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Abstract 

 
Biometric systems have become a crucial part of modern life, offering secure and seamless 
authentication. However, as people increasingly share their biometric data, they may not fully 
understand the associated risks. Fingerprint-based security systems, while popular, are 
vulnerable to spoofing attacks where counterfeit fingerprints made from materials like latex, 
silicone, or gelatin can deceive the system. This paper addresses the need for improved security 
by proposing a new countermeasure for detecting such spoof attacks. The solution utilizes deep 
learning models to differentiate between genuine and spoof fingerprints. Four models—ResNet, 
GoogLeNet, DenseNet, and Vision Transformer—were evaluated. The study found that 
ResNet34 and DenseNet169 consistently outperformed the other models on the ATVS and 
LivDet2015 datasets, achieving higher True Detection Rates (TDR) at a False Detection Rate 
(FDR) of 0.05, as well as better F1 scores and Average Classification Error (ACE). Additionally, 
these models demonstrated lower time complexity, making them both effective and efficient for 
detecting fingerprint spoofing. This research highlights the importance of incorporating advanced 
deep learning techniques to enhance the reliability and security of fingerprint authentication 
systems. 
 
Keywords: Biometric Verification Systems, Fingerprint Spoof Attacks, Genuine Fingerprint, 
Spoof Fingerprint, Deep Learning, ResNet, GoogLeNet, DenseNet, Vision Transformer.  
 

 

1 INTRODUCTION 

The global adoption of security verification systems is an ever-expanding concern the world is 
facing (Sandouka et al., 2020). Specifically, biometric systems, which are designed to identify and 



Amal Almuarik, Mashael Aldughayem, Munirah Alshathri, Nouf Alrowais & Ouiem Bchir 

International Journal of Image Processing (IJIP), Volume (18) : Issue (1) : 2025 2 
ISSN: 1985-2304, https://www.cscjournals.org/journals/IJIP/description.php 

analyze physical or behavioral characteristics of an individual for the purpose of recognition, are 
increasingly adopted as security-based verification systems. These biometric physical 
characteristics can come in the form of facial features, iris patterns, voice patterns, fingerprints, 
etc. They are employed in a wide range of applications, including law enforcement, Border 
control, Healthcare, and the Automotive industry (Guennouni et al., 2020). One of the most 
adaptive forms of biometrics in verification systems is the fingerprint security system. The latter is 
widely used to verify the user’s identity by analyzing fingerprint patterns (Sharma et al., 2015). 
Due to their unique and reliable nature, fingerprint-based systems are widely applied in access 
control, attendance tracking, crime investigation (Ali et al., 2016) and continue to expand into 
areas such as contactless biometrics (Djara et al., 2015), high-security twin identification (CN et 
al., 2013), and synthetic fingerprint generation (Bárta, 2016). 

However, this increased adaptability makes them vulnerable to spoofing attacks. Specifically, 
they can be altered using fake fingerprints fabricated using materials such as latex, silicone, or 
gelatin, to mimic a genuine user fingerprint. These types of security attacks are known as 
Presentation Attacks (PAs) (Sandouka et al., 2020). The latter are defined as any attempt to 
present fake biometric data to fool the security system (Sandouka et al., 2020). PAs are among 
the most predominant security attacks faced by fingerprint security-based verification systems 
(Lee et al., 2022). This is due to the availability of the fabrication material, the ease of the 
process, and the success of the replication. These threats compromise the safety of the user 
information, the stored data, and the application itself. 

Hardware devices, particularly optical fingerprint sensors, are commonly used to sense vital cues 
such as blood flow, temperature, and heart pulses to differentiate genuine fingerprints from 
spoofed ones. Nevertheless, these devices are hard to implement and expensive (Sandouka et 
al., 2020). Software countermeasures are alternative solutions to hardware ones.  Specifically, 
they aim to differentiate between spoof and genuine fingerprints through the use of image 
processing and pattern recognition techniques. As a result, the need for a robust fingerprint spoof 
attack detection system is imperative to reinforce security and ensure fingerprint authenticity.  

In this work, we propose a software-based countermeasure that is able to detect the liveness of 
the fingerprint. In other words, this countermeasure is designed to distinguish between genuine 
and spoof fingerprints through the use of image processing and Deep Learning (DL) techniques. 
For this purpose, we investigate Deep Learning Convolutional Neural Networks (DL CNNs) such 
as ResNet (Chen et al, 2021), GoogLeNet (Marasco et al., 2016), and DenseNet (Wen et al., 
2020), in addition to Visual Transformers (Liu et al., 2022), such as ViT (Dosovitskiy et al., 2020). 

2 LITERATURE REVIEW 

2.1 Fingerprint Presentation Attack Detection Systems Based on ResNet 
In 2023, Rai et al. proposed a fingerprint presentation attack detection system based on dual 
network (ResNet) architecture called Slim-ResCNN. Slim-ResCNN employs an improved version 
of residual blocks. The improved residual blocks, ("block_b") don’t incorporate an activation 
function (ReLU) at the second convolution as the original residual block ("block_a"). This change 
helps maintain the representation of the low-dimensional layers. Moreover, the convolution 
kernels adopted in the improved residual (“block_b”) are broadened by a factor of two, and a 
dropout layer is inserted between each pair of convolutional layers. This modification enhances 
the model's generalization by preventing it from relying heavily on local features. For high-
dimensional layers, an improved residual (“block_d”) is used, replacing the 1x1 convolutional 
layer with a zero-padding channel layer as in (“block_c”). This change does not introduce 
additional parameters or reduce the efficiency of reverse gradient flow. 

In 2019, Zhang et al. proposed an approach that begins by extracting the foreground region from 
the entire fingerprint image using a statistical histogram of both rows and columns. This allows 
the identification of relevant fingerprint patterns. Within the identified foreground region, local 
patches are segmented using the center of gravity (CoG). This method ensures that local patches 
are selected intelligently, considering the distribution of pixel values within the fingerprint ridges 
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and valleys. The training data is augmented by applying data augmentation techniques. This 
involves flipping and rotating the local patches before feeding them into the Slim-ResCNN model. 
During the testing stage, the trained Slim-ResCNN model is used to assess the liveness of the 
input fingerprint image. As such, it predicts a score with respect to each extracted patch to 
determine whether the corresponding fingerprint is from a genuine "alive" entity or a "spoof" 
artifact. The Slim-ResCNN approach won the first prize in the Fingerprint Liveness Detection 
Competition 2017 with an overall accuracy of 95.25% (Mura, V., 2018).  

Similarly, ResNet has been adopted in the EXPRESSNET framework proposed by Rai et al., 
(2023).In this approach, the input fingerprint image is first resized to 512 × 512 pixels and then 
passed through a heatmap generator block, which forms the core of the proposed architecture. 
Specifically, the heatmap generator block is responsible for generating heatmaps to aid in the 
classification process. The latter includes two main components: the Encoder-Decoder 
component and the Channel Attention component. The encoder-decoder component localizes 
spatially relevant features. While the Channel Attention component focuses on relevant 
information in the image. As such, the heatmap reflects the importance of each pixel in the 
fingerprint image. This heatmap is then fed into the modified ResNet (Slim ResNet) for final 
classification. In the Slim ResNet model, the depth of the network is reduced without 
compromising its spatial properties to reduce computational complexity. The original ResNet 
architecture consists of four building blocks, each incorporating three convolutional layers. 
Specifically, the first block is repeated 3 times, the second one 4 times, the third one 6 times, and 
the fourth one 3 times, whereas, in the case of Slim ResNet, the number of block repetitions is 
reduced to 2 times for the first block, 3 times for the second, 4 times for the third, and 2 times for 
the fourth block. 

In 2017, Yuan et al. introduced an approach that integrates the Principal Component Analysis 
(PCA) technique into the convolutional neural network model for fingerprint spoofing detection. 
The PCA modules aim at addressing the issues related to feature extraction, overfitting, and 
dimensionality reduction. Specifically, PCA is performed on each feature map. The obtained 
features from the Convolutional Neural Network (CNN) are subjected to dimensionality reduction 
via Principal Component Analysis (PCA), are then fused, and fed to a Support Vector Machine 
(SVM) classifier (Brereton, 2010). The latter categorizes the extracted features and determines 
whether a fingerprint is genuine or counterfeit. 

2.2 Fingerprint Presentation Attack Detection Systems Based on CNN-Inception v3 
In 2017, Chugh et al. combined theCNNInception-v3 (GoogLeNet) model with minutiae-based 
local patches. By leveraging local patches of size p × p (with p = 96), 48 patches are extracted 
from each fingerprint image. These yields capture relevant information that distinguishes between 
spoof and genuine fingerprints. During the offline training phase, the system performs minutiae 
detection, extracts local patches centered around minutiae locations, and trains CNN models on 
these patches. Alternatively, in the online testing phase, GoogLeNet predicts a spoofing score for 
each patch constituting the input image. The spoof detection decision is made by computing the 
average of the spoofing scores learned with respect to these patches.  

Similarly, Tabassi et al. (2018) employed the Inception-v3 Convolutional Neural Network model 
(CNN) on extracted local patches centered around fingerprint minutiae. In this approach, the 
Inception-v3 CNN is employed twice. The first instance is trained on the whole input fingerprint 
image to classify it as genuine (valid) or spoofed (altered). Fingerprints identified as spoofed are 
then examined using a patch-based strategy, as proposed by Chugh et al. (2017), to identify 
altered regions within the fingerprint.  Furthermore, data augmentation techniques—such as the 
use of a Generative Adversarial Network (GAN)—are employed to generate synthetically altered 
fingerprint samples. 

2.3 Fingerprint Presentation Attack Detection Systems Based on DenseNet 
In2020, Zhang et al., adopted a DenseNet architecture to devise a new network architecture 
named FLDNet. As part of the preprocessing, the foreground region is extracted from the 
fingerprint image, and five fixed-size local patches centered around the center of gravity are 
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selected. These patches are subsequently used as training samples for the FLDNet. Compared 
to the original DenseNet, FLDNet incorporates a novel architectural component—referred to as 
D&R—that integrates both the residual and densely connected paths. Specifically, the channel-
wise concatenation in the middle of the original dense block is replaced by an element-wise 
addition, followed by an average pooling layer.  

Similarly, Wenet al. (2020) employed a DenseNet-based architecture along with ROI extraction to 
eliminate the background and noise from the fingerprint image. Specifically, one-pixel-wide 
ridgelines are utilized to reduce offset issues caused by thicker ridgelines. Moreover, short 
ridgeline segments are removed to minimize offset stemming from noisy data. Concerning 
DenseNet, both structural and non-structural hyperparameters are optimized using a genetic 
algorithm to search for optimal solutions. As such, a DenseNet structure candidate is represented 
using four gene fragment chromosomes on which operations like crossover, mutation, and 
selection are employed. Over successive generations, the classification accuracy of the 
population gradually improves, ultimately resulting in an optimized network configuration: 
{(0.1,0.4,20) -(12,8,10)-(5,5,7)-(96,32,96)}.  

2.4 Fingerprint Presentation Attack Detection Systems Based on Attention Mechanism  
In 2023, Kothadiya et al. proposed a model that combines five convolution layers with sequential 
attention modules. In particular, the convolution layers are based on the ResNet50 architecture 
(Vaswani et al., 2017), integrating residual modules, skip connections, and batch normalization to 
avoid the vanishing gradient problem, speed up the convolution operation, and normalize features 
before applying to ReLU’s activation function. The attention modules employed in He et al. (2016) 
are used to enhance the feature learning process. The attention mechanism consists of a 
Channel Attention (CA) block, a Spatial Attention (SA) block, and a mixed attention block. In 
particular, the CA block computes the relevant features across distinct channels, while the SA 
block provides global contextual information such as texture and background. 

In 2023, Grosz et al. proposed a fingerprint presentation attack detection (PAD) system based on 
a pre-trained Vision Transformer (ViT) model that focuses on the local features of the fingerprint 
images. As such, a 16-patch ViT is employed to encode local patches of the fingerprint image. 
Specifically, a small ViT of depth 12, including 6 attention heads, is adopted. The output of each 
layer is conveyed to a multilayer perceptron (MLP) classifier with two intermediate layers to 
categorize genuine or spoofed fingerprints. The purpose of employing a classifier at each layer is 
to empirically determine the optimal number of layers. This PAD system is jointly used with 
another ViT for the purpose of fingerprint recognition in a unified framework. 

In the same year, Zhang et al. (2023) proposed a lightweight fingerprint presentation attack 
detection model based on ResNet and a self-attention mechanism. First, as a preprocessing step, 
foreground segmentation is performed to discard the background. Then, local patches from the 
foreground are extracted. Upon that, they are conveyed to the deep learning model. The latter is 
derived from the Slim-ResCNN network (Rai et al.,2023). Moreover, to enhance the model's 
attention to the fingerprint ridge structure, a self-attention mechanism is incorporated. As such, 
ResNet extracts abstract information through convolution layers, and the self-attention layers 
summarize and process high-level semantics in the obtained feature maps. In order to provide 
the system with the ability to generalize to new or unfamiliar spoof materials, a CycleGAN-based 
method proposed by Zhu et al. (2017) is employed. It aims at transferring style information from 
known spoof materials to synthesize convincing fake fingerprint images.  

Recently, Vurity et al. (2025) introduced a hybrid finger photo PAD architecture called 
ColFigPhotoAttnNet1 that combines MobileNetV3-based feature extraction with Swin Transformer 
window attention followed by residual blocks initialized from ResNet34. The model processes 
features from three color spaces and applies dynamic quantization to reduce parameter count. 
While the approach reports strong intra- and inter-capture performance across datasets from 
various mobile devices, the reliance on multi-color fusion and quantization introduces a trade-off 
between generalization and model compactness. Furthermore, the evaluation remains specific to 
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finger photo datasets and does not explore classical fingerprint PAD scenarios involving sensors 
or LivDet benchmarks. 

2.5 Overfitting and Interpretability in Fingerprint Presentation Attack Detection Systems 
In 2024, Reza & Jung (2023) proposed an ensemble learning approach with activation 
perturbation, where noise is added to class activation map regions during training to diversify the 
learning process and enhance model robustness. In the same year, Yuan et al. introduced a  
Siamese Attention Residual Convolutional Neural Network (Res-CNN) designed to analyze the 
fundamental differences between genuine and spoof fingerprints, focusing on ridge continuity 
features. This model improves interpretability by providing visual cues that help distinguish 
between genuine and spoof fingerprints, thereby improving the system’s reliability.  

More recently, Carta et al. (2025) explored the use of dimensionality reduction methods to project 
high-dimensional data into two-dimensional spaces. This technique facilitates visual inspection 
and aids in identifying weaknesses in the decision boundaries learned during training. Such 
approaches contribute not only to model transparency but also to improving understanding of 
classification behavior and potential vulnerabilities in fingerprint PAD systems. 

3 DISCUSSION 
In related work, various deep learning approaches have been employed to address fingerprint 
spoofing attacks. Specifically, the most frequently used convolutional neural network (CNN) 
models are ResNet (Chen et al., 2021), Inception-V3 (Marasco et al., 2016), and DenseNet (Wen 
et al., 2020). ResNet has been applied to local patches in studies by Rai et al. (2023) and Zhang 
et al. (2019) and to full fingerprint images in the study by Yuan et al. (2017). Notably, Rai et al. 
(2023) used an enhanced version of residual blocks, while Yuan et al. (2017) incorporated 
principal component analysis (PCA) for feature extraction from each feature map. Inception-V3 
was employed on local patches by Chugh et al. (2017) and on full fingerprint images by Tabassi 
et al. (2018). Similarly, DenseNet was implemented on local patches by Zhang et al. (2020), while 
Wen et al. (2020) applied it to full fingerprint images. Attention mechanisms have also been 
explored in recent studies. Specifically, spatial and channel attention blocks are incorporated 
between convolutional layers in the model proposed by Kothadiya et al. (2023). Zhang et al. 
(2023) introduced a self-attention mechanism after convolutional layers to enhance sensitivity to 
ridge structures. Furthermore, Grosz et al. (2023) employed the Vision Transformer (ViT) model 
(Dosovitskiy et al., 2020), while Vurity et al. (2025) proposed a hybrid model combining CNN with 
the Swin Transformer architecture. 

Most of the reported works adopted accuracy as a performance measure, except the work by 
Tabassi et al. (2018) which used the False Discovery Rate (FDR) and the False Positive Rate 
(FPR). Moreover, most of the related work assessed their systems on different versions of LivDet 
dataset [Mura, V. (2018); Marcialis et al., 2009;Yambay et al., 2012; Ghiani et al., 2013; Mura et 
al., 2015]. However, the ATVS (Galbally et al., 2010) has also been utilized. Nonetheless, as one 
can notice, the reported works did not adopt the same samples as the number of instances used 
is different. 

3.1 Deep Learning Paradigms for Fingerprint Spoof Detection 
The need to reinforce biometric security against presentation attacks in a world full of 
cyberattacks is imperative. As such, there have been research efforts to investigate deep learning 
models and image processing techniques to automatically detect the impersonation of a 
fingerprint. Specifically, most of the studies have focused on Convolutional Neural Network (CNN) 
models, and limited attention has been given to the Vision Transformer (ViT) architecture. 
Moreover, despite the various approaches that have been proposed, there is still a need for a 
comprehensive study comparing the performance of the CNN models and the ViT model in the 
context of fingerprint presentation attack detection. In fact, although CNN models proved to be 
successful across a range of image-related tasks, it's undeniable that ViT has demonstrated 
remarkable results on the well-known ImageNet benchmark dataset (Russakovsky et al.,2015). 
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Furthermore, fingerprint presentation attacks haven’t been thoroughly investigated in a high level 
of abstraction that incorporates contextual information and mining a large range of dependencies. 
In fact, only Zhang et al. (2023) alleviated this depth of analysis through the adaptation of the 
recently proposed ViT model, and two others, Kothadiya et al. (2023) and Zhang et al. (2023), 
have only integrated the attention mechanism unit into the CNN models. 

This paper aims to explore these aspects by examining the feasibility of designing a fingerprint 
presentation attack countermeasure based on the ViT model. The latter has demonstrated 
remarkable results on well-known benchmark datasets, which makes it a promising choice for 
improving biometric security. Besides, this work intends to compare the performances of the ViT-
based model with the well-known CNN models. These are ResNet (He et al., 2016), GoogleNet 
(Szegedy et al., 2015), and DenseNet (Huang et al., 2017). 

3.2 ResNet 
Residual Network (ResNet) (He et al., 2016) is a deep neural network architecture based on 
convolutional layers. It is constructed by stacking multiple residual blocks together. ResNet 
introduced the concept of residual blocks to address the vanishing gradient problem. The residual 
blocks are based on skip connections. In fact, contrary to traditional convolution layers, where 
each layer is conveyed to the following one, the residual block layer is conveyed to the following 
layer and straightway to the one next to it using skip connections. They enable connecting directly 
one layer to deeper layers by skipping some intermediate layers in between. This allows training 
very deep networks, which was challenging due to vanishing gradients.  

3.3 GoogLeNet (Inception V3)  
Inception-V3 is an improved version of GoogLeNet (Szegedy et al., 2015). It introduced several 
architectural optimizations to reach a balance between computational efficiency and accuracy in 
deep neural networks. A major characteristic of GoogLeNet is its unique architectural 
components, which include inception modules and reduction blocks, serving as the fundamental 
building blocks of the network. The structure of an inception module incorporates three 
convolution layers. These modules perform parallel feature maps’ extraction through the 
employment of 1x1, 3x3, and 5x5 convolutional kernels, along with max pooling, to enhance the 
network's capabilities and performance. The 1x1 Convolutional Layer is employed for 
dimensionality reduction, capturing local features, and effectively reducing the number of 
parameters and computational load. Alternatively, the 3x3 convolutional layer captures spatial 
information and extracts features to recognize patterns of moderate complexity. On the other 
hand, the 5x5 Convolutional Layer captures larger spatial patterns and more intricate features to 
enhance the network's ability to recognize a diverse range of objects and patterns. Additionally, 
the Max-Pooling Layer downsamples the feature maps and performs feature selection. The initial 
phase of the Inception V3 architectural model involves a series of convolutional layers that extract 
intricate features from the input image (Ghojogh & Ghodsi, 2023). Upon that, a combination of 
average pooling and max-pooling operations is incorporated. This combination serves to 
downsample the feature maps while preserving the most salient information.  

3.4 DenseNet 
Densely Connected Convolutional Network (DenseNet) (Huang et al., 2017)is a deep 
convolutional network that incorporates shorter connections between layers close to the input and 
those closer to the output, ensuring maximal information flow between the network's layers. In 
fact, unlike conventional feed-forward networks, where each layer is only connected to the 
subsequent one, DenseNet introduces the concept of dense connectivity. Specifically, DenseNet 
feeds every layer with feature maps from all preceding layers, thereby facilitating extensive 
information exchange. The output of each convolutional layer is processed using a composite 
function comprising batch normalization (BN), rectified linear units (ReLUs), and a 3x3 
convolution operation. Moreover, the growth rate hyperparameter determines the number of 
preceding feature maps contributing to the current layers. The output of the convolutional layers 
𝑥0, 𝑥1, 𝑥2, and 𝑥3contributes to the output of 𝑥4. Furthermore, a transition layer is integrated 

between dense blocks. It includes batch normalization, 1x1 convolution, and 2x2 average pooling.  
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3.5 Vision Transformer (ViT) 
Vision Transformer (ViT) is an extension of the Transformer architecture that is specialized in 
image classification tasks. It employs the self-attention mechanism to learn context correlations 
within the image. ViT comprises N encoder transformer blocks. Each block contains multi-head 
self-attention, multi-layer perceptron, and residual connections (Dosovitskiy et al., 2020). 

Typically, Transformers integrate an attention mechanism that computes the association between 
two tokens. While these tokens consist of words in the context of NLP problems, they consist of 
pixels in the context of image classification. Nevertheless, measuring the correlation of each pair 
of pixels is exceedingly expensive. Consequently, ViT measures the correlation between image 
patches, where each patch is a small block of the image. The patches are flattened and ordered 
in a sequence. Upon that, they are embedded. The obtained vector is combined with the position 
embedding and conveyed to the transformer. ViTs can come in different versions, including Swin 

(Liu et al., 2021), T2T-ViT (Yuan et al., 2021), and DeiT (Touvron et al., 2020). 

We propose to compare the performance of different CNN models, including ResNet (He et al., 

2016), Inception V3 (Szegedy et al., 2015), and DenseNet (Huang et al., 2017), as well as the 

performance of the Vision Transformer (ViT) (Dosovitskiy et al., 2020), to determine if the Vision 
Transformer (ViT) outperforms them in categorizing fingerprint images as genuine or spoof. To 
achieve this, we will train each model using images of both spoof and genuine fingerprints.The 
considered CNN models and the Vision Transformer will be evaluated using the test set. The 
different models will be assessed to determine the best-performing model. The model that 
performs the best will be chosen to build the required system.  

4 EXPERIMENTS 

4.1 Dataset Description 

4.1.1 LivDet 
The LivDet 2015 (Mura et al., 2015) dataset is a publicly available—accessible upon 
agreement—dataset for evaluating the performance of fingerprint liveness detection algorithms. 
The dataset contains a large collection of genuine and spoof fingerprint images collected using 
various sets of sensors, including CrossMatch, Digital Persona, Greenbit, and Hi-Scan sensors. 
The dataset includes 9,000 genuine and 10,198 spoofed fingerprint instances. The training 
dataset contains 4500 genuine and 4250 spoof images. Whereas testing data contains 4500 
genuine and 5948 spoof images that are fabricated using different materials: Ecoflex, gelatin, 
latex, etc. In addition to the materials used in the training dataset, the testing dataset also 
contains spoof images fabricated using two new materials: liquid Ecoflex and RVT.  

The LivDet 2015 dataset version is challenging due to the variance in the considered material and 
in the adopted sensors. Furthermore, the data was collected with two fabrication methods: (i) 
cooperative and (ii) non-cooperative. The cooperative fabrication process involves molding a live 
subject's finger, while the non-cooperative enhances latent prints on surfaces and prints them on 
a transparent sheet for mold creation. 

4.1.2 ATVS  
The ATVS dataset is a publicly available—accessible upon agreement—resource containing 
genuine and spoofed fingerprint images gathered by the Biometric Recognition Group at 
Universidad Autónoma de Madrid, Spain (Galbally et al., 2010). It consists of two subsets: 
cooperative and non-cooperative, each containing both genuine and spoofed fingerprint images in 
bitmap format. 

In the cooperative dataset, spoof fingerprints were generated with user cooperation by capturing 
index and middle finger samples from both hands of 17 users using three different sensors: a flat 
optical sensor by Biometrika, a sweeping thermal sensor by Yubee with Atmel’s FingerChip, and a 
flat capacitive sensor by Precise Biometrics (model Precise 100 SC). This subset comprises 816 
genuine fingerprint images and an equal number of spoofed samples. 
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The non-cooperative dataset includes spoof fingerprints collected without user cooperation, with 
samples from 16 users. Each fingerprint (genuine and spoofed) was captured using the same 
three sensors as in the cooperative dataset during a single acquisition session. This subset 
comprises 768 genuine images and an equal number of spoofed samples. 

4.2 Experiment 1: Fingerprint spoof attacks detection using ResNet 
In the first experiment, four versions of the ResNet(He et al., 2016) model were considered: 
ResNet-18, 34, 50, and 101. These architectures differ in depth and complexity, with 18 being the 
most lightweight and 101 being the most complex. The performance of each variant can vary 
depending on the dataset characteristics and task-specific requirements. All models were trained 
using the training set of the LivDet 2015 dataset (Mura et al., 2015)and the ATVS dataset (Galbally 
et al., 2010).  The models were assessed using TDR at FDR 5%, ACE, and F1-score. Moreover, 
we adopted three configuration scenarios per model for hyperparameter selection. Each 
configuration varied the learning rate, optimizer, and training duration (epochs). For example, we 
tested learning rates of 0.01, 0.001, and 0.0001, with optimizers such as SGD with momentum 0.9 
and Adam. Also, we maintained a batch size of 32 across all configurations to ensure consistency. 
Tables 1–3 present the full hyperparameter configurations used for ResNet-34, ResNet-50, and 
ResNet-101 across both datasets.  

Dataset  Configuration 
(C#) 

Learning 
Rate 

Optimizer 
Momentum  Number of 

Batches 
Number of 

Epochs 

 
ATVS 

C1 0.01  SGD 0.9 32 15 

C2 0.001  SGD 0.9 32 20 

C3 0.0001  SGD 0.9 32 32 

 

 
LivDet 
2015 

C1 0.01  Adam - 32 15 

C2 0.001  Adam - 32 20 

C3 0.0001  Adam - 32 32 

TABLE 1: Hyperparameter configurations considered for training ResNet-34. 

Dataset  Configuration 
(C#) 

Learning 
Rate 

Optimizer 
Momentum Number of 

Batches 
Number of 

Epochs 

 
ATVS 

C1 0.01  SGD 0.9 32 32 

C2 0.001  SGD 0.9 32 22 

C3 0.0001  SGD 0.9 32 42 

 

 
LivDet 
2015 

C1 0.01  SGD 0.9 32 35 

C2 0.001  SGD 0.9 32 29 

C3 0.0001  SGD 0.9 32 29 

TABLE 2: Hyperparameter configurations considered for training ResNet-50. 

Dataset  Configuration 
(C#)  

Learning Rate Optimizer Momentum Number of 
Batches 

Number of 
Epochs 

 
ATVS 

C1 0.01  SGD 0.9 32 17 

C2 0.001  SGD 0.9 32 12 

C3 0.0001  SGD 0.9 32 27 

 

 C1 0.01  SGD 0.9 32 19 
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LivDet 
2015 

C2 0.001  SGD 0.9 32 15 

C3 0.0001  SGD 0.9 32 20 

TABLE 3: Hyperparameter configurations considered for training ResNet-101. 

Considering the configuration that allowed achieving the best result for each model, Figure1 
displays the performance results on the ATVS validation set with respect to ResNet-18, ResNet-
34, ResNet-50, and ResNet-101. Similarly, Figure2 displays the performance results on the ATVS 
test set with respect to ResNet-18, ResNet-34, ResNet-50, and ResNet-101.  As it can be 
seen, ResNet-34 achieved the best result. 

 

FIGURE 1: Performance results on the ATVS validation set with respect to ResNet-18, ResNet-34, 

ResNet-50, and ResNet-101. 

 

FIGURE 2: Performance results on the ATVS test set with respect to ResNet-18, ResNet-34, ResNet-50 
and ResNet-101. 

The results of the ATVS validation and test sets for the ResNet model that achieved the optimal 
results on the validation set (ResNet-34) are presented in Table 4. As it can be seen, there is a 
slight drop in the performance when using the test set. This shows that the model generalizes 
well. 

 

 TDR at FDR 5% F1-Score ACE 

Validation set 1.000 0.640 0.500 

Test set 1.000 0.680 0.500 

TABLE 4: Performance results on ATVS validation and test sets for the best ResNet architecture with 

respect to the best configuration 2. 

In consideration of the configuration that permitted the optimal outcome for each model, Figure3 
presents the performance outcomes on the LivDet 2015 validation set in relation to ResNet-18, 
ResNet-34, ResNet-50, and ResNet-101. Figure4 presents the performance results on the ATVS 

0

0.2

0.4

0.6

0.8

1

1.2

ResNet-18 ResNet-34 ResNet-50 ResNet-101

TDR at FDR 5% F1 score ACE

0

0.2

0.4

0.6

0.8

1

1.2

ResNet-18 ResNet-34 ResNet-50 ResNet-101

TDR at FDR 5% F1 score ACE



Amal Almuarik, Mashael Aldughayem, Munirah Alshathri, Nouf Alrowais & Ouiem Bchir 

International Journal of Image Processing (IJIP), Volume (18) : Issue (1) : 2025 10 
ISSN: 1985-2304, https://www.cscjournals.org/journals/IJIP/description.php 

test set with respect to ResNet-18, ResNet-34, ResNet-50, and ResNet-101. As can be observed, 
ResNet-34 achieved the optimal result. 

 

FIGURE 3: Performance results on the LivDet 2015 validation set with respect to ResNet-18, ResNet-34, 
ResNet-50, and ResNet-101. 

 
 

FIGURE 4: Performance results on the LivDet 2015 test set with respect to ResNet-18, ResNet-34, ResNet-
50 and ResNet-101. 

Table 5 shows the performance results on validation and test sets for the ResNet model that 
achieved the best results on the LivDet 2015 validation set (ResNet-34). As evident from the 
results, there is only a marginal decline in performance when transitioning from the validation set 
to the test set. This negligible drop suggests that the model's performance generalizes well 
beyond the training data, indicating that overfitting is unlikely to be a significant issue. 

 

 TDR at FDR 5% F1-Score ACE 

Validation set 0.760 0.630 0.490 

Test set 0.770 0.610 0.490 
 

TABLE 5: Performance results on LivDet2015 validation and test sets for the best ResNet architecture with 
respect to the best configuration 2. 

 
The superior performance of ResNet-34 on the ATVS and LivDet 2015 datasets compared to 
ResNet-18, ResNet-50, and ResNet-101 may result from several factors. Firstly, the smaller 
model ResNet-34 is inherently less prone to overfitting and thus achieves better performance. In 
fact, larger models like ResNet-50 and ResNet-101 have more parameters, making them more 
prone to overfitting. ResNet-34, being smaller, may benefit from inherent regularization effects, 
helping it generalize better to unseen data. Furthermore, the feature representation learned by 
each model variant could play a pivotal role. It's possible that the feature representation learned 
by ResNet-34 is more discriminative or better aligned with the dataset's underlying patterns, 
leading to superior performance. 
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Although ResNet-34 demonstrated a high performance in fingerprint spoof detection, a subset of 
enrolled fingerprints resulted in misclassification. Figure 5 shows examples of misclassifications 
made by ResNet-34. In Figure 5(a), a genuine fingerprint image is incorrectly predicted as a 
spoof. This misclassification can be attributed to the poor quality of the image, evident in its 
blurred appearance. Alternatively, Figure 5(b) depicts a spoof image misclassified as genuine. 
One plausible explanation for this error could be the low resolution of the image and discontinuity. 

 

 

(a) (b) 

FIGURE 5: ResNet-34 misclassifications examples predicted (a) as spoof, ground truth is genuine, (b) as 
genuine, ground truth is spoof. 

4.3 Experiment 2: Fingerprint spoof attacks detection using DenseNet 
The primary objective of this experiment is to determine whether the DenseNet is able to 
categorize the presented fingerprint image as “Genuine” or “Spoof”. In particular, we try to find the 
best hyper-parameter configuration settings for DenseNet-121, DenseNet-169, DenseNet-161, 
and DenseNet-201 models when used to detect fingerprint spoofing attacks. The models 
considered in this experiment were trained on two datasets, LivDet 2015 and ATVS. The training 
data was obtained using a cross-validation data-splitting technique, where we split the data into 
60% for training, 20% for validation, and 20% for testing. Moreover, we employed different 
hyperparameter settings per model. Each configuration involved varying key parameters such as 
the learning rate (0.01, 0.001, and 0.0001), the optimizer (SGD with momentum 0.9 or Adam), 
and the number of training epochs. To maintain consistency across experiments, the batch size 
was fixed at 32 for all configurations. Tables 6-9 depict the hyperparameter configurations 
considered for training DenseNet variants on the ATVS dataset and the LivDet 2015 dataset. 

Dataset Configuration 
(C#) 

Learning 
Rate 

Optimizer 
Momentum Number of 

Batches 
Number of 

Epochs 

 
ATVS 

C1 0.01 SGD 0.9 32 40 

C2 0.001 SGD 0.9 32 31 

C3 0.0001 SGD 0.9 32 45 

 

 
LivDet 
2015 

C1 0.01 SGD 0.9 32 48 

C2 0.001 SGD 0.9 32 29 

C3 0.0001 SGD 0.9 32 31 

TABLE 6: Hyperparameter configurations considered for training DenseNet-121. 

 



Amal Almuarik, Mashael Aldughayem, Munirah Alshathri, Nouf Alrowais & Ouiem Bchir 

International Journal of Image Processing (IJIP), Volume (18) : Issue (1) : 2025 12 
ISSN: 1985-2304, https://www.cscjournals.org/journals/IJIP/description.php 

Dataset Configuration 
(C#) 

Learning 
Rate 

Optimizer 
Momentum Number of 

Batches 
Number of 

Epochs 

 
ATVS 

C1 0.01 Adam - 32 20 

C2 0.001 Adam - 32 25 

C3 0.0001 Adam - 32 29 

 

 
LivDet 
2015 

C1 0.01 Adam - 32 27 

C2 0.001 Adam - 32 21 

C3 0.0001 Adam - 32 20 

TABLE 7: Hyperparameter configurations considered for training DenseNet-169. 

Dataset Configuration 
(C#) 

Learning 
Rate 

Optimizer 
Momentum Number of 

Batches 
Number of 

Epochs 

 
ATVS 

C1 0.01 SGD 0.9 32 20 

C2 0.001 SGD 0.9 32 23 

C3 0.0001 SGD 0.9 32 17 

 

 
LivDet 
2015 

C1 0.01 Adam - 32 30 

C2 0.001 Adam - 32 23 

C3 0.0001 Adam - 32 26 

TABLE 8: Hyperparameter configurations considered for training DenseNet-161. 

Dataset Configuration 
(C#) 

Learning 
Rate 

Optimizer 
Momentum Number of 

Batches 
Number of 

Epochs 

 
ATVS 

C1 0.01 SGD 0.9 32 34 

C2 0.001 SGD 0.9 32 10 

C3 0.0001 SGD 0.9 32 18 

 

 
LivDet 
2015 

C1 0.01 Adam - 32 33 

C2 0.001 SGD 0.9 32 30 

C3 0.0001 SGD 0.9 32 20 

TABLE 9: Hyperparameter configurations considered for training DenseNet-201. 

Considering the configuration that achieved the best result for each model, Figure6 displays the 
performance results on the ATVS validation set with respect to DenseNet-121, DenseNet-169, 
DenseNet-161, and DenseNet-201. Likewise, Figure7 displays the performance results on the 
ATVS test set with respect to DenseNet-121, DenseNet-169, DenseNet-161, and DenseNet-201. 
As it can be seen, DenseNet-169 achieved the best result.  
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FIGURE 6: DenseNet performance results on the ATVS validation set. 

 

FIGURE 7: DenseNet performance results on the ATVS test set. 

The results of the ATVS validation and test sets for the DenseNet model that achieved the 
optimal results on the validation set (DenseNet-169) are presented in Table 10. 

 

 TDR at FDR 5% F1-Score ACE 

Validation set 1.000 0.639 0.500 

Test set 1.000 0.682 0.500 

TABLE 10: Performance results on LivDet2015 validation and test sets for the best DenseNet-169 

architecture with respect to the best configuration. 

DenseNet-169 stood out as the best choice among other variants, DenseNet-161, DenseNet-201, 
and DenseNet-121 for the ATVS dataset, as shown in Figure8, due to its balanced complexity 
and performance. While DenseNet-201 is deeper, it might risk overfitting on smaller datasets. 
DenseNet-161 and DenseNet-121, though efficient, might not capture all nuances of the data. 
DenseNet-169 achieves an optimal balance, offering both complexity and efficiency. It showed 
superior performance during testing, making it the preferred choice.  

0

0.2

0.4

0.6

0.8

1

1.2

DenseNet-121 DenseNet-169 DenseNet-161 DenseNet-201

TDR at FDR 5% F1 score ACE

0

0.2

0.4

0.6

0.8

1

1.2

DenseNet-121 DenseNet-169 DenseNet-161 DenseNet-201

TDR at FDR 5% F1 score ACE



Amal Almuarik, Mashael Aldughayem, Munirah Alshathri, Nouf Alrowais & Ouiem Bchir 

International Journal of Image Processing (IJIP), Volume (18) : Issue (1) : 2025 14 
ISSN: 1985-2304, https://www.cscjournals.org/journals/IJIP/description.php 

 

FIGURE 8: DenseNet performance results on the LivDet 2015 validation set. 

The results of the LivDet 2015 validation and test sets for the DenseNet model that achieved the 
optimal results on the validation set (DenseNet-201) are presented in Table 11.  
 

 TDR at FDR 5% F1-Score ACE 

Validation set 0.813 0.604 0.510 

Test set 0.839 0.595 0.504 

TABLE 11: Performance results on LivDet2015 validation and test sets for the best DenseNet-201 
architecture with respect to the best configuration. 

For the LivDet 2015 dataset, DenseNet-201 stood out as the best choice. Its deeper architecture 
likely enabled it to capture a wider range of features effectively, leading to superior performance 
on both validation and test sets. The dataset's complexity benefited from DenseNet-201's 
increased depth, allowing it to extract intricate patterns and achieve higher detection rates. 
Conversely, in datasets with different characteristics, such as ATVS, the deeper architecture 
might not yield the same benefits, potentially leading to overfitting. Thus, DenseNet-201's 
selection underscores the importance of considering dataset-specific factors and architecture 
when choosing a model. 
 
Although DenseNet-201 demonstrated good results on the LivDet 2015 dataset, it misclassified 
some of the enrolled fingerprint examples. As shown in Figure 9(a), DenseNet-201 incorrectly 
classified the fingerprint as a spoof due to the low contrast and discontinuity of the image. 
Conversely, Figure 9(b) shows a misclassification as genuine, which can be attributed to the high 
contrast in an image or to the binarization process adopted. 
 

 

 

(a) (b) 

FIGURE 9: DenseNet-201 misclassification examples on LivDet2015 dataset, (a) is a Genuine sample 
predicted as Spoof (b) is a Spoof sample predicted as Genuine. 
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4.4 Experiment 3: Fingerprint spoof attacks detection using Inception v3  
In the third experiment, the objective of this experiment is to evaluate the Inception v3 model's 
ability to classify fingerprint images as "Genuine" or "Spoof." This experiment aims to identify the 
optimal hyperparameter settings for Inception v3 when used to detect fingerprint spoofing attacks. 
The training and evaluation were conducted on the same datasets as in Experiment 3, LivDet 
2015 dataset (Mura et al., 2015) and ATVS dataset (Galbally et al., 2010). Moreover, we adopted 
three configuration scenarios for hyperparameter tuning. These configurations varied in learning 
rates (0.01, 0.001, and 0.0001), used the SGD optimizer with a momentum of 0.9, and tested 
different training durations (epochs). A batch size of 32 was consistently maintained across all 
configurations to ensure a fair comparison. Table 12 displays the hyperparameter settings used 
for Inception v3 on the ATVS dataset and the LivDet 2015 dataset. 

Dataset  Configuration 
(C#) 

Learning  
Rate 

Optimizer 
Momentum Number of 

Batches 
Number of 
Epochs 

 
ATVS 

C1 0.01 SGD 0.9 32 15 

C2 0.001 SGD 0.9 32 21 

C3 0.0001 SGD 0.9 32 33 

 

 
LivDet 
2015 

C1 0.01 SGD 0.9 32 33 

C2 0.001 SGD 0.9 32 20 

C3 0.0001 SGD 0.9 32 28 

TABLE 12: Hyperparameter configurations considered for training Inception-v3. 

Considering the configuration that allowed achieving the best result for each model, the results of 
the ATVS validation and test sets for the Inception v3 model that achieved the optimal results on 
the validation set are presented in Table 13. Similarly, the results related to the LivDet 2015 
dataset are reported in Table 14.  

 TDR at FDR 5% F1-Score ACE 

Validation set 0.633 0.597 0.461 

Test set 0.661 0.595 0.464 

TABLE 13: Performance results on ATVS validation and test sets for the best Inception-v3 architecture with 
respect to the best configuration 3. 

 TDR at FDR 5% F1-Score ACE 

Validation set 0.779 0.612 0.512 

Test set 0.755 0.601 0.510 

TABLE 14: Performance results on LivDet2015 validation and test sets for the best Inception-v3 architecture 
with respect to the best configuration 1. 

Figure 10 presents instances of misclassifications observed in Inception v3. In Figure 10 (a), both 
Configuration 1 and Configuration 3 yielded the misclassification of a genuine fingerprint image 
as a spoof. This misclassification occurs due to unclear edges within the fingerprint. In Figure 10 
(b), Configuration 3 and Configuration 2 incorrectly identify a fake image as genuine, possibly due 
to motion blur present in the image. Lastly, in Figure 10 (c), Configuration 2 allowed 
misclassifying a genuine image as a spoof, likely caused by variations in the pressure applied 
during fingerprint scanning, resulting in inconsistencies in the captured image. 
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(a) (b) (c)  

FIGURE 10: Inception v3 misclassifications examples predicted (a) as spoof when using Configuration 1 
and Configuration 3, (b) as genuine when using Configuration 3 and 2, and (c) as spoof when using 

Configuration 2. 

4.5 Experiment 4: Fingerprint spoof attacks detection using ViT 
This experiment aims to evaluate the effectiveness of the vision transformer models ViT16 and 
ViT32 in categorizing fingerprint images as "Genuine" or "Spoof". Similar to the previous 
experiments, this experiment aims to determine the most effective hyperparameter configurations 
for the ViT models in detecting fingerprint spoofing attacks. Training and evaluation are 
performed on the LivDet 2015 and ATVS datasets, maintaining the same split of 60% training, 
20% validation, and 20% test data. Consistency is ensured by using a batch size of 32 and a 
training duration of 1000 epochs with early stopping to avoid overfitting. Across three 
configurations, we varied the learning rates (0.01, 0.001, and 0.0001) while employing the SGD 
optimizer with a momentum of 0.9. Performance is evaluated using identical metrics, including 
ACE, TDR @ FDR 5 %, and F1-Score to ensure direct comparison with previous experiments. 
Table 15 and Table 16 report the different hyperparameter settings used to train ViT-16 and ViT-
32 using the ATVS dataset and the LivDet2015 dataset. 

Dataset  Configuration 
(C#) 

Learning 
 Rate 

Optimizer 
Momentum Number of 

Batches 
Number of 

Epochs 

 
ATVS 

C1 0.01  SGD 0.9 32 86 

C2 0.001  SGD 0.9 32 25 

C3 0.0001  SGD 0.9 32 23 

 

 
LivDet 
2015 

C1 0.01  SGD 0.9 32 34 

C2 0.001  SGD 0.9 32 41 

C3 0.0001  SGD 0.9 32 40 

TABLE 15: Hyperparameter configurations considered for training ViT-16. 

Dataset  Configuration 
(C#) 

Learning 
Rate 

Optimizer 
Momentum Number of 

Batches 
Number of 

Epochs 

 
ATVS 

C1 0.01  SGD 0.9 32 20 

C2 0.001  SGD 0.9 32 11 

C3 0.0001  SGD 0.9 32 17 

 

 C1 0.01  SGD 0.9 32 42 
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LivDet 
2015 

C2 0.001  SGD 0.9 32 14 

C3 0.0001  SGD 0.9 32 27 

TABLE 16: Hyperparameter configurations considered for training ViT-32. 

Considering the configuration that achieved the best result for each model, Figure11 shows the 
performance results on the ATVS validation set with respect to ViT-16 and ViT-32. Similarly, 
Figure12 shows the performance results for the test set with respect to ViT-16 and ViT-32. 

 

FIGURE 11: Performance results on the ATVS validation set with respect to ViT-16 and ViT-32. 

 

FIGURE 12: Performance results on the ATVS test set with respect to ViT-16 and ViT-32. 

The results of the ViT model in the ATVS validation and test sets are shown in Table 17 (ViT-16), 
which achieved the best results in the validation set.  
 

 TDR at FDR 5% F1-Score ACE 

Validation set 0.779 0.612 0.512 

Test set 0.755 0.601 0.510 

TABLE 17: Performance results on ATVS validation and test sets for the best ViT-16 architecture with 
respect to the best configuration. 

Among the different ViT variants evaluated for the ATVS dataset, ViT-16 proved to be the 
preferred choice due to its balanced mix of complexity and performance, outperforming ViT-32. 
While ViT-32 offers a larger architecture with more parameters and computational requirements, 
it also increases the risk of overfitting on smaller datasets. In contrast, ViT-16, with its smaller 
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size, is more efficient and less prone to overfitting. During testing, ViT-16 demonstrated superior 
performance, supporting its position as the optimal choice over ViT-32. 

Considering the configurations that lead to the best results for each model, Figure13 illustrates 
the performance results on the LivDet 2015 validation set with respect to ViT-16 and ViT-32. 
Similarly, Figure14 shows the performance results on the LivDet 2015 test set with respect to ViT-
16 and ViT-32. Notably, ViT-16 emerges as the top performer and achieves the optimal result. 

 

FIGURE 13: Performance results on the LivDet 2015 validation set with respect to ViT-16 and ViT-32. 

 

FIGURE 14: Performance results on the LivDet 2015 test set with respect to ViT-16 and ViT-32. 

Table18showstheperformanceresults of the ViT-16 model in the validation and test sets. The ViT-
16 model outperformed ViT-32 in the LivDet2015 validation set. The ViT-16 model shows 
consistent performance between the validation and test sets. Despite a slight improvement in the 
test set, this indicates a robust generalization of the model beyond the training data. 

TABLE 18: Performance results on LivDet2015 validation and test sets for the best ViT-16 
architecture with respect to the best configuration. 

 TDR at FDR 5% F1-Score ACE 

Validation set 0.546 0.594 0.524 

Test set 0.555 0.604 0.520 

 
Although ViT-16 showed strong performance in recognizing fingerprints, a subset of the 
fingerprints captured were misclassified. Figure 15 illustrates examples of misclassifications by 
ViT-16. In Figure15 (a), a spoof fingerprint image is incorrectly identified as genuine. This 
misclassification could be due to the low resolution and discontinuity of the image. Conversely, 
Figure15 (b) shows a genuine image that has been misclassified as a spoof. The reason for this 
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misclassification could be the blurring of details in dark color, resulting in poor image quality. 
 

 
 
 
 
 
 
 
 
   

(a) (b) 
  

FIGURE 15: ViT misclassification examples predicted (a) as genuine, ground truth is spoof, (b) as spoof, 
ground truth is genuine. 

4.6 Performance Comparison  
The best models were evaluated using TDR @ FDR = 0.05, F1 score, and ACE measures, with 
computational efficiency assessed by the number of FLOPs. Figure16 and Figure17 illustrate that 
ResNet34 and DenseNet169 outperformed the other models across both datasets. Conversely, 
InceptionV3 demonstrated poor results on the ATVS dataset but achieved performance 
comparable to ResNet34 on LivDet2015. In contrast, ViT underperformed on both datasets. A 
plausible explanation is that ViT's transformer architecture, while powerful for capturing long-
range dependencies, is less efficient at extracting fine-grained image details. This makes 
ResNet34 and DenseNet169 more suitable for tasks like fingerprint spoof detection, where 
detailed feature extraction is crucial. 

 

FIGURE 16: Performance comparison of InceptionV3, ResNet34, DenseNet169, and ViT in terms of 
TDR@FDR 0.05, F1-score, ACE, and FLOPs on the ATVS dataset. 
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FIGURE 17: Performance comparison of InceptionV3, ResNet34, DenseNet201, and ViT in terms of 
TDR@FDR 0.05, F1-score, ACE, and FLOPs on the LivDet 2015 dataset. 

Moreover, the transformer architecture incorporates image processing patches and attention 
mechanisms, which contribute to a higher number of parameters. Additionally, its multiple self-
attention mechanisms and feed-forward layers involve extensive computations compared to 
convolutional neural networks (CNNs). As a result, the time complexity and parameter count of 
ViT are significantly higher than those of DenseNet and ResNet, as illustrated in Figure16 and 
Figure17. Consequently, when evaluating both performance and computational efficiency, 
ResNet and DenseNet emerge as the optimal choices for detecting fingerprint spoof attacks in 
the ATVS and LivDet 2015 datasets. 

In contrast to DenseNet and ResNet, InceptionV3 demonstrated poorer performance due to its 
complex architecture. Its reliance on factorized convolutions and aggressive dimensionality 
reduction can result in the loss of critical features necessary for tasks such as fingerprint spoof 
detection. Additionally, InceptionV3 struggles with the vanishing gradient problem in its deeper 
layers, as it lacks the residual connections present in ResNet and DenseNet, which prevent 
vanishing and exploding gradients. Residual connections ensure stable and effective learning, 
especially in deep networks, leading to faster convergence and more effective parameter 
updates. DenseNet's dense connections further enhance performance and training efficiency by 
promoting feature reuse and ensuring robust gradient flow throughout the network, thereby 
enhancing the model's ability to learn complex patterns. 

5 CONCLUSION AND FUTURE WORKS  
Recent advancements in artificial intelligence and deep learning boosted the performance of 
computer vision systems to solve real-world problems such as spoof fingerprint detection. As 
such, this paper proposed to investigate recent deep learning paradigms and figure out the most 
suitable one for presentation attack detection. For this purpose, different models and their 
variants are trained and then tested. These experimental results underscore that ResNet34 and 
DenseNet169 consistently outperformed other models on both the ATVS and LivDet2015 
datasets, achieving superior metrics in TDR @ FDR 0.05, F1 score, and ACE while maintaining 
lower time complexity. Conversely, InceptionV3 displayed subpar performance on the ATVS 
dataset but performed comparably to ResNet34 on LivDet2015. ViT 16 and ViT 32, despite their 
sophisticated transformer architecture, exhibited the highest time complexity and underperformed 
across both datasets. These findings highlight the efficiency and effectiveness of ResNet and 
DenseNet, making them the most suitable choices for fingerprint spoof detection due to their 
robust performance and computational efficiency. Notably, no advanced preprocessing or data 
augmentation techniques were applied to the training data, allowing for an unbiased evaluation of 
each model’s inherent feature extraction capability in real-world conditions. This study addresses 
a notable gap in the literature by offering a direct and systematic comparison between CNN-
based models and Vision Transformers for fingerprint presentation attack detection — an area 
where limited research has been conducted. Our work not only evaluates ViT’s feasibility for this 
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task but also highlights the importance of considering architectural suitability based on biometric-
specific characteristics, such as ridge structure and texture continuity. 

Future work will focus on further optimizing the computational efficiency and performance of deep 
learning models for fingerprint spoof detection. This includes exploring hybrid architectures that 
combine the strengths of CNNs and transformers to potentially improve both accuracy and speed. 
Additionally, we suggest investigating advanced techniques for data augmentation and 
preprocessing to enhance model robustness against diverse spoofing methods. Another area of 
interest is the development of lightweight models that can be deployed on resource-constrained 
devices without significant loss of accuracy. Furthermore, exploring the vulnerability of these 
models to adversarial attacks and proposing mitigation strategies will be essential to ensure 
secure deployment in real-world scenarios. Finally, a comprehensive analysis of the model's 
performance on a wider range of datasets can be conducted to ensure their generalizability and 
effectiveness in real-world applications. 
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