Call for Papers - Ongoing round of submission, notification and publication.
    
  
Home    |    Login or Register    |    Contact CSC
By Title/Keywords/Abstract   By Author
Browse CSC-OpenAccess Library.
  • HOME
  • LIST OF JOURNALS
  • AUTHORS
  • EDITORS & REVIEWERS
  • LIBRARIANS & BOOK SELLERS
  • PARTNERSHIP & COLLABORATION
Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available
(no registration required)

(573.24KB)


-- CSC-OpenAccess Policy
-- Creative Commons Attribution NonCommercial 4.0 International License
>> COMPLETE LIST OF JOURNALS

EXPLORE PUBLICATIONS BY COUNTRIES

EUROPE
MIDDLE EAST
ASIA
AFRICA
.............................
United States of America
United Kingdom
Canada
Australia
Italy
France
Brazil
Germany
Malaysia
Turkey
China
Taiwan
Japan
Saudi Arabia
Jordan
Egypt
United Arab Emirates
India
Nigeria
Metaheuristic Techniques for Test Case Optimization: A Systematic Literature Review
James Maina Mburu, John Gichuki Ndia, Samson Wanjala Munialo
Pages - 52 - 77     |    Revised - 30-06-2025     |    Published - 01-08-2025
Published in International Journal of Software Engineering (IJSE)
Volume - 12   Issue - 4    |    Publication Date - August 2025  Table of Contents
MORE INFORMATION
References   |   Abstracting & Indexing
KEYWORDS
Software testing, Test Case Production, Metaheuristic Techniques, Optimization, UML.
ABSTRACT
Test case production is a crucial phase in the software testing lifecycle that consumes significant time, effort, and cost. As such, it is considered an optimization problem that can be addressed using metaheuristic techniques. This study aims to identify the metaheuristic techniques and their parameters used to generate optimal test data, the Unified Modeling Language (UML) diagrams and intermediate formats employed to create test cases, as well as the databases and metrics used to evaluate the performance of these techniques. A total of 46 primary studies published between 2010 and 2023 were reviewed, selected from an initial pool of 424 articles sourced from IEEE, Springer, Elsevier, and Google Scholar. The findings indicate that both single and hybrid metaheuristic techniques have been applied for test case optimization; however, the majority of studies employed single techniques, with Genetic Algorithms being the most frequently used. Furthermore, 50% of the studies did not specify the parameters used, while those that did often lacked proper documentation and failed to address the crucial balance between exploration and exploitation factors. Moreover, most studies (35) applied individual UML diagrams, mainly activity diagrams, while only 11 studies utilized multiple UML diagrams. Additionally, Graphs were the predominant intermediate format, used in 83% of the studies, whereas formats like XML, adjacency matrices, and tree structures were rarely considered. In terms of performance evaluation, most studies (21) utilized the ATM database, while 18 studies employed simple programs. Finally, while the majority of studies focused on metrics for evaluating the effectiveness of the techniques, only a few considered metrics related to efficiency (RQ6). To address these gaps, future research should consider expert opinion surveys to identify key parameters that ensure an optimal balance between exploration and exploitation. Also, future techniques should support the generation of test cases from multiple UML diagrams. The performance of these techniques should be evaluated through comparative studies using large databases, with equal emphasis on both effectiveness and efficiency metrics.
REFERENCES
Abayatilake, P., & Blessing, L. (2021). The Application of Function Models In Software Design: A Survey Within the Software Community. International Journal of Software Engineering, 9(9), 27-62. https://www.cscjournals.org/library/manuscriptinfo.php?mc=IJSE-176
Aditi, Park, H., Sung, S., Han, Y.-S., & Ko, S.-K. (2025). SAGE:Specification-Aware Grammar Extraction for Automated Test Case Generation with LLMs. http://arxiv.org/abs/2506.11081
ALmarashdeh, I., Alghamdi, F. A., Aldhafferi, N., & Alqahtani, A. (2021). Memory based cuckoo search algorithm for feature selection of gene expression dataset. Informatics in Medicine Unlocked, 24, 100572. https://doi.org/10.1016/j.imu.2021.100572
Alrawashed, T. A., Almomani, A., Althunibat, A., & Tamimi, A. (2019). An automated approach to generate test cases from use case description model. CMES - Computer Modeling in Engineering and Sciences, 119(3), 409-425. https://doi.org/10.32604/cmes.2019.04681
Alzaqebah, M., Briki, K., Alrefai, N., Brini, S., Jawarneh, S., Alsmadi, M. K., Mohammad, R. M. A.,
Ansari, G. A. (2017). Use of Firefly Algorithm in Optimization and Prioritization of Test Paths Generated from UML Sequence Diagram. 167(4), 24-30.
Ara, M., & Biswas, H. A. (2014). A Novel Approach for Test Path Generation and Prioritization of UML Activity Diagrams using Tabu Search Algorithm. International Journal of Scientific & Engineering Research, 5(2), 1212-1217.
Arifiani, S. (2016). Generating Test Data Using Ant Colony Optimization ( ACO ) Algorithm and UML State Machine Diagram in Gray Box Testing Approach. 2016 International Seminar on Application for Technology of Information and Communication (ISemantic), 217-222. https://doi.org/10.1109/ISEMANTIC.2016.7873841.
Basa, S. S., Swain, S. K., & Mohapatra, D. P. (2018). Genetic Algorithm-based Optimized Test Case Design Using UML Genetic Algorithm-based Optimized Test Case Design Using UML. September. https://doi.org/10.29055/jcms/862.
Biswal, B. N. (2010). A Novel Approach for Optimized Test Case Generation Using Activity and Collaboration Diagram. 1(14).
Cuong-le, T., Hoang-le, M., Khatir, S., Wahab, M. A., Tran, M. T., & Mirjalili, S. (2021). A novel version of Cuckoo search Algorithm for solving Optimization problems. Expert Systems With Applications, 115669. https://doi.org/10.1016/j.eswa.2021.115669.
Dalal, S., & Chhillar, R. S. (2013). A Novel Technique for Generation of Test Cases Based on Bee Colony Optimization and Modified Genetic Algorithm. 68(19).
Fan, L., Wang, Y., & Liu, T. (2021). Automatic Test Path Generation and Prioritization using UML Activity Diagram. 484-490. https://doi.org/10.1109/dsa52907.2021.00072.
Gulia, P. (2012). New Approach to Generate and Optimize Test Cases for UML State Diagram Using Genetic Algorithm Categories and Subject Descriptors : General Terms : ACM SIGSOFT Software Engineering Notes. 37(3), 2-6. https://doi.org/10.1145/180921.2180933.
Hasan, N. Bin, Islam, M. A., Khan, J. Y., Senjik, S., & Iqbal, A. (2025). Automatic High-Level Test Case Generation using Large Language Models. 2025 IEEE/ACM 22nd International Conference on Mining Software Repositories (MSR), 674-685. https://doi.org/10.1109/MSR66628.2025.00105.
Hashim, N. L., & Dawood, Y. S. (2018). Test case minimization applying firefly algorithm. International Journal on Advanced Science, Engineering and Information Technology, 8(4-2), 1777-1783. https://doi.org/10.18517/ijaseit.8.4-2.6820.
Hoseini, B. (2014). Automatic Test Path Generation from Sequence Diagram Using Genetic Algorithm. 106-111.
Jaffari, A., Yoo, C. J., & Lee, J. (2020). Automatic test data generation using the activity diagram and search-based technique. Applied Sciences (Switzerland), 10(10), 9-13. https://doi.org/10.3390/APP10103397.
Jena, A. K., & Swain, S. K. (2012). Test Case Creation from UML Sequence Diagram : A Soft Computing Approach. https://doi.org/10.1007/978-81-322-2012-1.
Jena, Ajay Kumar, Swain, Santosh Kumar, Mohapatra, D. P. (n.d.). A Novel Approach for Test Case Generation from UML Activity Diagram. 2014 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT), 621-629. https://doi.org/10.1109/ICICICT.2014.6781352.
Kaur, P., & Kaur, R. (2013).Approaches for Generating Test Cases Automatically to Test the Software. International Journal of Engineering and Advanced Technology (IJEAT), 3, 2249-8958.
Khurana, N., & Chillar, R. S. (2015). Test Case Generation and Optimization using UML Models and Genetic Algorithm. Procedia Computer Science, 57, 996-1004. https://doi.org/10.1016/j.procs.2015.07.502.
Khurana, N., Chhillar, R. S., & Chhillar, U. (2015). A Novel Technique for Generation and Optimization of Test Cases Using Use Case , Sequence , Activity Diagram and Genetic Algorithm. 11(3), 242-250. https://doi.org/10.17706/jsw.11.3.242-250.
Kitchenham, B., Pretorius, R., Budgen, D., Brereton, O. P., Turner, M., Niazi, M., & Linkman, S. (2010). Systematic literature reviews in software engineering-A tertiary study. Information and Software Technology, 52(8), 792-805. https://doi.org/10.1016/j.infsof.2010.03.006.
Kumar, M., & Husain, P. M. (2013). Test Cases Optimization Evaluation Using Efficient Algorithm with UML. 1, 16-20.
Lakshminarayana, P., & Sureshkumar, T. V. (2020). Automatic Generation and Optimization of Test case using Hybrid Cuckoo Search and Bee Colony Algorithm. Journal of Intelligent Systems, 30(1), 59-72. https://doi.org/10.1515/jisys-2019-0051.
Li, J., Xiao, D., Lei, H., Zhang, T., & Tian, T. (2020). Using Cuckoo Search Algorithm with Q -Learning and Genetic Operation to Solve the Problem of Logistics Distribution Center Location.
Lusiana, M., Dewi, C., & Chandra, A. (2019). Optimization of test case generation from uml Activity diagram and sequence diagram By using genetic algorithm. ICIC Express Letters, 13(7), 585-591. https://doi.org/10.24507/icicel.13.07.585.
Mahali, P. (2014). Model Based Test Case Prioritization Using UML Activity Diagram and Evolutionary Algorithm. International Journal of Computer Science and Informatics Volume, 4(2). https://doi.org/10.47893/IJCSI.2014.1177
Mandal, J. K., Satapathy, S. C., Sanyal, M. K., Sarkar, P. P., & Mukhopadhyay, A. (2015). Information systems design and intelligent applications: Proceedings of second international conference India 2015, volume 1. Advances in Intelligent Systems and Computing, 339. https://doi.org/10.1007/978-81-322-2250-7.
Mburu, J. M., & Ndia, J. G. (2022). A Systematic Mapping Study on UML Model based Test Case Generation and Optimization Techniques. 184(13), 26-33.
Mburu, J. M., Muketha, G. M., & Oirere, A. M. (2020). An Enhanced Multiview Test Case Generation Technique for Object-oriented Software using Class and Activity Diagrams. 4, 186-195. https://doi.org/10.35940/ijrte.D4908.119420.
Mohd-Shafie, M. L., Kadir, W. M. N. W., Lichter, H., Khatibsyarbini, M., & Isa, M. A. (2022). Model-based test case generation and prioritization: a systematic literature review.In Software and Systems Modeling (Vol. 21, Issue 2). https://doi.org/10.1007/s10270-021-00924-8.
Moussa, S., Elghondakly, R., & Badr, N. (2016). An Optimized Approach for Automated Test Case Generation and Validation for UML diagrams. September. https://doi.org/10.3923/ajit.2016.4276.4290.
Panda, M., & Dash, S. (2019). A Framework for Testing Object Oriented Programs Using Hybrid Nature Inspired Algorithms. Springer Singapore. https://doi.org/10.1007/978-981-13-3140-4.
Panda, M., Dash, S., Nayyar, A., Bilal, M., & Mehmood, R. M. (2020). Test suit generation for object oriented programs: A hybrid firefly and differential evolution approach. IEEE Access, 8, 179167-179188. https://doi.org/10.1109/ACCESS.2020.3026911.
Panigrahi, S. S., Sahoo, P. K., Sahu, B. P., Panigrahi, A., & Jena, A. K. (2021). Model-driven automatic paths generation and test case optimization using hybrid FA-BC. 2021 International Conference on Emerging Smart Computing and Informatics, ESCI 2021, 263-268. https://doi.org/10.1109/ESCI50559.2021.9396999.
Panthi, V., & Mohapatra, D. P. (2017). ACO based embedded system testing using UML Activity Diagram. IEEE Region 10 Annual International Conference, Proceedings/TENCON, 237-242. https://doi.org/10.1109/TENCON.2016.7847997.
Potluri, S., Ravindra, J., Mohammad, G. B., & Sajja, G. S. (2022). Optimized Test Coverage with Hybrid Particle Swarm Bee Colony and Firefly Cuckoo Search Algorithms in Model Based Software Testing.IEEE.
Pradyot, K., Sharma, D., & Gouthami, K. P. (2015). Favourable test sequence generation in state-based testing using bat algorithm https://doi.org/10.1504/IJCAT.2015.070495.
Raamesh, L., & Jothi, S. R. S. (2022). Generating Optimal Test Case Generation Using Shuffled Shepherd Flamingo Search Model. Neural Processing Letters. https://doi.org/10.1007/s11063-022-10867-w.
Ranjan, P., Mallikarjun, B., & Yang, X. (2013). Optimal test sequence generation using firefly algorithm. 8, 44-53.
Rao, C. P. (2016). Comprehensive Testing Tool for Automatic Test Suite Generation , Prioritization and Testing of Object Oriented Software Products. International Journal of Software Engineering, 7(1), 1-15.
Rastogi, P. (2019). An Optimal Software Test Case Mechanism using Grey Wolf-FireFly Method. 12(2), 22-32. https://doi.org/10.22266/ijies2019.0430.03.
Rhmann, W. (2019). Optimized and Prioritized Test Paths Generation from UML Activity Diagram Optimized and Prioritized Test Paths Generation from UML Activity Diagram using Firefly Algorithm. June. https://doi.org/10.5120/ijca2016910718.
Rhmann, W., Zaidi, T., & Saxena, V. (2015). Test Case Generation and Optimization using UML Models and Genetic Algorithm. International Journal of Computer Applications, 115(4), 8-12. https://doi.org/10.5120/20137-2232.
Sabharwal, S., Sibal, R., & Sharma, C. (2010). Prioritization Of Test Case Scenarios Derived From Activity Diagram Using Genetic Algorithm. 2010 International Conference on Computer and Communication Technology (ICCCT), 481-485. https://doi.org/10.1109/ICCCT.2010.5640479.
Saha, R. S. and A. (2018). Optimal test sequence generation in state 2 based testing using moth flame optimization 3 algorithm. https://doi.org/10.3233/JIFS-169804.
Sahoo, R. K., Derbali, M., Jerbi, H., van Thang, D., Kumar, P. P., & Sahoo, S. (2021). Test Case Generation from UML-Diagrams Using Genetic Algorithm. 67(2), 2321-2336. https://doi.org/10.32604/cmc.2021.013014.
Sahoo, R. K., Mohapatra, D. P., & Patra, M. R. (2017). Model Driven Approach for Test Data Optimization Using Activity Diagram Based on Cuckoo Search Algorithm. International Journal of Information Technology and Computer Science, 9(10), 77-84. https://doi.org/10.5815/ijitcs.2017.10.08.
Sahoo, R. K., Satpathy, S., Sahoo, S., & Sarkar, A. (2021). Model driven test case generation and optimization using adaptive cuckoo search algorithm. Innovations in Systems and Software Engineering. https://doi.org/10.1007/s11334-020-00378-z.
Sahoo, Rajesh Ku, Kumar, S. N., Mohapatra, D. P., & Patra, M. R. (2017). Model Driven Test Case Optimization of UML Combinational Diagrams Using Hybrid Bee Colony Algorithm. June, 43-54. https://doi.org/10.5815/ijisa.2017.06.05.
Samah, K. A. F. A., Badarudin, I. M., Odzaly, E. E., Ismail, K. N., Nasarudin, N. I. S., Tahar, N. F., & Khairuddin, M. H. (2019). Optimization of house purchase recommendation system (HPRS) using genetic algorithm. Indonesian Journal of Electrical Engineering and Computer Science, 16(3), 1530-1538. https://doi.org/10.11591/ijeecs.v16.i3.pp1530-1538.
Sankar, S., & Chandra, V. (2020). An Ant Colony Optimization Algorithm Based Automated Generation of Software Test Cases (Vol. 1). Springer International Publishing. https://doi.org/10.1007/978-3-030-53956-6.
Shirole, M., & Kumar, R. (2010). A hybrid genetic algorithm based test case generation using sequence diagrams. Communications in Computer and Information Science, 94 CCIS(PART 1), 53-63. https://doi.org/10.1007/978-3-642-14834-7_6.
Sumalatha, V. M. (2013). Object Oriented Test Case Generation Technique using Genetic Algorithms. 61(20), 20-26.
Tamizharasi, A., & Ezhumalai, P. (2022). Genetic-based Crow Search Algorithm for Test Case Generation. 1-11. https://doi.org/10.14456/ITJEMAST.2022.74.
Tamizharasi, A., Ezhumalai, P., Remya Rose, S. , Sureshd, P., Logesswarie, S. (2021). Bio Inspired Approach for Generating Test data from User Stories. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(2), 412-419. https://doi.org/10.17762/turcomat.v12i2.826.
Tatale, S., & Prakash, V. C. (2022). Ingénierie des Systèmes d ’ Information Automatic Generation and Optimization of Combinatorial Test Cases from UML Activity Diagram Using Particle Swarm Optimization. 27(1), 49-59.
Wambui, A., Muketha, G. M., & Ndia, J. G. (n.d.). A Framework for Analyzing UML Behavioral Metrics based on Complexity Perspectives. 11, 1-12.
Xiong, Y., Zou, Z., & Cheng, J. (2023). Cuckoo search algorithm based on cloud model and its application. Scientific Reports, 13(1), 1-13. https://doi.org/10.1038/s41598-023-37326-3.
MANUSCRIPT AUTHORS
Mr. James Maina Mburu
Department of Information Technology, Murang’a University of Technology, Murang’a, 75-10200 - Kenya
jmburu48@gmail.com
Dr. John Gichuki Ndia
Department of Information Technology, Murang’a University of Technology, Murang’a, 75-10200 - Kenya
Dr. Samson Wanjala Munialo
Department of Information Technology, Meru University of Science and Technology, Meru, 972-60200 - Kenya


CREATE AUTHOR ACCOUNT
 
LAUNCH YOUR SPECIAL ISSUE
View all special issues >>
 
PUBLICATION VIDEOS
 
You can contact us anytime since we have 24 x 7 support.
Join Us|List of Journals|
    
Copyrights © 2025 Computer Science Journals (CSC Journals). All rights reserved. Privacy Policy | Terms of Conditions