
Mohammed Abdullah H. Al-Hagery

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 11

Contributors to Reduce Maintainability Cost at the Software
Implementation Phase

Mohammed Abdullah H. Al-Hagery
Faculty of Computer/Department of Computer Science,
Qassim University, Boridah, KSA

Abstract

Software maintenance is important and difficult to measure. The cost of maintenance is the
most ever during the phases of software development. One of the most critical processes in
software development is the reduction of software maintainability cost based on the quality of
source code during design step, however, a lack of quality models and measures can help
asses the quality attributes of software maintainability process. Software maintainability suffers
from a number of challenges such as lack source code understanding, quality of software code,
and adherence to programming standards in maintenance. This work describes model based-
factors to assess the software maintenance, explains the steps followed to obtain and validate
them. Such a method can be used to eliminate the software maintenance cost. The research
results will enhance the quality of the source code. It will increase software understandability,
eliminate maintenance time, cost, and give confidence for software reusability.

Keywords: Maintainability Time, Software Maintenance, Standard Code, Quality of lines of
Code, Understandability, Maintainability Factors.

1. INTRODUCTION
Software maintenance is an important phase in the software life cycle. It focuses on keeping
the software fully functional and up to date. Maintenance engineers used different approaches
and methods to gain understanding of software systems so maintenance tasks can be
performed effectively. A lot of efforts have been put into finding a way to measure
maintainability of software [1].

Maintainability cannot be seen as an attribute of the software system alone, because it
depends a great deal on who maintains it, a team that has a lot of experience with a particular
system will maintain it more easily. Both the software and the team have internal attributes that
influence maintainability, for example, structural complexity of the software and skill of the team
members. We want to survey the factors that lead to low or high maintainability [2].

A change request can be due to a failure, changing requirements, prevention or any other
reason. The activities by the maintenance team include actually performing the change, but
also documenting, testing, and reporting, depending on the maintenance procedures. When a
system is changed extensively a new team is formed to implement the changes that are not
regarded as a change. Such a situation is more like a new system being developed [2]. There
are many factors that influence maintainability can be assembled and adapted from [3], [4], [5],
[6], [7], [8], [9]. Measuring the maintainability of source code revisions presents some
challenges [10].

This work concentrates on quality of source code rather than code defects. Code defects are
defects attributable to coding errors such as branching to a wrong location. These defects are
found throughout the coding process as well as in final test of changes and enhancements to
an application.

1.2 Survey of Related Works
The largest cost associated with any software product over its life-cycle is the software
maintenance cost. One approach to controlling maintenance costs was to utilize software
metrics during the development phase [11]. A number of studies is examining the link between
Object Oriented software metrics and maintainability have found that in general these metrics

Mohammed Abdullah H. Al-Hagery

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 12

can be used as predictors of maintenance effort [12],[11],[13],[14], and [15], which can be
measured in working hours.

Yuming and Hareton, presented an empirical study that sought to build object-oriented software
maintainability prediction models using a novel exploratory modeling technique, MARS. To
build the MARS models, they made use of the Li and Henry’s data sets, UIMS and QUES,
obtained from two different object-oriented systems. The prediction performances of the MARS
models were assessed and compared with those of the multivariate linear regression models.
These models are the artificial neural network models, the regression tree models, and the
support vector models, but their focus was not on the implementation phase and data set used
was not enough to prove the suggested model [16].

Mari et al. introduces the framework of maintainability and the techniques that promote
maintainability in three abstraction levels; system, architecture and component. In system
dimension, the maintainability requirement is considered from a business related point of view.
In architecture, maintainability means a set of quality attributes e.g. extensibility and flexibility.
At the component level, maintainability focuses on modifiability, reusability, integration, and
testability [17]. Ardimento et al. in [18] reports the results of their empirical study aimed at
understanding how characterizations of components affect the maintenance effort of the
system components. They have made the assessment that:

(i) Functionality of each component should be as concentrated as possible over a single aspect

of the application domain,
(ii) The training time offered by the component’s producer usually indicates the complexity of

understanding it and if a component is difficult to understand, then it is difficult to maintain;
and

(iii) A deep knowledge of the component is necessary for the organization before its adoption.

Van Koten and Gray, make the first use of the BBNs in building software maintainability
prediction models. They use a special type of Bayesian networks called Naïve–Bayes classifier,
which assumes no expert knowledge about the prior probability distribution but learns it from
data by batch learning. The results show that the prediction accuracy of the BBN model is more
accurate than regression-based models for one system but is less accurate than regression-
based models for another system. Accurate software metrics-based maintainability prediction is
desirable first because it reduces future maintenance efforts by enabling developers to better
identify the determinants of software quality and thereby improve design or coding, and second
because it provides managers with information for more effectively planning the use of valuable
resources. Although a number of maintainability prediction models have been developed in last
decade, they have low prediction accuracies according to the criteria suggested in [15], [19].

Maintainability metrics are commonly language dependent, and computing them requires tools
that typically assume access to the full definitions of the software entities [10]. It was found that
a number of metrics such as the lines of code changed, and the number of operators changed
are strongly correlated to maintenance efforts [1]. Heitlager et al. discussed several problems
with the maintainability index (MI), and they identified a number of requirements to be fulfilled
by a maintainability model to be usable in practice. they sketched a maintainability model that
alleviates most of these problems, and discussed their experiences with using such as system
for IT management consultancy activities [20].

Bertoa et al. have been reported that they presented a set of measures to assess the
maintainability of software components. Furthermore, they described the process followed to
obtain and validate them. Such a process can be maintained for defining and validating
measures for other quality characteristics [21]. Wu et al. proposed a technique for maintaining
evolving component based system by utilizing a static analysis to identify the interfaces, events
and dependence relationship that would be affected by the modification in the maintenance
activity [22], [23]. The maintainability of a software system can be measured in different ways.
Currently and in past studies, maintainability has been defined as ‘‘time required to make
changes’’ and ‘‘time to understand, develop, and implement modification’’[24]. As well as,
Yuming and Hareton measured the maintainability of a software system as the number of
changes made to code during a maintenance period. They employed a novel exploratory

Mohammed Abdullah H. Al-Hagery

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 13

modeling technique, multiple adaptive regression splines (MARS), for building maintainability
prediction models using the metric data collected from two different object-oriented systems
[16].

1.3 Motivations and Objective
One of the most critical processes in software development is the reduction of software
maintainability cost accordingly the quality of code design, however, a lack of quality models
and metrics can help asses the software maintainability process. Software maintainability
suffers from many challenges such as lack of source code quality, and source code
understanding, adherence to programming standards in maintenance. The main objective of
this work is to define and establish a Criteria-Based-Model that can be used to assess S/W
quality characteristics, and that can assist in implementation phase. Such criteria could reduce
the maintenance cost; these criteria will be created as three or one group. This objective can be
detailed in the following points:
1.Create a group of criteria that support writing a standard software programs(proposed

criteria)
2.Construction of a mathematical model for applying the proposed criteria to reduce the final

S/W cost.
3.Increase S/W understandability, readability and flexibility.
4.Participation of undergraduate students in the research work through the formation of work

groups to study the code standardization, to write some programs and then execute software
maintenance on several software programs. These programs help to ensure acceptance of
the model and the proposed factors or criteria.

2. SOFTWARE MEASUREMENT
Software measures can be classified into three types; derived measures, base measures, and
indicators. Base measures do not depend upon any other measure (e.g., the number of tables
in the manuals). A derived measure is derived from other base or derived measures (e.g., the
ratio of methods per interface). An indicator is a measure that is derived from other measures
using an analysis model according to decision criteria. The objective of that is to obtain a
measurement result that satisfies an information need (e.g., the size of a sub-system is
“medium” if it has more than 30 assemblies, provides more than 45 interfaces, and its manuals
have more than 7,000 Line of Code (LOC).

Measures relate a defined measurement approach and a measurement scale. A measurement
approach is the logical sequence of operations, described generally, used in quantifying an
attribute with respect to a specified scale [25]. A measure is expressed in units, and can be
defined for more than one attribute. Examples of measures for software component attributes
include the number of provided interfaces, the ratio of methods per required interface, or the
throughput of video frames emitted per input video frame (they correspond, respectively, to
possible measures for the aforementioned attributes size, interface complexity, and
performance)[21].

Accurate software metrics-based maintainability prediction can not only enable developers to
better identify the determinants of software quality and thus help them improve design or
coding, it can also provide managers with useful information to help them plan the use of
valuable resources[16].
The act of measuring software is a measurement, which can be defined as the set of
operations that aims at determining a value of a measurement result, for a given attribute of an
entity, using a measurement approach [21].

The term metric is not present in the measurement terminology of any other engineering
disciplines, at least with the meaning it is commonly used in software measurement. Therefore,
the use of the term “software metric” seems to be imprecise, while the term “software measure”
`seems to be more appropriate to represent this concept. Accordingly, in the following the term
measure will be used. This is also consistent with ISO/IEC and IEEE Computer Society
positions which, in order to ensure both consensus and consistency with other fields of
sciences, made a decision in the year 2002 to align their terminologies on measurement with
the internationally accepted standards in this field. In particular, ISO-JTC1-SC7 is trying to

Mohammed Abdullah H. Al-Hagery

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 14

follow as much as possible the ISO international vocabulary of basic and general terms on
metrology [26]. A number of software metrics measuring maintainability has been proposed by
means of theoretical and empirical studies. However, component based system presents a
unique maintenance challenges. Unlike the traditional software systems, one cannot be done
by viewing or changing the source codes of the component, but are restricted to reconfiguring
and reintegrating components [27].

3. MAINTAINABILITY
Maintainability [28] is “The ease with which a software system or component can be modified to
correct faults, improve performance or other attributes, or adapt to a changed environment”.
The seminal research work by Basili and Turne in 1975 has identified different characteristics of
software system that effect software maintainability. Effective maintenance involves detailed
observations of the behavior of a system and is driven by software complexity [29]. Voas in
1998 provided an overview of the maintenance challenges raised by Component Based
Software Development by identifying reasons including frozen functionality, incompatible
upgrades, unreliable components and complex middleware [27].

The “understandability” of a source code is related directly to the maintainability, because
understandability is one of the dominant factors affecting software maintainability [30]. For
example, let us assume a perfect source code that does not have any faults or logical errors.
Nevertheless, if a source code is difficult to understand, an increase of costs and/or of failure
potential during maintenance is then inevitable. Several factors such as complex logic, the
many variables included in a code and lengthy codes could interfere with the understanding of
the program context by maintenance personnel [31].

3.1 Maintainability Attributes
The software maintainability affects by a number of criteria such as: understandability,
reusability, learnability, readability, and operability. It can be defined as follow:

• Understandability: the capability of the component to enable the user to understand whether the
component is suitable, how it can be used for particular tasks and conditions of use. System
developers should be able to select a component suitable for their intended use, for example,
component elements (e.g. interfaces, operations) should be easy to understand [21].

• Reusability: the capability of the software to enable the developer or the maintainer to modify its
functions easily.

• Readability: the ability of the software to enable the developer or maintainer to understand the
software functions by reading its lines of source code.

• Learnability: the capability of the software component to enable the user or system developer to
learn its application. For example, the user manual and the help system should be completed,
the help should be context sensitive and explain how to perform common tasks, etc.

• Operability: the capability of the software component to enable the user (system developer) to
operate and control it. An Operability measure should be able to assess whether system
developers can easily operate and control the component. Operability measures can be
categorized by the dialogue principles described in ISO/IEC-9241-10 [21]. Figure 1 illustrates
the relation between maintainability and source of code.

Mohammed Abdullah H. Al-Hagery

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 15

3.2 Factors Affecting Maintainability
In [32], four main factors for software maintainability are included in ISO/IEC 9126 such as
analyzability, changeability, stability, and testability. These factors are defined clearly in [33].
First, analyzability is attributes of software that bear on the effort needed to diagnose of
deficiencies or causes of failure and to identify parts to be modified. Second, changeability is
some attributes of software that bear on the effort needed to make modifications, eliminate
faults or change the system in response to environmental change. Third, stability that can be
represented by attributes of software that bear on the risks associated with unexpected effects
of modifications. Finally, Testability attributes of software that bear on the effort needed to
validate modifications.

Studies that take the application development view of software seem to address maintenance
as an afterthought of development rather than a critical and expensive part of the total system
life-cycle. For example, Dekleva [34] evaluates how the choice of development approach will
influence maintenance. Perry in [35] addresses maintenance quality in the context of
development quality. The maintenance phase of the life-cycle is a natural and necessary part of
the system operation [36]. Software evolves over time primarily due to changes in requirements
and technologies. As a result, Information systems development is typically acknowledged as
an expensive and lengthy process, often producing code that is of uneven quality and difficult to
maintain. Software reuse has been advocated as a means of revolutionizing this process. The
claimed benefits from software reuse are reduction in development cost and time, improvement
in software quality, increase in programmer productivity, and improvement in maintainability
[37]. Prasanth et al., proposed a model for improving software maintainability based on risk
analysis, they identified a set of metrics that affects the external and internal complexity [38].

4. QUALITY OF SOURCE CODE
There are two main types of software quality, Quality of process and quality of products. In
general, there is a lack of consensus about how to define and categorize software quality
characteristics. Quality of system documentation includes quality of external documentation and
quality of internal documentation [39].

The development of high-quality software must satisfy both the users’ requirements and the
software firm’s budget [40]. Program restructuring is a key method for improving the quality of
ill-structured programs, thereby increasing the understandability and reducing the maintenance
cost [41]. Our concentration is on some important rules of code design. Quality is one of the
most sought after dimensions of the business software applications that organizations depend
on today. Despite this high demand for quality, very few studies have been done that evaluate
the ongoing quality of software applications during the maintenance portion of the system life-
cycle [42]. Quality is also measured objectively as number of failures and defects per month
[42] and also quality can be supported by a standard implementation of code which, will result
in quality software maintenance.

FIGURE 1: The relation between maintainability and source of code

Source code measure
e.g cyclomatic

complexity

Source code properly

e.g complexity

System quality

characteristics e.g

changeability

Can be measured by

Can be measured by

Influence

Indicator

Mohammed Abdullah H. Al-Hagery

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 16

5. METHODOLOGY STEPS
The research methodology includes; establishment of some criteria related to standard code
design, construction of a suitable model for measuring the values of the proposed criteria,
maintain of construction groups (BSc students team), and results comparison. The following
steps are representing the research methodology in details
1- Construction of documentation criteria and evaluation formula as shown in Table 1 and

Formula 1.
2- Preparation of code segments (two sets, each one contains 18 programs) by two ways
 a) Undocumented code, denoted by g1
 b) Documented code, denoted by g2
3- Execute a short training course in the international documentation standards, to train two

groups of code maintainers (four Bsc students)
4- Apply the criteria of Table 1 on g1 and g2 separately, the calculated results are shown in

Table 2.
5- Calculate the total satisfaction for each set.
6- Maintain the software code (g1 & g2) depends on adaptive maintenance, then calculate the

maintainability time for each program in g1 and g2.
7- Results comparison

5.1 Coding Factors
The proposed factors selected depend on three groups [43], these factors increase the code
understandability; this will reduce the maintainability time of software. The proposed factors are
thirteen factors, can be classified in three groups; first associated with general code, second
associated with methods, third associated with classes. Each factor can be assigned to any of
the following values {0,1,2,3,4}. Where, 0 indicates that the factor effect is absent, 1 means
factor satisfaction is low, 2 means factor satisfaction is medium, then 3 is high and 4 means
factor is completely satisfied (very high), kindly see Formula (1), that was created by Al-Hagery
[43], the values of any factor FR in Table 1 can be estimated by Formula (1).

The proposed factors were extracted from three groups of factors implemented in [43]. These
factors produce a high quality code to reduce the maintainability cost. These factors are shown
in Table 1.

 0 : iff satisfaction ≥ o & < 10%

 1 : iff satisfaction >10% & ≤ 25%

 FR_measure = 2 : iff satisfaction >25% & ≤ 50% (1)

 3: iff satisfaction >50% ≤ 75%

 4 : iff satisfaction >75% ≤ 100%

Mohammed Abdullah H. Al-Hagery

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 17

Index Factor name
Factor rank (FR)

0 1 2 3 4

1 Variables scope and role are defined clearly ○

2 Code describes what is being done ○

3 Understand the code by reading the
comments

 ○

4 Preface comments defined clearly ○

5 Use nouns or noun phrases for naming ○

6 Use alignment to enhances readability ○

7 End of lines comments ○

8 The meaning of return values ○

9 Use verbs for Function names, Get, Find, … ○

10 The purpose of each method/function ○

11 Variables declarations should be left aligned ○

12 Use correct spelling in names ○

13 Avoid using names that differ only by letter ○

 Total Satisfaction = 29 0 5 3 2 3

TABLE 1: Maintenance Based Factors

Our model-based factor (MBF) is proposed to find the degree of documentation based on some
standard criteria, as shown in formula (2).

 n
MBF = ∑(Factor i × Factor_Rank), n=13 (2)
 i=1

For the example, the value of MBF obtained in Table 1 is 29, this value gives an indicator of the
documentation level, the minimum value of MBF is 0 and the maximum value is 52, so the
value of this example classified as medium.

6. WORKING GROUPS

Two teams are selected for maintenance purpose, each team consists of two students, the
development strategy used is the "extreme programming". Team members are a final year
students at the Computer Science department. On the other hand, the teams studied and
practiced the concepts of writing standard code and they created some documented code as a
result of their training, but this is not included within the research data, because they were
maintain a code written by another people.

7. RESEARCH DATA SETS

The maintenance task performed by using eighteen software programs designed in C & C++
programming languages. This software constitutes the research data set that was used to
prove the research validity. This data set was prepared as two groups, the first group prepared
as a documented code, its documentation level graduated from 66% to 12% as partially
documented code. Second group is prepared as undocumented code as shown in Table 2
column 3.

8. EXPERIMENTAL RESULTS
Table 2 displays summary results in this research. It includes some important attributes such as
Complexity level, level of documentation (g1 and g2), total time1 for group 1 and total time2 for
group2 and indicators. All these attributes are selected to be used for results evaluation and
interpretation. The table contents are organized in ascending order depends on the value of
indicator of the last column. The indicator value is assigned as follows:

Mohammed Abdullah H. Al-Hagery

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 18

Time1 > Time2 → - (the results are negative)
Time1< Time2 → + (the results are positive)
Time1 equal Time2 → ≡ (the results are equal)

program
no

Complexity
level

Level of
Documentation Time1 Time2 Indications *

g1 g2

9 15 15 1 6 5 -

16 65 18 1 10 7 -

1 60 40 1 5 4 -

14 80 36 1 22 20 -

11 20 42 1 5 3 -

7 20 21 2 7 7 ≡

3 50 26 1 2 2 ≡

6 20 12 1 3 5 +

5 40 21 1 8 16 +

10 10 25 1 17 24 +

4 35 34 1 3 10 +

8 35 35 1 3 4 +

18 70 35 2 4 6 +

2 45 36 1 1 2 +

17 70 40 1 14 23 +

13 75 45 1 3 4 +

12 60 46 1 2 5 +

15 50 44 2 8 14 +

Average 6.83 8.94

TABLE 2: Summary of Experimental results

9. RESULTS DISCUSSION
Based on the results shown above in Table 2, these results show the rate of time that was
measured during the maintenance of 18 programs applied in this research. The maintenance
time was measured in two separate cases. First case, contains programs classified as partially
documented. The second case contains undocumented programs, In the first case and second
case, the average rate of time for maintenance was equal to (6.38.3) and (8.94) units of time,
respectively.

FIGURE 2: Maintenance cost results

cost of
undocumentd

code
268.3
50%

cost of
documentd

code
205
38%

posative
diffrence

63.3
12%

posative diffrence

cost of documentd code

cost of undocumentd
code

Mohammed Abdullah H. Al-Hagery

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 19

Based on the previous values, found that the difference in time is equal to (2.11) unit of time, if
we supposed that the cost of each maintenance hour is equal to 30 US$. So based on this
value, the average cost of case 1 was 268US$ ≡ 50% of the total cost, and the average cost of
case 2 was 205US$ ≡ 38% of the total cost, as well as the difference of the average in cost was
63.3 US $ ≡ 12% of the total cost, as presented in figure 2. Although there is a positive
difference supports the principle of documented code which applied in this research. The total
results showed three types of values, first gives a negative results, the second gives positive
results, then the last gives a balanced results, as illustrated in figure 2.

Eleven programs of eighteen supports the principle of code documentation in a positive and
shows important difference in the results, and based on this relative difference can present
positive results for the proposed model, this obtained clearly how much cost can be reduced by
building a complete documented code. Finally, it is important to mention that the average level
of documentation of all applied programs was equal to 61% depends on both problem
complexity and code size, and the average level of complexity of the used programs was equal
to 46.

The more documentation process within large and complex programs, would contribute to
the maintenance process required in the future, in addition to reducing the cost to do
so. Also by comparing the results shown in Table 2, it is clear that small programs are
not affected by documentation because its ideas is simple, easy, and the required time for
maintenance is very short.

10. CONCLUSION
After discussing the results presented in this work, we found that applying the international
quality standards on the code contents is very important to reduce its cost. In addition to that, it
enables developers to reuse the source code. This code also will be more flexible, readable,
easy to understand, and then S/W development organizations can do future development at a
lower cost and better results depends on the results of this research. For programs that are
small, simple, and well documented, they have negative results because the maintainers spend
a lot of time and effort to understand the idea of the program by reading its documentation,
although they can understand the idea directly without documentation of the Source code.

The presented results gave in general a positive effect of applying standard documentation
process on software code, especially for long life software projects. The impact of this process
is positive to support reducing the cost of software maintenance. By the proposed model we
predicted that the medium level of software documentation reduces the cost of long-term
maintenance by 12% and high level of software documentation (full documented code with
complex programs) reduces the total maintenance cost by 24% at least, depending on the
results comparisons presented above. This value is increasing with large, complex, and full
documented projects/software. This also will encourage organizations to support the software
quality by improving the developer's culture in this side, so any other S/W teams in future can
enhance and improve documented legacy systems by adding new features or new functions.

11. FUTURE WORKS
There are some points can be taken into account to extend and modify this work from different
points; firstly, increase the proposed factors to cover all quality factors. Secondly, improve the
research results by increasing the number of maintenance teams. Thirdly, expanding the
testing data to be more than 18 projects depends on big sizes, and complex projects that are
completely documented.

12. REFERENCES
[1] M. Reformat, A. Kapoor, and N. J. Pizzi. “Software Maintenance: Similarity and Inclusion

of Rules in Knowledge Extraction”, Proc of the 18th IEEE International Conference on
Tools with Artificial Intelligence (ICTAI'06), 2006, 723-731.

[2] W. Hordijk, and R. Wieringa. "Surveying the Factors that Influence Maintainability",
In: Proc of the 10th European software engineering conference held jointly with 13th ACM

Mohammed Abdullah H. Al-Hagery

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 20

SIGSOFT international symposium on Foundations of software engineering, 5-9 Sep.
2005, pp. 385-388.

[3] N. E. Fenton, and S. L. Pfleeger. "Software Metrics: A Rigorous and Practical Approach",
PWS Publishing Co, 1998.

[4] M. A. CÔTÉ, W. Suryn, C. Y. Laporte, and R. A. Martin. "The evolution path for industrial
software quality evaluation methods applying ISO/IEC 9126: quality model: Example of
MITRE’s SQAE method. Software Quality Journal", Elements of Software Science, vol.
13, pp. 17-30, 2005.

[5] Y. Ahn, J. Suh, S. Kim, and H. Kim. "The software maintenance project effort estimation
model based on function points", Journal of Software Maintenance, vol. 15, Issue 2, pp.
71-85, March/April 2003.

[6] L. Bass, P. Clements, and R. Kazman, "Software Architecture in Practice", Addison-
Wesley, 2nd edition, 2003.

[7] T. L. Graves, and A. Mockus. "Inferring change effort from configuration management
databases", In METRICS ’98: Proc of the 5th International Symposium on Software
Metrics, IEEE Computer Society, 1998, pp 267-273.

[8] M. Lehman. "Laws of Software Evolution Revisited", Software Process Technology
(EWSPT 96), 1996, vol. 1149, pp 108-124.

[9] A. Monden, D. Nakae, T. Kamiya, S. Sato, and K. Matsumoto. "Software quality analysis
by code clones in industrial legacy software", In IEEE METRICS ’02: Proceedings of the
8th International Symposium on Software Metrics, 2002, pp. 87-87.

[10] H. Abram, W. G. Michael, and C. H. Richard. "Reading beside the lines: Using
indentation to rank revisions by complexity", journal of Science of Computer
Programming,
Vol. 74, Issue 7, pp. 414-429, May 2009.

[11] R. K Bandi, V. K. Vaishnavi, and D. E. Turk. "Predicting maintenance performance using
object-oriented design complexity metrics", IEEE Transactions on Software Engineering,
vol. 29, no.1, pp.77-87, 2003.

[12] W. Li, and S. Henry. "Object-oriented metrics that predict maintainability", Journal of
Systems and Software, vol. 23, no. 2, pp.111-122, 1993.

[13] S. C. Misra. "Modeling design/coding factors that drive maintainability of software
systems", Software Quality Journal, vol. 13, no. 3, pp.297-320, 2005.

[14] M. T. Thwin, and T. S. Quah. "Application of neural networks for software quality
prediction using object-oriented metrics", Journal of Systems and Software, vol. 76, no.2,
pp.147-156, 2005.

[15] K. V. Coten, and A. Gray. "An application of Bayesian network for predicting object-
oriented software maintainability", Information and Software Technology, vol. 48, no.1,
pp. 59-67, 2005.

[16] Y. Zhou, and H. Leung. "Predicting object-oriented software maintainability using
multivariate adaptive regression splines", The Journal of Systems and Software, vol. 80,
pp. 1349-1361, 2007.

[17] M. Mari, and N. Eila. "The impact of maintainability on component-based software
systems", In Proc of 29th Euromicro Conference, 2003, p. 25-32.

Mohammed Abdullah H. Al-Hagery

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 21

[18] P. Ardimento, A. Bianchi, and G. Visaggio. "Maintenance-oriented selection of software
components", In Proc of Eighth European Conference on Software Maintenance and
Reengineering, 2004, p. 115-124.

[19] S. D. Conte, H. E. Dunsmore, and V. Y. Shen. "Software Engineering Metrics and
Models", Benjamin-Cummings Publishing, Redwood City, CA, USA,1986.

[20] I. Heitlager, T. Kuipers, and J. Visser. “A Practical Model for Measuring Maintainability",
Proc of the 6th International Conference on the Quality of Information and
Communications Technology, IEEE, 2007, pp. 44-49.

[21] M. F. Bertoa, J. M. Troya, and A. Vallecillo. "Measuring the usability of software
components", The Journal of Systems and Software, vol. 79, pp.427-439, 2006.

[22] Y. Wu, and J. Offutt. "Maintaining evolving component-based software with UML", In Proc
of Seventh European Conference on Software Maintenance and Reengineering, 2003, p.
133-142.

[23] Y. Wu, D. Pan, and M.H. Chen, "Techniques of maintaining evolving component based
software", In Proc of International Conference on Software Maintenance, 2000, p. 236-
246.

[24] L. S. Rising. "Information hiding metrics for modular programming languages", PhD
dissertation, Arizona State University, 1992.

[25] ISO/IEC 15939, "Software Engineering-Software Measurement Process", 2002.

[26] ISO VIM, second ed. "International Vocabulary of Basic and General Terms in
Metrology", International Standards Organization, Geneva, Switzerland, 1993.

[27] J. Voas. "Maintaining component based systems", IEEE Software, vol. 15, no. 4, pp. 22-
27, 1998.

[28] IEEE Standard Glossary of Software Engineering Terminology, ANSI/IEEE Std 610-
1990, The Institute of Electrical and Electronics Engineers, New York, NY, 1990.

[29] G. T. Heineman, and W. T. Councill. "Component-Based Software Engineering: Putting
the Pieces Together", Addison-Wesley, 2001, pp. 741-753.

[30]S. S. Yau, R. A. Nicholl, J. J. Tsai, and S.S. Liu. "An integrated life-cycle model for software
maintenance", IEEE Transactions on Software Engineering, 1988, vol.14, no .8, pp.1128-
1144.

[31] J. Park, W. Jung, and J. Ha. "Development of the step complexity measure for
emergency operating procedures using entropy concepts", Journal of Reliability
Engineering & System Safety, vol. 71, pp. 115-130, 2001.

[32] ISO/IEC 9126. "Software Engineering-Product Quality-Part 1: Quality Model",
International Standards Organization, Geneva, Switzerland, 2001.

[33] C. Chen, C. Lin, C. Wang, and C. Chang. "Model for measuring quality of software in
DVRS using the gap concept and fuzzy schemes with GA", Journal of Information and
Software Technology vol. 48, pp.187-203, 2006.

[34] S. M. Dekleva. "The influence of the information systems development approach on
maintenance", the journal of MIS Quarterly. Vol.16.issue.3, pp.353-372. 1992.

[35] W. E. Perry. "Quality concerns in software development", the challenge is consistency,
Journal of Information Systems Management, vol. 9, Issue 3, pp. 48-50, 1992.

Mohammed Abdullah H. Al-Hagery

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 22

[36] M. A. Cusamano, and C. F. Kemerer. "A quantitative analysis of U.S. and Japanese
practice and performance in software development", Journal of Management Science,
vol. 36, issue 11, pp. 1384-1406, 1990.

[37] D. L. Nazareth, and M. A. Rothenberger. "Assessing the cost-effectiveness of software
reuse: A model for planned reuse", The Journal of Systems and Software, vol. 73, pp.
245-255, 2004.

[38] P. Narayanan, S. P. Raja, X. Birla, K. Navaz, and S. A. Abdul Rahuman. "Improving
Software Maintainability through Risk Analysis", International Journal of Recent Trends in
Engineering, vol. 2, issue. 4, pp. 198-200,November 2009.

[39] J. A. Hoffer, J. F. George, and J. S. Valacich. "Modern Systems Analysis and Design",
Third Edition, 2005.

[40] R. A. DeMillo, R. J. Liption, and A. J. Perlis. "Software Project Forecasting", Software
Metrics, MIT Press, Cambridge, MA, p. 77, 1981.

[41] C. Lung, X. Xu, M. Zaman, and A. Srinivasan. "Program restructuring using clustering
techniques", The Journal of Systems and Software, vol. 79, pp.1261-1279, 2006.

[42] M. Ghods, and K. M. Nelson. "Contributors to quality during software maintenance",
Journal of Decision Support Systems, vol. 23, issues 4. pp. 361-369, 1998.

[43] M. A. Al-Hagery. "Model-based factors to extract quality Indications in software lines of
code", International Journal of Computer Science & Information Technology (IJCSIT), vol.
3, issue 2, pp. 112-121, April 2011.

