Home > CSC-OpenAccess Library > Manuscript Information
EXPLORE PUBLICATIONS BY COUNTRIES |
![]() |
![]() |
EUROPE |
![]() |
MIDDLE EAST |
![]() |
ASIA |
![]() |
AFRICA |
............................. | |
![]() |
United States of America |
![]() |
United Kingdom |
![]() |
Canada |
![]() |
Australia |
![]() |
Italy |
![]() |
France |
![]() |
Brazil |
![]() |
Germany |
![]() |
Malaysia |
![]() |
Turkey |
![]() |
China |
![]() |
Taiwan |
![]() |
Japan |
![]() |
Saudi Arabia |
![]() |
Jordan |
![]() |
Egypt |
![]() |
United Arab Emirates |
![]() |
India |
![]() |
Nigeria |
Deep Learning-Based Countermeasures for Fingerprint Spoof
Detection
Amal Abdulrahman Almuarik, Mashael Aldughayem, Munirah Alshathri, Nouf Alrowais, Ouiem Bchir
Pages - 1 - 24 | Revised - 31-03-2025 | Published - 30-04-2025
Published in International Journal of Image Processing (IJIP)
MORE INFORMATION
KEYWORDS
Biometric Verification Systems, Fingerprint Spoof Attacks, Genuine Fingerprint, Spoof Fingerprint, Deep Learning, ResNet, GoogLeNet, DenseNet, Vision Transformer.
ABSTRACT
Biometric systems have become a crucial part of modern life, offering secure and seamless
authentication. However, as people increasingly share their biometric data, they may not fully
understand the associated risks. Fingerprint-based security systems, while popular, are
vulnerable to spoofing attacks where counterfeit fingerprints made from materials like latex,
silicone, or gelatin can deceive the system. This paper addresses the need for improved security
by proposing a new countermeasure for detecting such spoof attacks. The solution utilizes deep
learning models to differentiate between genuine and spoof fingerprints. Four models—ResNet,
GoogLeNet, DenseNet, and Vision Transformer—were evaluated. The study found that
ResNet34 and DenseNet169 consistently outperformed the other models on the ATVS and
LivDet2015 datasets, achieving higher True Detection Rates (TDR) at a False Detection Rate
(FDR) of 0.05, as well as better F1 scores and Average Classification Error (ACE). Additionally,
these models demonstrated lower time complexity, making them both effective and efficient for
detecting fingerprint spoofing. This research highlights the importance of incorporating advanced
deep learning techniques to enhance the reliability and security of fingerprint authentication
systems.
Ali, M. M., Mahale, V. H., Yannawar, P., & Gaikwad, A. T. (2016, February). Fingerprint recognition for person identification and verification based on minutiae matching. IEEE 6th International Conference on Advanced Computing (IACC), (pp. 332-339). | |
Bárta, B. M. (2016). Generation of skin disease into the synthetic fingerprints. International Journal of Image Processing (IJIP), CSC Journals, 10(3), 229–248. | |
Brereton, R. G. (2010). Support vector machines for classification and regression. Analyst, 135(2), 230-267. | |
Carta, S., Casula, R., Orrù, G., Micheletto, M., & Marcialis, G. L. (2025). Interpretability of fingerprint presentation attack detection systems: a look at the "representativeness" of samples against never-seen-before attacks. Machine Vision and Applications, 36(2), 44. | |
Chen, X., Hsieh, C.-J., & Gong, B. (2021). When vision transformers outperform ResNets without pre-training or strong data augmentations. arXiv preprint arXiv:2106.01548. | |
Chugh, T., Kai, C., & Jain, A. K. (2017). Fingerprint spoof detection using minutiae-based local patches. IEEE International Joint Conference on Biometrics (IJCB),(pp. 581-589). | |
CN, D., Sankar, S. P., & George, N. (2013). Multimodal identification system in monozygotic twins.International Journal of Image Processing (IJIP), 7(1), 72-84. | |
Djara, T., Assogba, M. K., Naït-Ali, A., & Vianou, A. (2015). Fingerprint registration using Zernike moments: An approach for a supervised contactless biometric system. International Journal of Image Processing (IJIP), 9(5), 254-264. | |
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., ... & Houlsby, N. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. | |
Galbally, J., Fierrez, J., Alonso-Fernandez, F., & Martinez-Diaz, M. (2010). Evaluation of direct attacks to fingerprint verification systems. Telecommunication Systems, 47(3-4), 243-254. | |
Ghiani, L., Yambay, D., Mura, V., Tocco, S., Marcialis, G. L., Roli, F., & Schuckers, S.(2013). LivDet 2013-Fingerprint liveness detection competition 2013. 6th IAPRIEEE International Conference on Biometrics, (pp. 1-6). | |
Ghojogh, B., & Ghodsi, A. (2023). Recurrent neural networks and long short-term memory networks: Tutorial andsurvey. arXiv preprint arXiv:2304.11461. | |
Grosz, S. A., Wijewardena, K. P., & Jain, A. K. (2023, September). ViT unified: Joint fingerprint recognition and presentation attack detection. IEEE International Joint Conference on Biometrics (IJCB), (pp. 1-9). IEEE. | |
Guennouni, S., Mansouri, A., & Ahaitouf, A. (2020). Biometric systems and their applications. Visual Impairment and Blindness - What We Know and What We Have to Know. IntechOpen. | |
He, K., Zhang, X., Ren, S., & Sun, J.(2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, (pp. 770-778). | |
Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q.(2017). Densely connected convolutional networks. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (pp. 2261-2269). | |
Jian, W., Zhou, Y., & Liu, H. (2021). Densely connected convolutional network optimized by genetic algorithm for fingerprint liveness detection. IEEE Access, 9, 2229-2243. | |
Kothadiya, D., Shah, D., Patel, M., & Pujara, V. (2023). Enhancing fingerprint liveness detection accuracy using deep learning: A comprehensive study and novel approach. Journal of Imaging, 9(8), 158. | |
Lee, Y. K., Jeong, J., & Kang, D. (2022). An effective orchestration for fingerprint presentation attack detection. Electronics, 11(16), 2515. | |
Liu, Y., Huang, A., Yang, Y., Xiao, B., Yuan, L., Zhang, L.,.& Chen, D. (2022). A survey of visual transformers. IEEE Transactions on Neural Networks and Learning Systems. | |
Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., ... & Guo, B. (2021). Swin transformer: Hierarchical vision transformer using shifted windows. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), (pp. 10012-10022). | |
Marasco, E., Wild, P., &Cukic, B. (2016). Robust and interoperable fingerprint spoof detection via convolutional neural networks. IEEE Symposium on Technologies for Homeland Security (HST), 1-6. | |
Marcialis, G. L., Lewicke, A., Tan, B., Coll, P., Roll, F., Grimberg, D., ... & Schuckers, S. (2009). First international fingerprint liveness detection competition (LivDet 2009). Proceedings of ICIAP. | |
MaurÃcio, J., Domingues, I., & Bernardino, J. (2023). Comparing vision transformers and convolutional neural networks for image classification: A literature review. Applied Sciences, 13(9), 5521. | |
Mura, V. (2018). LIVDET 2017 fingerprint liveness detection competition 2017. arXiv. | |
Mura, V., Ghiani, L., Marcialis, G. L., Roli, F., Yambay, D. A., & Schuckers, S. A. (2015). LivDet 2015—Fingerprint liveness detection competition 2015. IEEE 7th International Conference on Biometrics Theory, Applications and Systems (BTAS), (pp. 1-6). | |
Rai, A., Dey, S., Patidar, P., & Rai, P. (2023). EXPRESSNET: An explainable residual slim network for fingerprint presentation attack detection. ResearchGate. | |
Ramaneswaran, S., Srinivasan, K., Vincent, P., & Chang, C. (2021). Hybrid inception v3 XGBoost model for acute lymphoblastic leukemia classification. Computational and Mathematical Methods in Medicine, (pp. 1-10). | |
Reza, N., & Jung, H. Y. (2023). Enhancing Ensemble Learning Using Explainable CNN for Spoof Fingerprints. Sensors (Basel, Switzerland), 24(1), 187. | |
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... & Fei-Fei, L. (2015). ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 115(3), 211-252. | |
Sandouka, A. S. B., Bazi, Y., & Rahhal, M. M. A. (2020). EfficientNet combined with generative adversarial networks for presentation attack detection. International Conference on Artificial Intelligence & Modern Assistive Technology (ICAIMAT), (pp. 1-5). | |
Sharma, K., Raghuwanshi, A., & Sharma, V. K. (2015). Biometric system—a review. International Journal of Computer Science and Information Technologies (IJCSIT), 6(5), 4616-4619. | |
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A.(2015). Going deeper with convolutions. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (pp. 1-9). | |
Tabassi, E., Tarang, C., Deb, D., & Jain, A. K. (2018). Altered fingerprints: Detection and localization. IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS), (pp. 1-9). | |
Touvron, H., Cord, M., Sablayrolles, A., Synnaeve, G., & Jégou, H. (2020). Training data-efficient image transformers & distillation through attention. Proceedings of the 37th International Conference on Machine Learning (ICML), (pp. 10347-10357). | |
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., &Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems (NIPS), 30, 5998-6008. | |
Vurity, A., Marasco, E., Ramachandra, R., & Park, J. (2025). ColFigPhotoAttnNet: Reliable Finger Photo Presentation Attack Detection Leveraging Window-Attention on Color Spaces. arXiv preprint arXiv:2503.05247. | |
Wen, J., Yujie, Z., &Hongming, L. (2020). Densely connected convolutional network optimized by genetic algorithm for fingerprint liveness detection. IEEE Access, 9, 2229-2243. | |
Yambay, D., Luca, G., Paolo, D., Gian, M. L., Fabio, R., & Schuckers, S. (2012). LivDet 2011—Fingerprint liveness detection competition 2011. 5th IAPR International Conference on Biometrics (ICB), (pp. 208-215). | |
Yuan, C., Li, X., Jonathan, W., Li, J., & Sun, X. (2017). Fingerprint liveness detection from different fingerprint materials using convolutional neural network and principal component analysis. Computers, Materials & Continua, 53(3), 357-371. | |
Yuan, C., Xu, Z., Li, X., Zhou, Z., Huang, J., & Guo, P.(2024). An Interpretable Siamese Attention ResCNN for Fingerprint Spoofing Detection. IETBiometrics, 1, 6630173. | |
Yuan, L., Chen, Y., Wang, T., Yu, W., Shi, Y., Jiang, Z., ... & Yan, S. (2021). Tokens-to-token ViT: Training vision transformers from scratch on ImageNet. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), (pp. 558-567). | |
Zhang, K., Huang, S., & Zhao, H. (2023). LFLDNet: Lightweight fingerprint liveness detection based on ResNet and Transformer. Sensors, 23(15), 6854. | |
Zhang, Y., Liu, Y., Zhan, X., Cao, D., & Li, Z. (2020). FLDNet: Light dense CNN for fingerprint liveness detection. IEEE Access, 8, 84141-84152. | |
Zhang, Y., Shi, D., Zhan, X., Cao, D., Zhu, K., & Li, Z. (2019). Slim-ResCNN: A deep residual convolutional neural network for fingerprint liveness detection. IEEE Access, 7, 45390-45400. | |
Zhu, J.-Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. IEEE International Conference on Computer Vision (ICCV), (pp. 2242-2251). | |
Miss Amal Abdulrahman Almuarik
Faculty of Computer and Information Sciences, Computer Science Department, King Saud University, Riyadh - Saudi Arabia
amalalmuarik@gmail.com
Miss Mashael Aldughayem
Faculty of Computer and Information Sciences, Computer Science Department, King Saud University, Riyadh - Saudi Arabia
Miss Munirah Alshathri
Faculty of Computer and Information Sciences, Computer Science Department, King Saud University, Riyadh - Saudi Arabia
Miss Nouf Alrowais
Faculty of Computer and Information Sciences, Computer Science Department, King Saud University, Riyadh - Saudi Arabia
Professor Ouiem Bchir
Faculty of Computer and Information Sciences, Computer Science Department, King Saud University, Riyadh - Saudi Arabia
|
|
|
|
View all special issues >> | |
|
|