miller, H. (1992). The Theory of Stochastic Processes. London: Chapman & Hall.

Dunker, F., & Hohage, T. (2014, Aug). On parameter identification in stochastic differential equations
by penalized maximum likelihood. Inverse Problems, 30(9), 095001.

Egger, H., & Engl, H. (2005, Apr). Tikhonov regularization applied to the inverse problem of option
pricing: convergence analysis and rates. Inverse Problems, 21(3), 1027.

International Journal of Scientific and Statistical Computing (IJSSC), Volume (9) : Issue (1) : 2025 12
ISSN: 2180-1339, https://www.cscjournals.org/journals/I[JSSC/current-issue.php


https://www.cscjournals.org/journals/IJSSC/current-issue.php

M. Annunziato & A. Borzi

Florens-Zmirou, D. (1989). Approximate discrete-time schemes for statistics of diffusion processes.
Statistics, 20(4), 547-557.

Florens-Zmirou, D. (1993). On estimating the diffusion coefficient from discrete observations. Journal
of Applied Probability, 30(4), 790-804.

Han, S., et al. (2025). System identification of Fokker—Planck equations via transport maps. arXiv
preprint. Retrieved from https://arxiv.org/abs/2507.15091 doi: 10.48550/arXiv.2507.15091

Jager, S., & Kostina, E. (2005, Dec). Parameter estimation for forward Kolmogorov equation with
application to nonlinear exchange rate dynamics. Proceedings in Applied Mathematics and Mechanics,
5, 745-746.

Jamba, N. T., Subray, N., & Rodrigues, H. M. (2024). Estimation for stochastic differential equa-
tion mixed models using approximation methods. AIMS Mathematics, 9(4), 7866—7894. doi:
10.3934/math.2024383

Jiang, G., & Knight, J. (1997). A nonparametric approach to the estimation of diffusion processes, with
an application to a short-term interest rate model. Econometric Theory, 13(5), 615-645.

Lamouroux, D., & Lehnertz, K. (2009). Kernel-based regression of drift and diffusion coefficients of
stochastic processes. Physics Letters A, 373(39), 3507-3512.

Lund, S. P, Hubbard, J. B., & Halter, M. (2014, 11). Nonparametric estimates of drift and diffusion
profiles via Fokker—Planck algebra. The Journal of Physical Chemistry B, 118(44), 12743—12749. doi:
10.1021/jp5084357

Nicolau, J. (2003). Bias reduction in nonparametric diffusion coefficient estimation. Econometric
Theory, 19(5), 754-777.

Reno, R. (2008). Nonparametric estimation of the diffusion coefficient of stochastic volatility models.
Econometric Theory, 24(5), 1174—1206.

The MathWorks. (2021). MATLAB (Version R2021a) [Computer software]: Natick, Massachusetts,
United States: The MathWorks Inc.

International Journal of Scientific and Statistical Computing (IJSSC), Volume (9) : Issue (1) : 2025 13
ISSN: 2180-1339, https://www.cscjournals.org/journals/I[JSSC/current-issue.php


https://arxiv.org/abs/2507.15091
https://www.cscjournals.org/journals/IJSSC/current-issue.php

	INTRODUCTION
	A RANDOM WALK WITH DRIFT
	THE COMPUTATION OF THE RW PARAMETERS
	FROM RANDOM WALKS TO FOKKER-PLANCK EQUATIONS
	THE NUMERICAL SOLUTION OF THE INVERSE PROBLEM
	CONCLUSION
	7.  REFERENCES

