
James Maina Mburu, John Gichuki Ndia & Samson Wanjala Munialo

International Journal of Software Engineering (IJSE), Volume (12): Issue (4): 2025 52
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

Metaheuristic Techniques for Test Case Optimization: A
Systematic Literature Review

James Maina Mburu jmburu48@gmail.com
Department of Information Technology
Murang’a University of Technology
Murang’a, 75-10200, Kenya

John Gichuki Ndia jndia@mut.ac.ke
Department of Information Technology
Murang’a University of Technology
Murang’a, 75-10200, Kenya

Samson Wanjala Munialo smunialo@must.ac.ke
Department of Information Technology
Meru University of Science and Technology
Meru, 972-60200, Kenya

Abstract

Test case production is a crucial phase in the software testing lifecycle that consumes significant
time, effort, and cost. As such, it is considered an optimization problem that can be addressed
using metaheuristic techniques. This study aims to identify the metaheuristic techniques and their
parameters used to generate optimal test data, the Unified Modeling Language (UML) diagrams
and intermediate formats employed to create test cases, as well as the databases and metrics
used to evaluate the performance of these techniques. A total of 46 primary studies published
between 2010 and 2023 were reviewed, selected from an initial pool of 424 articles sourced from
IEEE, Springer, Elsevier, and Google Scholar. The findings indicate that both single and hybrid
metaheuristic techniques have been applied for test case optimization; however, the majority of
studies employed single techniques, with Genetic Algorithms being the most frequently used.
Furthermore, 50% of the studies did not specify the parameters used, while those that did often
lacked proper documentation and failed to address the crucial balance between exploration and
exploitation factors. Moreover, most studies (35) applied individual UML diagrams, mainly activity
diagrams, while only 11 studies utilized multiple UML diagrams. Additionally, Graphs were the
predominant intermediate format, used in 83% of the studies, whereas formats like XML,
adjacency matrices, and tree structures were rarely considered. In terms of performance
evaluation, most studies (21) utilized the ATM database, while 18 studies employed simple
programs. Finally, while the majority of studies focused on metrics for evaluating the
effectiveness of the techniques, only a few considered metrics related to efficiency (RQ6). To
address these gaps, future research should consider expert opinion surveys to identify key
parameters that ensure an optimal balance between exploration and exploitation. Also, future
techniques should support the generation of test cases from multiple UML diagrams. The
performance of these techniques should be evaluated through comparative studies using large
databases, with equal emphasis on both effectiveness and efficiency metrics.

Keywords: Software Testing, Test Case Production, Metaheuristic Techniques, Optimization,
UML.

1. INTRODUCTION
Test Case Production (TCP) is a significant step of software testing. Automating this process can
minimize time, effort and cost of software testing. However it is a challenging and complex task

https://www.cscjournals.org/journals/IJSE/description.php

James Maina Mburu, John Gichuki Ndia & Samson Wanjala Munialo

International Journal of Software Engineering (IJSE), Volume (12): Issue (4): 2025 53
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

(Rao, 2016). Metaheuristic techniques play a critical function in automatic or semiautomatic
creation of suitable test suite for software. The main goal of evolutionary testing is to attain high
degree of automation with quality tests at a low cost. TCP guarantees that, software delivered is
bug free and is of high value. Conversely, optimization ensures that ideal test case is created
(Lakshminarayana & Sureshkumar, 2020; Mburu & Ndia, 2022).

There are different techniques applied to produce test case that include such as model based
approaches which produce the test case from the UML models (Mburu et al., 2020; Fan et al.,
2021), search-based test production which uses metaheuristic techniques that direct the
exploration towards the possible areas of input space (Cuong-le et al., 2021, Alzaqebah et al.,
2021), random approaches that creates test paths based on conventions, Goal based test case
creation approach that covers a specific segment, statement or function (Hasan et al., 2025), and
specification based techniques that create test case based on the formal requirement
specifications (Aditi et al., 2025).

Over recent years, various metaheuristic techniques have been introduced such as Cuckoo
Search (CS) Technique (Li et al., 2020; Sahoo, Satpathy, et al., 2021; Xiong et al., 2023), hybrid
of CS and Bee Colony (BC) techniques (Lakshminarayana & Sureshkumar, 2020), a hybrid of
genetic-based crow search algorithms (GBCA) (Tamizharasi & Ezhumalai, 2022), a hybrid of
Firefly (FA) and BC techniques (Panigrahi et al., 2021), Genetic Algorithm (GA) (Sahoo, Derbali,
Jerbi, & Thang, 2021). These techniques have been employed in creating and optimizing test
case. However, they are faced by myriad challenges as they are characterized by various
numbers of iterations thus spend a lot of time in selecting the required test cases. In addition,
they produce and optimize from either one or two UML diagrams (Sahoo, Satpathy, et al., 2021;
Panigrahi et al., 2021; Tatale & Prakash, 2022) hence they are not efficient in terms of test
coverage. The said techniques are therefore, challenged for their application in TCP and
optimization.

Model based testing is an approach which is used for designing and modeling the artifacts of the
software. In this study, a model depicts the function (behavior) of software under test and a
function can be in terms of input, output, action, events and many more. Software testing relies
on the models as the test case remains the same even after certain changes are made in the
code. Test cases are created from the model that defines the behavior of the software (Panda et
al., 2020; Abayatilake & Blessing, 2021; Mohd-Shafie et al., 2022).

UML is a modeling language employed to visualize, examine and document the parts of a system
in form of a model or design. The UML models are categorized into two; the structural models
and behavioral models. Structural models define the structure of the software and represent the
static aspect of the system, while the behavioral models describe the dynamic features of the
software (Panigrahi et al., 2021; Wambui et al., 2024).

The study intended to presents an overview of state-of-the-art research on different metaheuristic
techniques for TCP and optimization, their parameters, UML models, intermediate formats, and
evaluation of the techniques and the research gaps of the study. The study was done using
systematic literature review (SLR) protocol presented in Section 2 and it covered hundreds of
scientific publications from goggle scholar, IEEE digital library and springer.

The rest of the paper is organized as follows; the protocol for the SLR applied to identify and
assess papers in this study is described in section 2, the results of the study are presented in
Section 3, in section 4, possible threats to the validity of this study are deliberated, and lastly in
Section 5, we present our conclusion.

2. RESEARCH METHOD
This study employed a Systematic Literature Review (SLR) methodology, a formal method in
Evidence-Based Software Engineering (EBSE), as proposed by Kitchenham et al. (2009, 2010).

https://www.cscjournals.org/journals/IJSE/description.php

James Maina Mburu, John Gichuki Ndia & Samson Wanjala Munialo

International Journal of Software Engineering (IJSE), Volume (12): Issue (4): 2025 54
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

The SLR methodology is grounded in a deductive research approach, where the investigation
begins with predefined objectives and research questions based on existing theories and
knowledge gaps, and proceeds to systematically collect and analyze evidence from the literature.
To begin with, a review protocol was established (see Fig. 1), outlining the study’s objectives,
formulated research questions, defined search strategy, inclusion and exclusion criteria for study
selection, and the construction of the search strings, as detailed below.

FIGURE 1: The stages of review study.

2.1 Review Protocol
An organized review protocol expresses the reason, assumption, and arranging approaches for
the review. It is planned before a review is started and applied as a guide to perform the review.
Fig 1 indicates the stages of review, such as objectives, research questions, search strategy,
study selection, and data analysis.

2.2 Study Objectives
This study entails the following objectives;

• To determine the existing metaheuristic techniques and their parameters employed for
test case optimization.

• To identify the UML behavioral models and intermediate formats used by metaheuristic
techniques for TCP.

• To determine databases and metrics employed to evaluate the performance
metaheuristic techniques

• To determine gaps in the present studies.
• Suggest future work about enhancement on TCP and optimization.

2.3 Study Questions
Research questions are critical part of system review as suggested by Kitchenham et al.(2010).
To achieve the objectives mentioned in (section 2.2), researchers identified the research
question;

Study Objectives

Study Questions

Search strategy

Search Procedure

Resources Search terms

Study selection

Scrutiny

Quality assessment criteria

Data synthesis

https://www.cscjournals.org/journals/IJSE/description.php

James Maina Mburu, John Gichuki Ndia & Samson Wanjala Munialo

International Journal of Software Engineering (IJSE), Volume (12): Issue (4): 2025 55
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

RQ1: How are metaheuristic techniques employed for test case optimization?
RQ2: Which are the common parameters used by metaheuristic techniques for test case
optimization?
RQ3: How are UML models applied by metaheuristic techniques for TCP?
RQ4: Which intermediate format is used by metaheuristic techniques for TCP?
RQ5: Which databases are employed to evaluate the performance of metaheuristic techniques?
RQ6: Which metrics are used to evaluate the performance meta heuristic techniques?

2.4 Search Terms
Table 1 shows the search terms used when searching for original papers for this study. The
search terms are derived from the research questions.

TABLE 1: The search terms for searching original studies.

2.5 Search Strings
The search terms listed in Table 1 were combined into two search strings for use in the digital
libraries. These are shown in Table 2.

No Search String
1 Model-Based AND Metaheuristic AND Techniques AND (Test case OR Test cases)

AND Generation AND Optimization AND (UML OR Unified Modeling Language)
AND (Diagram OR Diagrams)

2 Model-Driven AND Metaheuristic AND Algorithms AND (Test case OR Test cases)
AND Generation AND Optimization AND (UML OR Unified Modeling Language)

AND (Diagram OR Diagrams)

TABLE 2: The search strings for the digital libraries.

2.6 Searching Strategy
During phase 1 of the search, the research study searched from IEEE, Springer, Elsevier and
Google scholar. The research study then perused through the abstract of studies after which
identified articles were downloaded from the electronic databases indicated in Figure. 2.

A total of 424 studies as indicates in Fig. 2 found linked to the study area during the publishing
years 2010–2023. These studies are published in different digital Libraries such as Google
scholar, IEEE, Springer and Elsevier. Figure 2 indicates the number of published papers in the
journal and conference on model-based TCP and optimization.

Term Alternate spelling
Model-based Model-driven
Metaheuristic
Techniques Algorithms
Test case Test cases

Generation -
Optimization -

UML Unified modeling
language

Diagram Diagrams

https://www.cscjournals.org/journals/IJSE/description.php

James Maina Mburu, John Gichuki Ndia & Samson Wanjala Munialo

International Journal of Software Engineering (IJSE), Volume (12): Issue (4): 2025 56
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

FIGURE 2: Number of publications per database.

2.7 Studies Selection Procedure
The suitable studies were selected based on the following study inclusion and exclusion criteria
as represented in Table 3. After applying these measures, some papers were detached from the
pool as these papers were not fulfilling the search conditions of review procedure.

Type selection conditions ID Description
Inclusion conditions ICI Studies that include topics of model-based bio-inspired

metaheuristic techniques for test case generation and
optimization

ICII Articles published between 2010-2023
ICIII Articlesavailable in either journals or conference proceedings

Exclusion conditions ECI Papers not written in English language
ECII Papers relating to structural(code) testing
ECIII Paper relating to surveys/ SLRs
ECIV Books, reports, thesis and tutorials
ECV Duplicate papers from different resources

TABLE 3: Inclusion and exclusion criteria for selecting the appropriate studies.

Figure 3 indicates the number of search phrases and considered studies at each phase. In phase
1, the search was done on digital libraries mentioned in section 2.6 by employing search terms
specified in section 2.5. The search was on the base of titles, abstracts and keywords of the
research studies. A total of 424 studies were obtained by the researchers. Numerous of the
studies were extraneous and not quite addressed the research questions of the review.
Therefore, in stage 2, researchers removed duplicate studies and studies that were not written in
English language. As a result, 393 studies were obtained. At phase 3, the studies were
categorized into journal papers, conference papers, thesis, technical reports and book chapters.
Thesis book chapters and technical reports were discarded and a total of 354 studies were
obtained. In phase 4, researchers applied the quality assessment criteria specified in section 3.8
and finally, a total of 46 studies were selected.

211
61 36 40

0
100
200
300

Google
Scholar

IEEE Springer Elsivier

N
o.

 P
ub

lic
at

io
ns

Digital libraries

Published papers

https://www.cscjournals.org/journals/IJSE/description.php

James Maina Mburu, John Gichuki Ndia & Samson Wanjala Munialo

International Journal of Software Engineering (IJSE), Volume (12): Issue (4): 2025 57
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

FIGURE 3: Phases of search strategy.

2.8 Study Quality Assessment Checklist and Procedure
The selected papers were evaluated based on their quality in terms of contribution to TCP and
optimization. Two researchers evaluated the quality of the selected papers with one
researcherevaluating all independently, while the other researcher assessed the half of the
papers. Table 4 shows a checklist for evaluating value of the study.

NO Questions

Theoretical Contribution
1 Is at least one of the questions addressed?
2 Was the study designed to address some of the research questions?
3 Is a problem description for the research explicitly provided?
4 Is the problem description supported by references of other works?
5 Are the contribution research clearly described?
6 Are there assumptions, if any, clearly stated?
7 Is there sufficient evidence to support the claims of the research?

Experimental Evaluation
8 Is the research clearly described?
9 Is prototype, simulation or empirical study presented?
10 Is the experimental set up clearly described?
11 Are the results from multiple different experiments included?
12 Are the results from multiple runs of each experiment included?
13 Are the experimental results compared with other approaches?
14 Are negative results if any presented?
15 Is the statistical significance of the results assessed?
16 Are the limitations clearly stated?
17 Are links between data, interpretation and conclusions clear?

TABLE 4: Presents checklist for evaluating value of the study.

Google
scholar

IEEE

Springer

Elsevier

Duplicates
& non-
English
papers

Exclusio
n based
on
category Exclusion

based on title
and abstract

Quality
assessment
criteria

151

27

58

65

30

Phase1

Phase 2 Phase 3 Phase 4

424

393

46
Primary
studies

354

https://www.cscjournals.org/journals/IJSE/description.php

James Maina Mburu, John Gichuki Ndia & Samson Wanjala Munialo

International Journal of Software Engineering (IJSE), Volume (12): Issue (4): 2025 58
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

Thereafter, results were likened and disagreement resolved through discussion among
researchers. Any paper not meeting minimum quality requirements as described below, was
excluded from the set of primary studies.

Table 4 presents the checklist of the study quality valuation. For each question in the checklist a
three- level, numeric scale was used. The levels were True (2 points), partial (1 point) and false
(0 point). If the study scored 8 points or less, it was discarded due to the lack of quality in relation
to this study. The research documented the obtained score of each included/excluded study.

2.9 Data Extraction
In this phase, researchers gathered information associated with the research questions from
studies. To extract data, a form was created with a test-retest process for the reliability and
correctness of the selected data. The form is indicated in Table. 5.

TABLE 5: Primary studies data extraction form.

2.10 Synthesis of the Extracted Data
The extracted data from the papers was examined to get a high-level view of the different aspects
related to TCP and optimization. The papers were categorized and collective results were
extracted. The results from this phase are presented and discussed in Section 3.

3. REVIEW RESULTS
3.1 Review Details
In this sub-section, each study was analyzed and summarized to identify metaheuristic
techniques used to enhance test case, the parameters, UML models, intermediate format applied
and how the techniques are evaluated. To answer study questions, studies were reviewed and
corresponding information was recorded. Table 6 presents the comprehensive results. The first
column is the author(s) of the study, the second column is the algorithm used, third column
defines the parameters applied, fourth column presents the UML diagram used, the fifth column

S/NO Test Data
Extraction

Field

Explanation Address

General Details
PS01 Study_ID Unique id for each primary study (PS)

Study Description
PS02 Title Full title for the selected PS
PS03 Author Author’s name of PS
PS04 Year Year study was published
PS05 Type of

Publication
Type of paper: Journal, conference, synopsis, book chapter,

thesis etc.

PS06 Publisher Publisher’s name
Study Coverage

PS07 Objective Study’s main objective R1, R2, R3,
R3,R4,R5,R6

PS08 Technique Which metaheuristic techniques employed for test case
optimization?

R1

PS09 Parameters Which parameters are used by metaheuristic techniques for test
case optimization?

R2

PS10 UML model Which UML model (s) employed by metaheuristic technique for
TCG?

R3

PS11 Intermediate
format

Which Intermediate format employed by metaheuristic
technique for TCG?

R4

PS12 Database Which database used to assessthe metaheuristic techniques’
performance?

R5

PS13 Metrics Which metrics are applied to assessthe metaheuristic
techniques’ performance?

R6

https://www.cscjournals.org/journals/IJSE/description.php

James Maina Mburu, John Gichuki Ndia & Samson Wanjala Munialo

International Journal of Software Engineering (IJSE), Volume (12): Issue (4): 2025 59
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

gives the intermediate format used, and sixth column is the database applied to evaluate the
technique, seventh column is the metrics used and eighth column presents the research gaps.

Author Algorith

m
Parameters UML

Model
Intermed

iate
Format

Databas
es

Metrics Research Gap

(Shirole
&

Kumar,
2010)

Genetic
Algorithm

(GA)

not specified Sequen
ce

Sequence
graph

,Applicatio
n for stack
calculator,
System for

Stu-
dent

Course
Enrollment

covered,
message
sequenc

e
coverage

Test cases
generated enhances

test coverage.
However, lacks

balance between
exploration and
exploitation, test
data is produced

from a single model
(Biswal,
2010)

GA not specified Activity
and

collabor
ation

diagram

not
specified

ATM cash
withdraw

transition
coverage
, single

Guarantees the
minimum presence

of error, in the
generated test case.
However it was not

evaluated, lack
balance between
exploration and

exploitation.
(Sabhar
wal et

al.,
2010)

GA not specified Activity Control
flow graph

Credit
card

membersh
ip

fitness
value
,Path

coverage
, not

evaluate
d

Efficacy is improved
by finding the critical

path bands.
However need to be

evaluated, lacks
balance between
exploration and
exploitation, test

data are generated
from a single

diagram
(Gulia,
2012)

GA not specified State
chart

State flow
diagram

Driverless
Train

Not
specified

Generates optimized
sequence. However

need to be
evaluated, lacks
balance between
exploration and
exploitation, test
paths are created
from an individual

model
(Jena &
Swain,
2012)

GA not specified Sequen
ce

message
control

flow graph

ATM
withdraw
system

fitness
value ,

message
sequenc
e path

coverage
, single

Generates and
optimize test cases.
However need to be

evaluated, lacks
balance between
exploration and

exploitation, only
one diagram used to

produce data
(Ranjan
et al.,
2013)

Firefly
Algorithm

(FA)

 Number of flies
(population size),
No of iteration,

number of edges,
cyclomatic
complexity,

State
chart

Control
flow graph

Generatin
g a test

case

No of
states,

cyclomati
c

complexit
y, path

Generates optimal
paths. However

need to be
evaluated. lacks
balance between
exploration and

https://www.cscjournals.org/journals/IJSE/description.php

James Maina Mburu, John Gichuki Ndia & Samson Wanjala Munialo

International Journal of Software Engineering (IJSE), Volume (12): Issue (4): 2025 60
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

objective
function,

absorption
coefficient,
distance (r)

exploitation, test
paths are created

from only one model

(Kaur &
Kaur,
2013)

GA not specified Sequen
ce

Tree
structure

not
specified

Edge-
Pair

Coverag
e and
path

coverage
.

 Finds more faults
and increase the

effectiveness
through mutation
testing. However

need to be
evaluated, lacks
balance between
exploration and

exploitation, a single
model is employed
to create test data.

(Sumala
tha,

2013)

GA not specified Sequen
ce

sequence
graph

Deal cards
scenario

Fitness
value,
Path

coverage
.

not automated and
also, need to be
evaluated, lacks
balance between
exploration and
exploitation, test

paths are produced
from an individual

diagram
(Dalal &
Chhillar,
2013)

Bee
Colony

Optimizati
on (BC)

and
Modified
Genetic

Algorithm
(MGA)

not specified Activity Activity
dependen
cy graph

Card
managem

ent
system

Fitness
score ,

Decision
node

coverage

Proposes a tool to
generate test cases

automatically.
However need to be

evaluated. lacks
balance between
exploration and
exploitation, test
data are created

from a single model
(Kumar

&
Husain,
2013)

GA Not specified Activity
and

sequenc
e

Not
specified

ATM
withdrawal
, balance
enquiry

with
receipt

and PIN
verification

Faults
detection

score,
single

Helps to reduce
effort of generating

test cases. However
it lacks balance

between exploration
and exploitation.

(Jena,
Ajay

Kumar,
Swain,

Santosh
Kumar,

Mohapat
ra, n.d.)

GA not specified Activity Activity
Flow
graph

ATM cash
Withdrawa
l System

activity
coverage
criteria,

Not automated and
also, need to be
evaluated. lacks
balance between
exploration and
exploitation, an

individual model is
employed to

produce test data
(Hoseini
, 2014)

GA not specified Sequen
ce

control
flow graph

User
authentica

tion in
ATM

Path
coverage

Major paths are
automatically

created and least
paths extracted with

shortest probable
length. Need to be
evaluated, lacks
balance between
exploration and

https://www.cscjournals.org/journals/IJSE/description.php

James Maina Mburu, John Gichuki Ndia & Samson Wanjala Munialo

International Journal of Software Engineering (IJSE), Volume (12): Issue (4): 2025 61
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

exploitation, test
data are produced
from an individual

diagram
(Mahali,
2014)

GA not specified Activity Activity
graph

Shopping
mall

managem
ent

system

fitness
value ,
Path

coverage

Identified an
enhanced

independent path
however, Need to be

evaluated, lacks
balance between
exploration and

exploitation, single
model is used to
create test data

(Ara &
Biswas,
2014)

Tabu
search

Not specified Activity Control
flow graph

Library
Managem

ent
System.

cyclomati
c

complexit
y,

Ability to detect
faults however,

Need to be
evaluated, lacks
balance between
exploration and

exploitation
(Khuran
a et al.,
2015)

GA not specified Activity,
sequenc
e, use
case

System
graph

Online
examinati

on
system.

Fitness
value,
Path

coverage
.

Covers maximum
number of faults.

However, need to be
automated, need to
be evaluated, lacks
balance between
exploration and

exploitation.
(Rhman
n et al.,
2015)

GA Population size,
No. of

generations ,
Selection
method,

Crossover
method, Mutation

method

Activity Activity
flow graph

Book
issue

process
from

Fitness
value ,

Decision
node

coverage
,

Test paths are
prioritized which
helps to reduce

testing cost. Need to
be evaluated, lacks
balance between
exploration and
exploitation, test

data are produced
from only one model

(Mandal
et al.,
2015)

Intelligent
Optimizati

on
Algorithm

not specified Activity Activity
graph

Shopping
mall

managem
ent

system

path
coverage

Generates optimized
test suite. However,

need to be
evaluated through
comparative study,

lacks balance
between exploration
and exploitation and
only a single model

applied to create test
paths.

(Khuran
a &

Chillar,
2015)

GA Population size,
No. of

generations ,
Selection
method,

Crossover
method, Mutation

method

Sequen
ce and
state
chart

diagram
s

System
Graph

Online
based
Voting
System

No of test
cases
,Path

coverage

Identify and optimize
test data –not
automated.

However, not
evaluated, lacks
balance between
exploration and

exploitation.
(Pradyot

et al.,
2015)

BAT Frequency,
velocity,

loudness,
location,

State
chart

XML class
managem

ent
system,

transition
coverage

Generates favorable
test sequence.
However, lacks

balance between

https://www.cscjournals.org/journals/IJSE/description.php

James Maina Mburu, John Gichuki Ndia & Samson Wanjala Munialo

International Journal of Software Engineering (IJSE), Volume (12): Issue (4): 2025 62
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

desirability and
probability.

enrollment
study,

telephone
system

exploration and
exploitation, test

data created a single
model

(Moussa
et al.,
2016)

Enhanced
Anti

colony
optimizatio

n (ACO)

not specified Activity,
state
chart,
use
case

Activity
graph,

state chart
graph, use

case
graph

ATM
system

cyclomati
c

complexit
y, test
case

generatio
n time ,

Path
coverage

Generate test data
automatically from
different behavioral
diagrams. However
need to evaluated,

lacks balance
between exploration

and exploitation.
(Arifiani,
2016)

ACO not specified State
chart

Dependen
cy Graph

simple
function

Average
Coverag
e (AC),

Success
Rate
(SR),

Average
(converg

ence)
Generati
on (AG),

and
Average

Time
(AT),

Branch
coverage

Verify and validate
requirement
specification.

However need to
evaluated, lacks
balance between
exploration and
exploitation, test

data are produced
from a single state

chart

(Sahoo
et al.,
2017)

CS Population size,
Maximum
number of

generations,
Levy flight,

Random number,
Probability of
occurrence

(pa),gamma,
beta and sigma

Activity Activity
graph

ATM
Withdraw
operation

Path
coverage

, No of
iterations
, Fitness

value

Generates ideal test
cases, lacks balance
between exploration
and exploitation, test

data are created
from only one model

(Ansari,
2017)

FA Number of flies
(population size),
maximum no. of

generations,
Initial value
attraction

coefficient (Β0),
light absorption

factor (Υ),
mutation factor
(α), mutation

Sequen
ce

Adjacency
Matrix

Patient
Registratio
n System

cyclomati
c

complexit
y

Generates optimal
test data that can be

used to identify
faults, lacks balance
between exploration

and exploitation

(Sahoo,
Rajesh

Ku,
Kumar
et al.,
2017)

Particle
swarm-

Bee
Colony

Population size,
no. of generation,

velocity, pbest,
gbest, probability

factor, C1and
C2, weight factor

and random
number

Activity
and

sequenc
e

System
testing
graph

ATM
Withdraw
operation

Path
coverage

, total
test case
and total
iteration,

Generates
automated

enhanced test paths.
However, lacks

balance between
exploration and

exploitation.

(Panthi
&

Mohapat

ACO Pheromone
value (Ph)

(population size),

Activity Activity
Interaction

Graph

Make Call Weight
value,

not

Produce ranked test
scenarios. However,

lacks balance

https://www.cscjournals.org/journals/IJSE/description.php

James Maina Mburu, John Gichuki Ndia & Samson Wanjala Munialo

International Journal of Software Engineering (IJSE), Volume (12): Issue (4): 2025 63
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

ra,
2017)

Heuristic
value(H), Visited

status (Vs),
Probability set

(P), Sum,
Condition (CD!

=DN)

evaluate
d

between exploration
and exploitation, test
paths are produced

from a single
diagram

(Basa et
al.,

2018)

GA Not specified State
chart

state
transition

graph

Student
Registratio

n for
Seminar

fitness
value

Lacks balance
between exploration
and exploitation, test

data are created
from an individual

state chart and it is
semi-automatic

(Hashim
&

Dawood
, 2018)

FA Not specified State
chart

State
relationshi

p graph

ATM
system

Path
coverage

Produce test data
identify faults like

state based
interaction,

sequence and
scenario faults and
transaction based
condition faults.
However, lacks

balance between
exploration and

exploitation, single
state chart is used to

produce test data.
(Saha,
2018)

Moth
flame

optimizatio
n (MFO)
algorithm

Distance
between month
(Dp), shape of
the spiral (b),

arbitrary number
(t), extreme

number of flames
(Population size),
total number of

iterations (I)

State
chart

diagram

State
graph

Translator
for Braille
To Text,

ATM
transactio

n,
Applicatio

n for
Microwave

oven

No of test
paths

generate
d, test
paths

generatio
n time,

redundan
cy in test
paths (%)

Produce minimal
number of test paths

when number of
states is large.
Lacks balance

between exploration
and exploitation, an
individual state chart
model is applied to
create test paths.

(Lusiana
et al.,
2019)

GA Not specified Sequen
ce and
activity

System
graph

ATM Fitness
value

Able to optimize
generated test

paths. However,
needs to be

evaluated, lacks
balance between
exploration and

exploitation.
(Samah
et al.,
2019)

GA Not specified use
case

use case House
Recomme

ndation
System

Fitness
value

lacks balance
between exploration
and exploitation, test

data are created
from a single model

(Alrawas
hed et

al.,
2019)

GA Not specified Use
case

Control
flow graph

File
transfer
protocol,

ATM cash
withdraw,

Virtual
meeting

transition
coverage

, no of
generate

d test
cases,

cyclomati
c

complexit
y

Produce optimal test
case However, lacks

balance between
exploration and
exploitation, test

data are produced
from a single use

case

https://www.cscjournals.org/journals/IJSE/description.php

James Maina Mburu, John Gichuki Ndia & Samson Wanjala Munialo

International Journal of Software Engineering (IJSE), Volume (12): Issue (4): 2025 64
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

(Rhman
n, 2019)

FA Absorption
coefficient

(Y),files’ distance
(rij),probability (j),
generation no (t),

random vector
(ei),

randomization
(a), brightness of

firefly (A0)

Activity Control
flow graph

Flight
check-in
process

cyclomati
c

complexit
y,

informati
on flow

Generated optimized
paths have no

redundancy. lacks
balance between
exploration and
exploitation, test
data are created

from a single model

(Panda
& Dash,
2019)

Simulated
Annealing-

Cuckoo
Search

Not specified Sequen
ce and
state
chart

diagram

System
graph

bench
mark

triangle
classificati

on
problem

Transitio
n path

coverage

Generate test suits
for transition path

coverage and
converges faster

than Cuckoo Search
and SA algorithms.

(Rastogi
, 2019)

Grey Wolf-
Firefly

Population size,
no of iterations,

alpha, beta,
delta, Absorption

coefficient
(Y),files’ distance

(rij), random
vector (ei),

randomization
(a), brightness of

firefly (A0)

State
chart,

sequenc
e

State
chart

sequence
diagram
graph

ATM Path
coverage
, Fitness
value, no

of
iterations
, mean

time
between
failures
(MTBF),

execution
time

Achieves a higher
appropriate objective

value. However,
lacks balance

between exploration
and exploitation

(Jaffari
et al.,
2020)

GA Population size,
No. of

generations ,
Selection
method,

Crossover
method, Mutation

method

Activity XML Cruise
control,
coffee
maker,
elevator

Statemen
t and

branch
coverage

Capable of
discovering faults.

However, lacks
balance between
exploration and
exploitation, test
paths are created
from an individual

model
(Panda
et al.,
2020)

Firefly-
Differential
Evolution
(FA-DE)

first value

attraction factor
(Β0), light

absorption factor
(Υ), mutation

factor (α),
mutation factor
damping ratio
(alpha_damp),
selection rate
(R), scaling
factor for

mutation (F) and
crossover rate

(Pc).

State
chart

Statechart
diagram
graph

Triangle
classificati

on

Transitio
n path

coverage
,

Total
No.of test

case,
total

execution
time.
mean

number
of test
case,

minimum
no of test

cases

Produce enhanced
test case. However,

lacks balance
between exploration
and exploitation, test

data are created
from a single model.

(Sankar
&

Chandra
, 2020)

 ACO Heuristic
value(H),

Pheromone
Intensity Visited

status (Vs),
Probability (P),

alpha, beta

State
chart

State
graph

triangle
problem,
quadratic
equation
problem

Statemen
t Branch,
Decision
Coverag

e,
Average

% of

Produces optimal
test cases that

ensure maximum
coverage. However,

lacks balance
between exploration
and exploitation, test

https://www.cscjournals.org/journals/IJSE/description.php

James Maina Mburu, John Gichuki Ndia & Samson Wanjala Munialo

International Journal of Software Engineering (IJSE), Volume (12): Issue (4): 2025 65
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

Faults
Discover

ed
(APFD)

and % of
Test
Case

Required
(PTR)
metric

data are produced
from an individual

diagram

(Lakshm
inarayan

a &
Sureshk

umar,
2020)

CS-BC Control
parameter, No. of

iteration, Levy
(searching

vector),
Candidate

solution, Random
number,

Probability of
occurrence (pa)

State
chart &
Sequen

ce

SCSEDG
graph

ATM, Soft
Drink

Selling
Machine

Fitness
value,
Total

Iterations
, No of
Test

cases,
Transitio

n
Coverag

e,
execution

time
,Mean
Time

Between
Failures

Takes less time for
the production of

path coverage. And
achieved 65% of test

data with a higher
fitness function
value. However,
there is need to

improve the
efficiency of the

technique, balance
between exploration

& exploitation

(Panigra
hi et al.,
2021)

FA-BC Number of
generations,

Random value {-
1 to +1},

Probability of
occurrence (pa),

Vmin (Lowest
balance),

Attractiveness,
Beta, Gamma,

Alpha.

Activity
diagram

Activity
Dependen

cy Flow
Graph

ATM Fitness
value, No

of
Iterations

, No of
Test

cases ,
Path

Coverag
e

Optimal solution is
achieved after 90

iterations. Generates
test data from cases

from a single
diagram

(Sahoo,
Satpath
y, et al.,
2021)

ACSA Population size,
Maximum
number of

generations,
Levy flight,

Random number,
Probability of

occurrence (pa)

Sequen
ce

Sequence
diagram
graph

ATM
withdraw
operation

Fitness
value, No

of
Iterations

Path
Coverag

e

Optimal solution is
achieved after 100

iterations. However,
it Lack balance

between exploration
& exploitation and

generates test data
from a single

diagram
(Sahoo,
Derbali,
Jerbi,
van

Thang,
et al.,
2021)

GA Population size,
Initial best

solution, Fitness
function value,

No. of
generations,

Selection
method,

Crossover
method, Mutation

method

Activity
& state
chart

Activity
StateChart

Graph

An
operation
for ATM
withdraw

Total
Iterations

, No of
Test

cases

Produced optimal
result after 160th

iterations. However,
Lack balance

between exploration
& exploitation

(Tamizh
arasi,

A.,
Ezhumal

BFA-PSO-
GA

Initial position,
step size C,

velocity,
maximum value,

Activity

Activity
diagram
graph

 Online
shopping

 path
coverage

,
Executio

The total test data
produced is 60 with
a total time of 29.3
sec. However, Lack

https://www.cscjournals.org/journals/IJSE/description.php

James Maina Mburu, John Gichuki Ndia & Samson Wanjala Munialo

International Journal of Software Engineering (IJSE), Volume (12): Issue (4): 2025 66
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

ai, P.,
Remya

Rose, S.
,

Sureshd
, P.,

Logess
warie,
2021)

C1and C2
(Cognition and

social
components),
pbest, gbest,
selection and

crossover
techniques

n time,
No. of
test

paths,
iteration
taken,

balance between
exploration &
exploitation

(Tamizh
arasi &

Ezhumal
ai, 2022)

Genetic-
based
Crow

Search

population size,
awareness
likelihood,

extreme cycle
limit, crow

original position,
random number,

selection
method,

crossover
method and

mutation method

Activity
diagram

Control
Flow

Graph

Fund
transfer in

Net
Banking

Applicatio
n

Cyclomat
ic

Complexi
ty,

Fitness
value,

Total test
case,
Total
time

,Total
Path

Covered

Able to covers 100%
of paths with less
execution time.
However Lack

balance between
exploration &

exploitation and
creates test data
from an individual
activity diagram

(Raame
sh &
Jothi,
2022)

shuffled
shepherd
flamingo
search
(S2FS)

Maximum no of
iterations, size of

population,
population

renewal, diffusion
factor, initial
member (δ),

random vector,
step size (α)

State
chart

State
chart
graph

ATM
withdraw
operation

Average
time

among
failures,

Total
time

taken, no
of test
case,
Total

iterations

Able to achieve a
higher aptness
value. However
creates test data
from an individual

State chart

(Potluri
et al.,
2022)

PS-BC,
FA-CS

Fitness function,
population size ,
particle swarm
population size,
PSO parameters

(k1,k2), PSO
weight factor, no
of iteration bee

colony population
size,

Fire fly
population size,
cuckoo search
population size,

beta
attractiveness

State
Chart

,Sequen
ce

State
Chart

Sequence
Diagram
Graph

ATM
transactio

n

Aptness
value,
Total
case,
Total

iterations

Able to produce
better results after
160th generations

(Tatale
&

Prakash
, 2022)

PSO Initial no.of
particles, no. of

iterations,
velocity, weight

factor (w),
acceleration
coefficient

(c1and c2) and
random values

(r1 and r2),
dimension (d)

Activity XML Railway
Reservatio
n System

No. of
test case
generate

d,
Accuracy

An overall of 75 test
data were created.
However, However

Lack balance
between exploration
& exploitation and

generates test cases
from a single

diagram

TABLE 6: Summary of Review Details.

https://www.cscjournals.org/journals/IJSE/description.php

James Maina Mburu, John Gichuki Ndia & Samson Wanjala Munialo

International Journal of Software Engineering (IJSE), Volume (12): Issue (4): 2025 67
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

3.2 Analysis
The section consist examination of work studied and responses of the considered queries for the
research. After reviewing the 46 major studies and categorizing the associated data, the
subsequent investigation is employed to respond each research query.

3.2.1 Analysis for Research Question 1
How are metaheuristic techniques employed for test case optimization?
The principle behind RQ1 was to recognize metaheuristic algorithm applied by the primary
studies to create and improve test paths or test case. Figure 4 shows that greatest number of
studies (20) utilized GA, to produce and enhance test case, while 4 FA and ACO had each been
applied by 4 studies. The CS was only used by 2 studies while BAT, MFO, IOA, GA-CS,FA-DE,
FA-BC,CS-BC,S2FS,PS-BC & FA-CS,BFA-PSO-GA, PSO-BC, GW-MGA, SA-CS, GW-FA, BC-
MGA,GA-ACO and Tabu search had each been applied by one study.

FIGURE 4: Optimization Techniques.

3.2.2 Analysis for Research Question 2
Which are the common parameters used by metaheuristic techniques for test case optimization?
The RQ2 focused on identifying the parameters used by metaheuristic techniques for optimization
of test cases. The findings from table 6 show that every metaheuristic algorithm has its own
specific parameters. However, there are parameters that are common to all algorithms such as
the population size which define the total test case, total iterations which defines the highest total
iterations an algorithm may executes, random value, probability of occurrence, beta, gamma,
alpha and sigma which are used as the scaling factors.

Figure 5 indicates that the number of generations and population size parameters were used by
78% of studies, 43% of studies applied random value parameter, probability of occurance
parameter was used by 39% of studies, the sigma parameter was applied by 13% of studies
while alpha and beta parameters had each used by 22% of the studies. Conversely, 50% of the
studies were unable not specify parameters.

21

4
1 2 4

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0
5

10
15
20
25

N
o.

 o
f S

tu
di

es

Metaheuritic Techniques

Metaheuristic techniques usage

https://www.cscjournals.org/journals/IJSE/description.php

James Maina Mburu, John Gichuki Ndia & Samson Wanjala Munialo

International Journal of Software Engineering (IJSE), Volume (12): Issue (4): 2025 68
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

FIGURE 5: Parameters usage.

3.2.3 Analysis for Research Question 3
How are UML models applied by metaheuristic techniques for TCP?
The question RQ3’s idea was to find the UML models used for creating test case. The findings
indicates that indicates that 15 primary studies generated test cases from activity diagram, 10
studies used state chart diagram to generate, 7 primary studies used sequence diagram, and use
case diagram was used by 3 primary studies while 11 primary studies used combinational UML
diagrams.

FIGURE 6: UML models employed by metaheuristic techniques.

3.2.4 Analysis for Research Question 4
Which intermediate format used by metaheuristic techniques for TCP?
The focus of this question (RQ4) was to determine the intermediate format that techniques uses
to create test paths. From the findings, it indicates that 83% of studies used graph as the
intermediate formats while 7% employed XML code, 2% of studies applied adjacency matrix while
4% of the studies did not specify the intermediate format

78%
78%

39%
43%

22%
22%

13%
50%

Population size
No. of generations

Probility of oocurence
Random value

Beta
Alpha
Sigma

Not specified

No. of studies

Pa
ra

m
et

er

Parameter Usage

15

107
3

11

NO. of Primary studies

Activity State chart Sequence Use case Combinationl diagrams

https://www.cscjournals.org/journals/IJSE/description.php

James Maina Mburu, John Gichuki Ndia & Samson Wanjala Munialo

International Journal of Software Engineering (IJSE), Volume (12): Issue (4): 2025 69
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

FIGURE 7: Intermediate format used by metaheuristic techniques.

3.2.5 Analysis for Research Question 5
Which databases are employed to evaluate the performance of metaheuristic techniques?
The question RQ5 aimed at determining databases applied to evaluate the metaheuristic
techniques. Figure 8 shows that ATM was the most used database by the studies to evaluate
metaheuristic techniques. The ATM database was used by 21 studies out of 46 studies, while 18
studies out of 46 studies applied simple programs. Credit card management was used by 2
studies. The database that included soft drink vending machine, telephone system, online
examination system, patient registration system, online voting system, shopping management
system, driverless train and library management system had each applied by one study. One
study does not specify its database.

FIGURE 8: Databases used to evaluate the metaheuristic techniques.

3.2.6 Analysis for Research Question 6
Which metrics are used to evaluate the performance of metaheuristic techniques?
The aim of this question (RQ6) was to identify the metrics used to assess how efficiently and
effectively test has been performed. Figure 9 shows path coverage and fitness were used by 21
and 17 primary studies respectively whereas message path coverage metric was employed by 11
studies. No. of test case and No. of iterations were each applied by 10 studies whereas execution
time and transition coverage metrics were each used by 8 studies. Node coverage and MTBF
metrics were used by 3 studies whereas fault detection score metric was used by 2 studies.
Metrics that include; Edge pair coverage, APFD, AC, AT, Accuracy and No. of states had each
employed by 1 study only.

1 83%
7% 2% 2% 4%

Graph XML code Adjancey
matrix

Tree structure Not specified
N

o.
 o

f s
tu

di
es

Intermediate model

Intermediate format usage

% Percentage

18
21

2
1
1
1
1
1
1
1
1
1
1

0 5 10 15 20 25

Simple Programs
Credit card mgt

Shopping mgt system
Online voting system

Patient Registration system
Library mgt system

Not specified

No. of Publication

D
at

ab
as

es

Database usage

Database usage

https://www.cscjournals.org/journals/IJSE/description.php

James Maina Mburu, John Gichuki Ndia & Samson Wanjala Munialo

International Journal of Software Engineering (IJSE), Volume (12): Issue (4): 2025 70
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

FIGURE 9: Metrics applied to assess performance of metaheuristic performance.

Table 7 is a matrix that highlights the techniques, parameters, models, formats, databases, and
evaluation metrics employed in metaheuristic-based test case optimization. In addition to
summarizing the findings, the matrix identifies gaps and observations that expose current
research limitations and point toward potential future directions.

Research
Question

Aspect
Analyzed

Key Findings Gaps/Observations

RQ1:
Metaheuristic
Techniques

Algorithms used
for test case
optimization

Genetic Algorithm (GA) used by
20 studies; FA and ACO by 4

each; CS by 2; others (BAT, MFO,
S2FS, hybrids) by 1 each

Over-reliance on GA; limited
use of newer or hybrid

algorithms

RQ2: Parameters
Used

Common
parameters in
metaheuristic
optimization

Population size, number of
iterations used by 78% of studies;
random value (43%), probability of

occurrence (39%), alpha & beta
(22%), sigma (13%); 50% did not

specify parameters

Static parameter use limits
adaptability; poor

documentation reduces
reproducibility

RQ3: UML
Models

UML models for
test case

generation

Activity diagram (15 studies),
State chart (10), Sequence
diagram (7), Use case (3),

Combinations (11)

Heavy reliance on single
models; limited integration of

multiple diagrams

RQ4: Intermediate
Formats

Formats for
representing test

paths

Graphs used by 83%; XML (7%),
adjacency matrix (2%),

unspecified (4%)

Limited exploration of
scalable, automation-friendly

formats like XML, XMI
RQ5: Databases

for Evaluation
Databases used

for validation
ATM systems used by 21 studies;

simple programs (18), other
systems (1 each), 1 study

unspecified

Narrow range of test
systems; limited
generalizability

RQ6: Evaluation
Metrics

Metrics used to
assess

metaheuristic
performance

Path coverage (21 studies), fitness
(17), message path coverage (11),
number of test cases & iterations
(10), execution time & transition
coverage (8), others rarely used

Limited diversity in metrics;
need for broader evaluation
criteria including execution

time, fault detection

TABLE 7: Comparison matrix for the results.

4. DISCUSSION
This section provides evaluation and research gaps between associated research studies on
parameters, UML models, intermediate formats, evaluation metrics applied by metaheuristic
techniques in order to produce and improve test case.

20

7
11

17
8

1 3 2 1 3 1
8 10 10

1 1 1 1 1 1
0
5

10
15
20
25

N
o.

 o
f P

ub
lic

at
io

ns

Metrics

Metrics usage

https://www.cscjournals.org/journals/IJSE/description.php

James Maina Mburu, John Gichuki Ndia & Samson Wanjala Munialo

International Journal of Software Engineering (IJSE), Volume (12): Issue (4): 2025 71
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

Regarding the metaheuristic techniques applied for test case optimization, the analysis reveals
that Genetic Algorithm (GA) is the most frequently used in primary studies, likely due to its
simplicity and adaptability. However, GA often suffers from high computational cost due to a large
number of generations and the risk of premature convergence. This signals the need for broader
experimentation with newer or hybrid algorithms, which remain largely underutilized in the
existing literature.

Expanding on this, the analysis of commonly used parameters in metaheuristic techniques
reveals that variables such as population size, number of iterations, random values, probability of
occurrence, and scaling factors (alpha, beta, sigma) are frequently applied in test case
optimization. However, these parameters are often applied statically, which contributes to an
imbalance between exploration and exploitation. Additionally, half of the reviewed studies did not
report parameter settings, and those that did often lacked sufficient documentation, limiting the
reliability and reproducibility of existing literature.

The findings also reveal an over-dependence on single UML models, such as activity, state chart
or sequence diagrams, when generating test cases. This practice may oversimplify the testing
process and overlook critical system behaviors. A more comprehensive strategy involving the
integration of multiple UML diagrams could improve test coverage and provide a richer
understanding of system interactions.

Moreover, most studies favor graph-based intermediate representations for generating test paths.
While effective in some scenarios, these formats may pose scalability challenges and limit
automation capabilities, especially in complex systems. There is significant potential in exploring
alternative representations, including XML, XMI, adjacency matrices, and spreadsheet-based
models, which could offer greater flexibility and automation support.

A further limitation lies in the narrow focus of database selection for validation purposes. Many
studies predominantly utilize ATM system scenarios, which raises concerns about the
generalizability of their findings to other real-world applications. Future research should prioritize
more diverse and complex datasets to comprehensively evaluate the performance of test case
generation techniques.

Additionally, the heavy reliance on a limited set of evaluation metrics primarily path coverage and
fitness value fails to fully capture the performance spectrum of metaheuristic approaches.
Broader evaluation frameworks incorporating metrics such as execution time, fault detection
capability, and coverage diversity could provide a more balanced and informative assessment.

In summary, while substantial progress has been made in applying metaheuristic algorithms to
software test case generation, critical gaps remain. Addressing these gaps through the adoption
of innovative algorithms, dynamic parameter tuning, integrated UML modeling, advanced
intermediate formats, diversified validation environments, and comprehensive evaluation metrics
could significantly enhance the efficiency, scalability, and effectiveness of future software testing
solutions

5. THREATS TO VALIDITY
The first threat relates to search strings. The procedure of building search strings
generallydepends on past experience to define the content of strings. Even though we
constructed the search strings carefully and performed the automatic search on the relevant
databases, there is no guarantee that we find and select all possible research approaches. For
example, the works published as internal technical reports, company journals or written in other
languages are not available for study. In this literature review, the neglected works may have
crucial contributions and affect the completeness of this review. To address this threat, the
process of creating inclusive search strings and appropriate exclusion criteria needs to be
continually reviewed. In the step of confirming primary studies we read each approach and

https://www.cscjournals.org/journals/IJSE/description.php

James Maina Mburu, John Gichuki Ndia & Samson Wanjala Munialo

International Journal of Software Engineering (IJSE), Volume (12): Issue (4): 2025 72
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

distinguished the works carefully, to ensure that they met the criteria.The second threat to validity
is that, only research papers from four databases i.e., IEEE Explorer, Springer, Elsevier and
Google scholar were included. Some relevant papers from other databases may have been left
out. However, the use of google scholar minimized the threat since it was able to link to papers in
other databases such as ACM.

The last threat to validity is that the screening phases were performed partially by different
persons. While one researcher followed the entire protocol from beginning to end, the remaining
researcher had varying influence on the screening phases. These researchers may have had
different views regarding paper relevancy, causing relevant papers to be excluded. In all phases
where two researchers were involved, except for the data extraction phase, one researcher
completed the entire phase independently, while the other two divided the workload evenly
between them. Since the workload was divided, some papers may have been excluded because
of differing criteria for relevance. In the data extraction phase, each of the researchers extracted
data from one third of the papers. Although each set of extracted data was double-checked by
other researcher, there is a risk that some case may have been missed. Finally, the researchers
pointed out that after each phase in the protocol, consensus discussions were held and that any
disagreements were resolved. Therefore, the researchers feel that any threats posed to protocol
execution were minimized.

6. CONCLUSION AND FUTURE WORK
This study provides a comprehensive review of metaheuristic techniques used for test case
optimization, guided by specific research questions (Section 2.3). A total of 46 primary studies
were selected based on quality assessment criteria (Section 2.8). The findings reveal that both
hybrid and single metaheuristic approaches are utilized (RQ1), though the majority of studies
favored single techniques, particularly Genetic Algorithms. Regarding RQ2, half of the studies did
not specify the parameters used for optimization, and those that did often overlooked the critical
balance between exploration and exploitation, which affects algorithm efficiency. For RQ3, most
research focused on individual UML diagrams, especially activity diagrams. Concerning RQ4,
graphs were the predominant intermediate format for generating test cases, with limited use of
XML. In relation to RQ5, the ATM system emerged as the most frequently used database for
performance evaluation. Lastly, for RQ6, most studies prioritized effectiveness metrics, while only
a few considered efficiency-related measures.

The results of this review carry significant academic and practical value. From an academic
perspective, the study enriches existing knowledge by highlighting key gaps, including insufficient
parameter documentation, limited adoption of hybrid techniques, and a restricted emphasis on
UML models and evaluation metrics. These gaps open avenues for future research aimed at
developing more advanced, efficient, and well-documented optimization methods. On the
practical side, the findings offer useful guidance for software engineers, testers, tool developers,
and quality assurance professionals in improving test case generation by enhancing parameter
selection, balancing exploration and exploitation, and integrating multiple models for more
effective and cost-efficient testing.

In the near future, an expert opinion survey will be conducted to identify key parameters for
generating and improving test cases, addressing the current gap in parameter documentation and
empirical validation in existing studies. Based on these findings, an efficient technique will be
developed that maintains a balance between exploration and exploitation factors and supports
the generation of test paths from multiple UML diagrams. To evaluate the proposed approach, a
comparative study using large datasets will be performed, with particular focus on both efficiency
and effectiveness metrics.

https://www.cscjournals.org/journals/IJSE/description.php

James Maina Mburu, John Gichuki Ndia & Samson Wanjala Munialo

International Journal of Software Engineering (IJSE), Volume (12): Issue (4): 2025 73
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

7. REFERENCES
Abayatilake, P., & Blessing, L. (2021). The Application of Function Models In Software Design: A
Survey Within the Software Community. International Journal of Software Engineering, 9(9), 27–
62. https://www.cscjournals.org/library/manuscriptinfo.php?mc=IJSE-176

Aditi, Park, H., Sung, S., Han, Y.-S., & Ko, S.-K. (2025). SAGE:Specification-Aware Grammar
Extraction for Automated Test Case Generation with LLMs. http://arxiv.org/abs/2506.11081

Alrawashed, T. A., Almomani, A., Althunibat, A., & Tamimi, A. (2019). An automated approach to
generate test cases from use case description model. CMES - Computer Modeling in Engineering
and Sciences, 119(3), 409–425. https://doi.org/10.32604/cmes.2019.04681

Alzaqebah, M., Briki, K., Alrefai, N., Brini, S., Jawarneh, S., Alsmadi, M. K., Mohammad, R. M. A.,
ALmarashdeh, I., Alghamdi, F. A., Aldhafferi, N., & Alqahtani, A. (2021). Memory based cuckoo
search algorithm for feature selection of gene expression dataset. Informatics in Medicine
Unlocked, 24, 100572. https://doi.org/10.1016/j.imu.2021.100572

Ansari, G. A. (2017). Use of Firefly Algorithm in Optimization and Prioritization of Test Paths
Generated from UML Sequence Diagram. 167(4), 24–30.

Ara, M., & Biswas, H. A. (2014). A Novel Approach for Test Path Generation and Prioritization of
UML Activity Diagrams using Tabu Search Algorithm. International Journal of Scientific &
Engineering Research, 5(2), 1212–1217.

Arifiani, S. (2016). Generating Test Data Using Ant Colony Optimization (ACO) Algorithm and
UML State Machine Diagram in Gray Box Testing Approach. 2016 International Seminar on
Application for Technology of Information and Communication (ISemantic), 217–222.
https://doi.org/10.1109/ISEMANTIC.2016.7873841.

Basa, S. S., Swain, S. K., & Mohapatra, D. P. (2018). Genetic Algorithm-based Optimized Test
Case Design Using UML Genetic Algorithm-based Optimized Test Case Design Using UML.
September. https://doi.org/10.29055/jcms/862.

Biswal, B. N. (2010). A Novel Approach for Optimized Test Case Generation Using Activity and
Collaboration Diagram. 1(14).

Cuong-le, T., Hoang-le, M., Khatir, S., Wahab, M. A., Tran, M. T., & Mirjalili, S. (2021). A novel
version of Cuckoo search Algorithm for solving Optimization problems. Expert Systems With
Applications, 115669. https://doi.org/10.1016/j.eswa.2021.115669.

Dalal, S., & Chhillar, R. S. (2013). A Novel Technique for Generation of Test Cases Based on
Bee Colony Optimization and Modified Genetic Algorithm. 68(19).

Fan, L., Wang, Y., & Liu, T. (2021). Automatic Test Path Generation and Prioritization using UML
Activity Diagram. 484–490. https://doi.org/10.1109/dsa52907.2021.00072.

Gulia, P. (2012). New Approach to Generate and Optimize Test Cases for UML State Diagram
Using Genetic Algorithm Categories and Subject Descriptors : General Terms : ACM SIGSOFT
Software Engineering Notes. 37(3), 2–6. https://doi.org/10.1145/180921.2180933

Hasan, N. Bin, Islam, M. A., Khan, J. Y., Senjik, S., & Iqbal, A. (2025). Automatic High-Level Test
Case Generation using Large Language Models. 2025 IEEE/ACM 22nd International Conference
on Mining Software Repositories (MSR), 674–685.
https://doi.org/10.1109/MSR66628.2025.00105.

https://www.cscjournals.org/journals/IJSE/description.php

James Maina Mburu, John Gichuki Ndia & Samson Wanjala Munialo

International Journal of Software Engineering (IJSE), Volume (12): Issue (4): 2025 74
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

Hashim, N. L., & Dawood, Y. S. (2018). Test case minimization applying firefly algorithm.
International Journal on Advanced Science, Engineering and Information Technology, 8(4–2),
1777–1783. https://doi.org/10.18517/ijaseit.8.4-2.6820.

Hoseini, B. (2014). Automatic Test Path Generation from Sequence Diagram Using Genetic
Algorithm. 106–111.

Jaffari, A., Yoo, C. J., & Lee, J. (2020). Automatic test data generation using the activity diagram
and search-based technique. Applied Sciences (Switzerland), 10(10), 9–13.
https://doi.org/10.3390/APP10103397.

Jena, Ajay Kumar, Swain, Santosh Kumar, Mohapatra, D. P. (n.d.). A Novel Approach for Test
Case Generation from UML Activity Diagram. 2014 International Conference on Issues and
Challenges in Intelligent Computing Techniques (ICICT), 621–629.
https://doi.org/10.1109/ICICICT.2014.6781352.

Jena, A. K., & Swain, S. K. (2012). Test Case Creation from UML Sequence Diagram : A Soft
Computing Approach. https://doi.org/10.1007/978-81-322-2012-1.

Kaur, P., & Kaur, R. (2013).Approaches for Generating Test Cases Automatically to Test the
Software. International Journal of Engineering and Advanced Technology (IJEAT), 3, 2249–8958.

Khurana, N., Chhillar, R. S., & Chhillar, U. (2015). A Novel Technique for Generation and
Optimization of Test Cases Using Use Case , Sequence , Activity Diagram and Genetic
Algorithm. 11(3), 242–250. https://doi.org/10.17706/jsw.11.3.242-250.

Khurana, N., & Chillar, R. S. (2015). Test Case Generation and Optimization using UML Models
and Genetic Algorithm. Procedia Computer Science, 57, 996–1004.
https://doi.org/10.1016/j.procs.2015.07.502.

Kitchenham, B., Pretorius, R., Budgen, D., Brereton, O. P., Turner, M., Niazi, M., & Linkman, S.
(2010). Systematic literature reviews in software engineering-A tertiary study. Information and
Software Technology, 52(8), 792–805. https://doi.org/10.1016/j.infsof.2010.03.006.

Kumar, M., & Husain, P. M. (2013). Test Cases Optimization Evaluation Using Efficient Algorithm
with UML. 1, 16–20.

Lakshminarayana, P., & Sureshkumar, T. V. (2020). Automatic Generation and Optimization of
Test case using Hybrid Cuckoo Search and Bee Colony Algorithm. Journal of Intelligent Systems,
30(1), 59–72. https://doi.org/10.1515/jisys-2019-0051.

Li, J., Xiao, D., Lei, H., Zhang, T., & Tian, T. (2020). Using Cuckoo Search Algorithm with Q -
Learning and Genetic Operation to Solve the Problem of Logistics Distribution Center Location.

Lusiana, M., Dewi, C., & Chandra, A. (2019). Optimization of test case generation from uml
Activity diagram and sequence diagram By using genetic algorithm. ICIC Express Letters, 13(7),
585–591. https://doi.org/10.24507/icicel.13.07.585.

Mahali, P. (2014). Model Based Test Case Prioritization Using UML Activity Diagram and
Evolutionary Algorithm. International Journal of Computer Science and Informatics Volume, 4(2).
https://doi.org/10.47893/IJCSI.2014.1177

Mandal, J. K., Satapathy, S. C., Sanyal, M. K., Sarkar, P. P., & Mukhopadhyay, A. (2015).
Information systems design and intelligent applications: Proceedings of second international
conference India 2015, volume 1. Advances in Intelligent Systems and Computing, 339.
https://doi.org/10.1007/978-81-322-2250-7.

https://www.cscjournals.org/journals/IJSE/description.php

James Maina Mburu, John Gichuki Ndia & Samson Wanjala Munialo

International Journal of Software Engineering (IJSE), Volume (12): Issue (4): 2025 75
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

Mburu, J. M., Muketha, G. M., & Oirere, A. M. (2020). An Enhanced Multiview Test Case
Generation Technique for Object-oriented Software using Class and Activity Diagrams. 4, 186–
195. https://doi.org/10.35940/ijrte.D4908.119420.

Mburu, J. M., & Ndia, J. G. (2022). A Systematic Mapping Study on UML Model based Test Case
Generation and Optimization Techniques. 184(13), 26–33.

Mohd-Shafie, M. L., Kadir, W. M. N. W., Lichter, H., Khatibsyarbini, M., & Isa, M. A. (2022).
Model-based test case generation and prioritization: a systematic literature review.In Software
and Systems Modeling (Vol. 21, Issue 2). https://doi.org/10.1007/s10270-021-00924-8.

Moussa, S., Elghondakly, R., & Badr, N. (2016). An Optimized Approach for Automated Test
Case Generation and Validation for UML diagrams. September.
https://doi.org/10.3923/ajit.2016.4276.4290.

Panda, M., & Dash, S. (2019). A Framework for Testing Object Oriented Programs Using Hybrid
Nature Inspired Algorithms. Springer Singapore. https://doi.org/10.1007/978-981-13-3140-4.

Panda, M., Dash, S., Nayyar, A., Bilal, M., & Mehmood, R. M. (2020). Test suit generation for
object oriented programs: A hybrid firefly and differential evolution approach. IEEE Access, 8,
179167–179188. https://doi.org/10.1109/ACCESS.2020.3026911.

Panigrahi, S. S., Sahoo, P. K., Sahu, B. P., Panigrahi, A., & Jena, A. K. (2021). Model-driven
automatic paths generation and test case optimization using hybrid FA-BC. 2021 International
Conference on Emerging Smart Computing and Informatics, ESCI 2021, 263–268.
https://doi.org/10.1109/ESCI50559.2021.9396999.

Panthi, V., & Mohapatra, D. P. (2017). ACO based embedded system testing using UML Activity
Diagram. IEEE Region 10 Annual International Conference, Proceedings/TENCON, 237–242.
https://doi.org/10.1109/TENCON.2016.7847997.

Potluri, S., Ravindra, J., Mohammad, G. B., & Sajja, G. S. (2022). Optimized Test Coverage with
Hybrid Particle Swarm Bee Colony and Firefly Cuckoo Search Algorithms in Model Based
Software Testing.IEEE.

Pradyot, K., Sharma, D., & Gouthami, K. P. (2015). Favourable test sequence generation in state-
based testing using bat algorithm https://doi.org/10.1504/IJCAT.2015.070495.

Raamesh, L., & Jothi, S. R. S. (2022). Generating Optimal Test Case Generation Using Shuffled
Shepherd Flamingo Search Model. Neural Processing Letters. https://doi.org/10.1007/s11063-
022-10867-w.

Ranjan, P., Mallikarjun, B., & Yang, X. (2013). Optimal test sequence generation using firefly
algorithm. 8, 44–53.

Rao, C. P. (2016). Comprehensive Testing Tool for Automatic Test Suite Generation ,
Prioritization and Testing of Object Oriented Software Products. International Journal of Software
Engineering, 7(1), 1–15.

Rastogi, P. (2019). An Optimal Software Test Case Mechanism using Grey Wolf-FireFly Method.
12(2), 22–32. https://doi.org/10.22266/ijies2019.0430.03.

Rhmann, W. (2019). Optimized and Prioritized Test Paths Generation from UML Activity Diagram
Optimized and Prioritized Test Paths Generation from UML Activity Diagram using Firefly
Algorithm. June. https://doi.org/10.5120/ijca2016910718.

https://www.cscjournals.org/journals/IJSE/description.php

James Maina Mburu, John Gichuki Ndia & Samson Wanjala Munialo

International Journal of Software Engineering (IJSE), Volume (12): Issue (4): 2025 76
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

Rhmann, W., Zaidi, T., & Saxena, V. (2015). Test Case Generation and Optimization using UML
Models and Genetic Algorithm. International Journal of Computer Applications, 115(4), 8–12.
https://doi.org/10.5120/20137-2232.

Sabharwal, S., Sibal, R., & Sharma, C. (2010). Prioritization Of Test Case Scenarios Derived
From Activity Diagram Using Genetic Algorithm. 2010 International Conference on Computer and
Communication Technology (ICCCT), 481–485. https://doi.org/10.1109/ICCCT.2010.5640479.

Saha, R. S. and A. (2018). Optimal test sequence generation in state 2 based testing using moth
flame optimization 3 algorithm. https://doi.org/10.3233/JIFS-169804.

Sahoo, Rajesh Ku, Kumar, S. N., Mohapatra, D. P., & Patra, M. R. (2017). Model Driven Test
Case Optimization of UML Combinational Diagrams Using Hybrid Bee Colony Algorithm. June,
43–54. https://doi.org/10.5815/ijisa.2017.06.05.

Sahoo, R. K., Derbali, M., Jerbi, H., van Thang, D., Kumar, P. P., & Sahoo, S. (2021). Test Case
Generation from UML-Diagrams Using Genetic Algorithm. 67(2), 2321–2336.
https://doi.org/10.32604/cmc.2021.013014.

Sahoo, R. K., Mohapatra, D. P., & Patra, M. R. (2017). Model Driven Approach for Test Data
Optimization Using Activity Diagram Based on Cuckoo Search Algorithm. International Journal of
Information Technology and Computer Science, 9(10), 77–84.
https://doi.org/10.5815/ijitcs.2017.10.08.

Sahoo, R. K., Satpathy, S., Sahoo, S., & Sarkar, A. (2021). Model driven test case generation
and optimization using adaptive cuckoo search algorithm. Innovations in Systems and Software
Engineering. https://doi.org/10.1007/s11334-020-00378-z.

Samah, K. A. F. A., Badarudin, I. M., Odzaly, E. E., Ismail, K. N., Nasarudin, N. I. S., Tahar, N. F.,
& Khairuddin, M. H. (2019). Optimization of house purchase recommendation system (HPRS)
using genetic algorithm. Indonesian Journal of Electrical Engineering and Computer Science,
16(3), 1530–1538. https://doi.org/10.11591/ijeecs.v16.i3.pp1530-1538.

Sankar, S., & Chandra, V. (2020). An Ant Colony Optimization Algorithm Based Automated
Generation of Software Test Cases (Vol. 1). Springer International Publishing.
https://doi.org/10.1007/978-3-030-53956-6.

Shirole, M., & Kumar, R. (2010). A hybrid genetic algorithm based test case generation using
sequence diagrams. Communications in Computer and Information Science, 94 CCIS(PART 1),
53–63. https://doi.org/10.1007/978-3-642-14834-7_6.

Sumalatha, V. M. (2013). Object Oriented Test Case Generation Technique using Genetic
Algorithms. 61(20), 20–26.

Tamizharasi, A., Ezhumalai, P., Remya Rose, S. , Sureshd, P., Logesswarie, S. (2021). Bio
Inspired Approach for Generating Test data from User Stories. Turkish Journal of Computer and
Mathematics Education (TURCOMAT), 12(2), 412–419.
https://doi.org/10.17762/turcomat.v12i2.826.

Tamizharasi, A., & Ezhumalai, P. (2022). Genetic-based Crow Search Algorithm for Test Case
Generation. 1–11. https://doi.org/10.14456/ITJEMAST.2022.74.

Tatale, S., & Prakash, V. C. (2022). Ingénierie des Systèmes d ’ Information Automatic
Generation and Optimization of Combinatorial Test Cases from UML Activity Diagram Using
Particle Swarm Optimization. 27(1), 49–59.

https://www.cscjournals.org/journals/IJSE/description.php

James Maina Mburu, John Gichuki Ndia & Samson Wanjala Munialo

International Journal of Software Engineering (IJSE), Volume (12): Issue (4): 2025 77
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

Wambui, A., Muketha, G. M., & Ndia, J. G. (n.d.). A Framework for Analyzing UML Behavioral
Metrics based on Complexity Perspectives. 11, 1–12.

Xiong, Y., Zou, Z., & Cheng, J. (2023). Cuckoo search algorithm based on cloud model and its
application. Scientific Reports, 13(1), 1–13. https://doi.org/10.1038/s41598-023-37326-3.

https://www.cscjournals.org/journals/IJSE/description.php

	1. INTRODUCTION
	2. RESEARCH METHOD
	2.1 Review Protocol
	2.2 Study Objectives
	2.3 Study Questions
	2.4 Search Terms
	2.5 Search Strings
	2.6 Searching Strategy
	2.7 Studies Selection Procedure
	2.8 Study Quality Assessment Checklist and Procedure
	2.9 Data Extraction
	2.10 Synthesis of the Extracted Data
	3. REVIEW RESULTS
	3
	3.1 Review Details
	3.2 Analysis
	4. DISCUSSION
	5. THREATS TO VALIDITY
	6. CONCLUSION AND FUTURE WORK
	7. REFERENCES

