
Okure U. Obot, Edward N. Udo & Peter G. Obike 

International Journal of Software Engineering (IJSE), Volume (10) : Issue (1) : 2022 1 
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php 

Software Team Productivity Factor in Constructive Cost Model 
for Software Development Effort Estimation 

 
 

Okure U. Obot                            okureobot@uniuyo.edu.ng 
Department of Computer Science, Faculty of Science 
University of Uyo 
Uyo, Nigeria 

 
Edward N. Udo             edwardudol@uniuyo.edu.ng 
Department of Computer Science, Faculty of Science 
University of Uyo 
Uyo, Nigeria 
 

Peter G. Obike              obike.peter@mouau.edu.ng 
Department of Computer Science, College of Physical and Applied Sciences 
Michael Okpara University of Agriculture 
Umudike, Nigeria 
 

 
 

Abstract 
 
One of the models used to implement software development effort estimates is the Constructive 
Cost Model (COCOMO) and the attributes of this model are said to contain some level of 
imprecision. This study was motivated by the need to accurately estimate software development 
effort and also reduces the imprecision contained in the COCOMO. A neuro-fuzzy constructive 
cost model by Kaur et al., (2018) was studied and found to contain some of the desirable features 
of a neuro-fuzzy approach. It handles imprecision using Adaptive Neuro-Fuzzy Inference System 
(ANFIS) with a large dimension of datasets and does not consider software team members 
productivity. This work introduces software team productivity factor into the conventional 
COCOMO and converts it to COCOMO II using model definition manual and Rosetta Stone and 
also considers reducing the number of inputs from 23 to 6.  With data gathered from PROMISE 
repository (NASA project), an ANFIS-based model was built. The new model with the productivity 
factor was implemented along with that of Kaur et al., (2018) in the MATLAB 2021 programming 
environment. Findings reveal that with 6 out of the 23 attributes of PROMISE datasets, the ANFIS 
model (Hybrid and Back Propagation) with the productivity factor performs better than the Kaur et 
al., (2018) model. The implication is that the productivity of the team members working on a 
software project can add up or reduce the actual person-hours (Effort) required to develop a 
software. During the experiments, six (6) important COCOMO inputs that software managers 
should place more emphasis on during the planning stage were identified 
 
Keywords: Software Development Effort, COCOMO, Team Productivity Factor, Principal 
Component Analysis, ANFIS, Back Propagation, Hybrid Learning Algorithm. 

 

 
1. INTRODUCTION 

Software development effort estimation (SDEE) predicts or approximates the development time, 
cost, required workforce and the most realistic amount of effort (expressed in terms of person-
hours or money). SDEE is needed to develop a software product using the available incomplete, 
uncertain, and noisy input (Carbonera et al., 2020; Chatzipetrou et al., 2015; Shivakumar et al., 
2016; Bilgaiyan et al., 2017; Rijwani and Jain, 2016; Rehmana et al., 2021).Incomplete, uncertain 
and noisy in the above definition means that at the early stage of software development, only a 
little amount of information is available (Kaushik et al., 2013). Effort estimates computed at the 
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early stages of the software development lifecycle (SDLC) are typically associated with 
uncertainty (Sehra et al., 2016). 
 
In software engineering, estimation is one of the critical activities and plays a vital role in the 
development of software for the establishment of cost assessments and delivery timelines 
(Bilgaiyan et al., 2017; Marapelli and Peddi, 2020). This estimation affects software cost and 
required Effort and consequently influences the overall success of software development process 
(Mustapha, 2018). Estimation is usually used as a basis for resources allocation and aids 
significantly in decision making and management of complex and large software projects 
(Humayun and Gang, 2012; Mohsin, 2021). It plays an important role in the design of project 
plans, budget allocation, investment analysis, and pricing processes (Rehmana et al., 2021). 
 
It is quite problematic and more challenging to derive accurate effort estimates for software 
projects, especially at the early stages of SDLC, because estimations are predictions and there 
are some levels of uncertainties in predictions. If the estimation is delayed until the requirement 
specification phase, the inaccuracy of the estimation can be reduced, therefore giving a more 
reasonable and accurate estimation (Sehra et al., 2016), but in many situations and in practical 
scenarios, estimations are needed before the specified requirements are elaborated. Estimations 
are therefore carried out at the early stages of SDLC, even though uncertainty decreases and 
knowledge increases regarding the product as the project progresses (Arifin et al., 2017).  
 
Various factors affect SDEE. Usman et al., (2017) highlighted the factors that affect estimation 
accuracy to include the size of software, the experience of team members and their skills, the 
number of nonfunctional requirements, the geographical distribution of the team members and 
the level of communication provided by the customer. Sehra et al., (2016) asserted that factors 
such as effort requirements uncertainty, software size, and the experience of the estimator, 
inconsistent and incomplete data, frequent requirements changes and the environment’s 
dependency affect accurate SDEE. Other factors are the developer’s experience, complexity and 
impact of changes to the underlying system (Tanveer, 2017). Additionally, estimation models 
perform differently in different environments and in different software project types (Sehra et al., 
2017). 
 
Considering these multiple factors, estimation of Effort in software development can be very 
difficult, leading to overestimation or underestimation. Both overestimation and underestimation of 
software effort may lead to risky consequences and sometimes can cause complete failure of a 
software project. It is important to note that the software industry is a major contributor to the 
world’s economy. Therefore, inaccurate SDEE will cause a great loss in this regard (Humayun 
and Gang, 2012). 
 
Overestimation may lead to resource wastage, suboptimal delivery time (Nassif et al., 2019) and 
resources misallocation, which affects the development of other important projects (Mohsin, 
2021). It may cause too many resources to be committed to a project and loss of contract bids for 
software projects (Gultekin and Kalipsiz, 2020). Conversely, underestimation of software 
development Effort may cause delay and over-run costs, which may eventually results in software 
project failure (Moosavi and Bardsiri, 2017). It may also lead to project understaffing, excess 
budgeting expenses, poor management decisions, building a software system with poor quality 
and late delivery of software products (Nassif et al., 2019; Gultekin and Kalipsiz, 2020).  
 
In recent years, many approaches for SDEE have been proposed. These approaches or methods 
are divided into two groups: algorithmic and non- algorithmic. Algorithmic methods are based on 
mathematical methods which try to calculate the relationship between software product factors 
and the software development effort (Khazaiepoor et al., 2020). Some of the well-known 
algorithmic methods are regression models, Planning Poker, Delphi and Constructive Cost Model 
(COCOMO) (Carbonera et al., 2020; Amazal and Idri, 2014; Nassif et al., 2016). Non- algorithmic 
methods are based on active analysis of factors of the software project and nonlinear 
characteristics (Shilhavy et al., 2017). Some of such methods are machine learning models, 
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Analogy Based Estimations (ABE) and expert judgment (Khazaiepoor et al., 2020). The popular 
estimation methods used are ABE, expert judgment, function points, software sizing, and 
Bayesian methods (Bilgaiyan et al., 2016; Soni and Kohli, 2017). It is worth mentioning that no 
single method is considered the best, but using a combination of some methods increases 
estimation accuracy (Shekhar and Kumar 2016). 
 
Many authors have used COCOMO datasets to implement software development effort estimates 
despite the fact that the attributes in the COCOMO-based NASA dataset possess a certain level 
of imprecision. The attributes are analyst capability, programmer’s capability, application 
experience, modern programming practice, and use of software tools, virtual machine experience, 
language experience, schedule constraint, main memory constraint, database size, and a time 
constraint for CPU, turnaround time, machine volatility, process complexity, required software 
liability and the physical kilo line of source code. For example, it is quite impossible to determine 
a programmer’s capability for the problem domain during the planning stage of software 
development; it is not also certain at the early stage of SDLC which modern programming 
practice to employ. Software planning is definitely associated with some uncertainties.  
 
This work introduces software team productivity factor into the COCOMO by adapting the work of 
Kaur et al., (2018); a Neuro-Fuzzy Constructive Cost Model, which carries some of the desirable 
features of a neuro-fuzzy approach, such as learning ability and good interpretability, while 
maintaining the merits of the COCOMO model.  
 
One of the main objectives of software development is to improve productivity for the production 
of more software while reducing its development cost (Mizuno et al., 2000; Ramirez and Oktaba, 
2018). Productivity has a direct relationship with the efficiency and effectiveness of the software 
development process (Melo et al., 2013), and this may be a single item in the entire software 
quality process (Morasca and Russo, 2001).  
 
The competition witnessed within the software production industries requires timely delivery of 
software products in such a way that it creates the need for increased team members’ 
performance that will help the industries to remain in the software business (Canedo and Santos, 
2019). Software team productivity is measured in order to reduce software development costs, 
improve the quality of deliverables, and increase the rate at which software is developed 
(Sudhakar et al., 2012). 
 
Productivity in the software development environment is described by the relationship between 
the size of the delivered software (input from the development process) and the Effort expended 
in building the software (output from the development process). Therefore, the general 
productivity equation is given by (Aquino et al., 2009; Vasilescu et al., 2015):  
 

Productivity = Size/Effort 
 
Productivity is the ratio of outputs to consumed resources (Card, 2006). Software productivity 
includes complexities of both software and people, which can be calculated by dividing software 
size by the cost of development. Measuring productivity helps in identifying under-utilized 
resources (Nwelih and Amadin, 2008). 
 
Despite efforts to define productivity, there is no consensus in the software industry regarding 
what the term productivity means and, instead of having only one metric or factor that describes 
productivity, it is defined by a set of aspects – People, Product, Organization, and Open Source 
Software Projects (Mato et al., 2021). 
 
In this work, the software team productivity factor is introduced into the COCOMO II model and 
an ANFIS model was built, with the data obtained from the PROMISE repository, to estimate 
software development effort. The model was compared to an existing neuro-fuzzy constructive 
cost model by Kaur et al. (2018). Section 2 of this work presents the related work, section 3 
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reviews the constructive cost model by Kaur et al., (2018) and shows the architecture of the 
proposed system, section 4 shows the effect of PCA, while Section 5 built the ANFIS model (both 
back propagation and hybrid) with the software team productivity factor. In Section 6, the ANFIS 
model is trained, and its performance is evaluated and compared with Kaur et al., (2018) model. 
The work is concluded in Section 7. 

 
2. RELATED WORKS 

Several authors have used the COCOMO NASA datasets, with the uncertainties in its attributes, 
in conjunction with other models to estimate software development effort. Suharjito et al., (2016) 
used a neuro-fuzzy model optimized with PSO to derive an improved software development effort 
estimation model using NASA dataset software project. The results of the optimization were 
trained using ANFIS to get an effort prediction. Rijwani and Jain (2016) proposed the use of 
artificial neural network-based model using multi-layered feed-forward neural network which was 
trained with a back propagation method and COCOMO data-set was used to test and train the 
network. Mustapha (2018) performed data mining on COCOMO NASA datasets using three (3) 
machine learning techniques: Naïve Bayes, Logistic Regression and Random Forests. The 
generated models were tested using five-folds cross-validations and were evaluated using 
Classification Accuracy, Precision, Recall, and AUC. The estimation results were then compared 
to the COCOMO estimation. Khazaiepoor et al., (2020) used a three-phase hybrid approach 
(feature selection using genetic algorithm and perceptron neural network, associating impact 
factor with the selected features using linear regression method and optimization of feature 
weights using an imperialist competitive algorithm) to estimate software development effort. 
Three datasets (COCOMO, Maxwell and Albrecht) were used to validate the model. Singal et al., 
(2020) estimated software development effort using differential evolution algorithms to improve 
the parameter values for algorithmic models like CoCoMo and CoCoMo II. Sharma and 
Vijayvargiya (2020) carried out neuro-fuzzy computing through ANFIS using COCOMO and 
COCOMO II datasets by comparing the expected and the actual data. The results showed that 
ANFIS model could be efficiently used for estimating software development effort. Marapelli and 
Peddi (2020) estimated Effort using three machine learning techniques (Naïve Bayes, Logistic 
Regression and Random Forests)  that were applied to a preprocessed COCOMO NASA 
benchmark data, which covered 93 projects. The generated models were tested using five folds 
cross-validation and were evaluated using Classification Accuracy, Precision, Recall, and AUC. 
The estimation results were then compared to COCOMO estimation.  Zakaria et al., (2021) used 
several machine learning algorithms (Linear Regression, Support Vector Machine, Regression 
Tree, Random Forest) to estimate software development effort and the best learning algorithm 
compared with the COCOMO. Rehmana et al., (2021) investigated five machine learning 
techniques (polynomial linear regression, ridge regression, decision trees, support vector 
regression, and multilayer perceptron) for effort estimation using seven standard datasets 
(Albretch, Desharnais, COCOMO81, NASA, Kemerer, China, and Kitchenham) 
 
All these researches used the COCOMO model in its conventional state, despite its weakness 
and uncertainties. Other authors tried to enhance and amplify the COCOMO model by 
complementing it with another effort calculating model or by improving the model’s parameter 
values. Garg et al., (2014) complemented the COCOMO model using the Function Point 
Analysis. COCOMO estimated the cost of software development from design to the integration 
phase, while Function Point estimated the cost for the remaining phases. The enhanced model 
was tested on 20 projects with defined values of cost drivers. Singal et al., (2020) used a 
differential evolution approach to improve the parameter values of COCOMO and COCOMO 11 
and compared the results with the original COCOMO models. Khan et al., (2021) amplified 
COCOMO 11 with global software development cost drivers for different estimates in the context 
of global software development. 
 
Rai et al., (2021) designed a model using the features of Support Vector Regression and 
COCOMO to predict software effort with the help of software development team size. The results 
showed that with a team size of 51 – 60, the model yielded an accuracy of 92% in predicting 
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software effort. This means that the accuracy of the model increases as the team size increases. 
Increasing the team size without considering other factors will result in overestimation. 
 
This work therefore considers the size of the software team members as well as their productivity 
by introducing software team productivity factor into COCOMO to help remove the problem of 
underestimation and overestimation since the productivity factor is majorly responsible for both 
firing and dropping in effort estimation. 

 
3. REVIEW OF KAUR’S SOFTWARE DEVELOPMENT EFFORT MODEL 
The software development effort evaluation model in Kaur et al., (2018) is a Neuro-Fuzzy 
Constructive Cost Model which carries some of the desirable features of a neuro-fuzzy approach, 
such as learning ability and good interpretability, while maintaining the merits of the COCOMO 
model.  The model deals effectively with imprecise and uncertain input and enhances the 
reliability of software cost estimates. In addition, it allows input to have continuous rating values 
and linguistic values, thus avoiding the problem of similar projects having high different estimated 
costs. 
 
The inputs to this model are the software size and ratings of 22 cost drivers including 5 scale 
factors (SFRi) and 17 effort multipliers (EMRi). The output is the software development effort 
estimation. Ratings of cost drivers can be continuous numerical values or linguistic terms such as 
‘‘low’’, ‘‘nominal’’ and ‘‘high’’. The parameters in this model are calibrated by learning from 
industry project data. This system covers all-important dimensions of software evaluation through 
the integration of different technologies. Figure 1 shows the architecture of the Kaur et al., (2018) 
model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 1: Model of the Adapted Model (Kaur et al., 2018). 

 
After careful analysis of the Kaur’s model, the following problems are identified: 
 

i. The model only addressed the effort prediction based on existing Neuro-fuzzy model. 
ii. The Effort was accurate to an extent because COCOMO II model parameters were not 

optimized enough 
iii. The model considered only 18 projects as data set. 
iv. The model took no consideration of the software team members productivity 

 
3.1 Kaur’s Model with Software Team Productivity 
The productivity coefficient is introduced into the COCOMO model to reduce the effect of 
productivity among team members. Hanchate and Bichkar (2015) states that the productivity of 
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an employee or team, � is given by the ratio scope, ℓ of project and performance η of the 
employee: 
 

� =  ��� ! �" #$��!�%
#!$"�$&'(�! =   ℓ

*         (1) 

 
The productivity, � by COCOMO-II is given by the ratio of Effort and Team Size (TS).  
 

� =  +""�$%
,!'& �-.!          (2) 

 
From (1) and (2), it can be seen that an increase in productivity has a direct proportional increase 
in the Effort. But the idea is to reduce Effort, hence an inverse of (2) gives: 
 
�
/ = 1/( +""�$%

,!'& �-.!) =  ,!'& �-.!
+""�$%         (3) 

 
From (3), it is clear that the effort decreases when the right hand side increases. This work 
termed the right hand side of (3) the productivity constraint. By this, the improved model is 
derived and depicted in Figure 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 2: COCOMO II Model with Team Size Productivity. 

 
3.2 Architecture of the Proposed System 
The proposed system is designed as the integration of components that will enable pre-
processing of the dataset, clustering of the preprocessed dataset, creation of an initial Fuzzy 
Inference System (FIS) from the dataset, as well as subjecting the result to the Neuro-Fuzzy 
Model to predict the final Effort required to develop a software. The study employs deductive 
reasoning methodology with pre-specified questions, outcome-oriented data collections, 
numerical estimation and statistical inference analysis. The architecture of the proposed system 
is as shown in Figure 3.  
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FIGURE 3: Architecture of the Proposed System. 

 
Rosetta stone tool converts original COCOMO 81 files to a form that is compatible with COCOMO 
II. The following steps were adopted for the conversion: 
 

1. Update of Size: Table 1 provides guidelines for converting size in Delivered Source 
Instruction (DSI) to Source Line of Code (SLOC) for their use with the COCOMO II 
model.   

 
TABLE 1: Converting Size Estimates. 
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The histogram showing the DSI plot in COCOMO I Dataset and SLOC in COCOMO II Dataset is 
presented in Figure 4 and 5 respectively. 
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FIGURE 4: DSI Plot in COCOMO I Dataset. 

 
 

 
 

FIGURE 1: SLOC in COCOMO II after conversion. 

 
2. Conversion of Exponent: The exponent variables in COCOMO II are five scale factors 

which are absent in COCOMO I. They are Precedentedness (PREC), Development 
Flexibility (FLEX), Architecture/Risk Resolution (RESL), Team Cohesion (TEAM), and 
Process Maturity (PMAT). Table 2 presents values used for the five scale factors that 
determine the exponent of COCOMO II. 

 
TABLE 2: Mode/Scale Factor Conversion Ratings. 

 

MODE/SCALE FACTORS ORGANIC SEMI-DETACHED EMBEDDED 

Precedentedness (PREC)  XH H L 
Development Flexibility (FLEX)  XH H L 
Architecture/Risk Resolution 
(RESL)  

XH H L 

Team Cohesion (TEAM)  XH VH N 
Process Maturity (PMAT) MODP MODP MODP 
 
PMAT replaces the Modern Programming Practice (MODP) cost driver in the COCOMO I model.  
A Modern Programming Practices (MODP) cost driver from Table 3 with ratings Very Low (VL) or 
Low (L) translates into a PMAT rating of VL, or a L level on the SEI CMM scale.  A MODP rating 
of Nominal (N) translates into a PMAT rating of L, or a High (H) Level 1.  A MODP rating of H or 
Very High (VH) translates into a PMAT rating of N or CMM Level 2.  As with the other factors, if 
the project’s actual rating is different from the one provided by the Rosetta Stone, the actual value 
is used. This was achieved by using this formula in Microsoft Excel: 
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=IF (OR (T2="vl”, T2="l"),"vl”, IF (OR (T2="h”, T2="vh"),"n",IF(T2="n","l"))) 

 
Where T2 is the MODP cost driver. 
 

3. Conversion of Cost Drivers: The Rosetta Stone guidelines in Table 3 are used to 
convert COCOMO I cost drivers to COCOMO II. 

 
TABLE 3: Cost Driver Conversion. 

 

COCOMO 81 
DRIVERS 

COCOMO II DRIVERS CONVERSION FACTORS 

RELY RELY Same as actual 
DATA DATA Same as actual 
CPLX CPLX Same as actual 
TIME TIME Same as actual 
STOR STOR Same as actual 
VIRT PVOL Same as actual 
TURN  Use values of COCOMO Attributes 
ACAP ACAP Same as actual 
PCAP PCAP Same as actual 
VEXP PEXP Same as actual 
AEXP AEXP Same as actual 
LEXP LTEX Same as actual 
TOOL TOOL Use values of COCOMO Attributes 
MODP Adjust PMAT settings IF MODP is rated VL or L, set PMAT to 

VL, else if N, set PMAT to L, else if H or 
VH, set PMAT to N 

SCED SCED Same as actual 
 RUSE Set to N, or actual if available 
 DOCU If mode = organic, set to L, if semi-

detached, set to N, if mode = embedded, 
set to H 

 PCON Set to N, Same as actual if available 
 SITE Set to H, Same as actual if available 

 
4. PRINCIPAL COMPONENT ANALYSIS (PCA) 
In order to eradicate redundant input from the feature vector and sort out the best features that 
contain the most applicable pieces of information from the given dataset, Principal component 
analysis was used. In this study, a total of 23 features were extracted in the initial stage. These 
features were then fed to PCA to extract the most valuable features. The results show that out of 
the 23 features, 17 features that are effort multipliers have less than 2% explained variance and 6 
features that are scalar multipliers have above 2% explained variance. The 6 features have 
cumulatively 94.1% explained variance. The cumulative explained variance value is presented in 
Table 4 and the screen plot for the cumulative explained variance is depicted in Figure 6.  
 

TABLE 4: Effect of dimension on the cumulative explained variance. 
 

Feature Cumulative Explained 
Variance (%) 

RELY 63.3385 
DATA 16.4827 
CPLX 5.8788 
RUSE 3.4049 
DOCU 2.7814 
TIME 2.23903 
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STOR 
PVOL 
ACAP 
PCAP 
PCON 
AEXP 
PEXP 
LTEX 
TOOL 
SITE 
SCED 
PREC 
FLEX 
RESL 
TEAM 
PMAT 
SLOC 

1.60532 
1.43192 
0.75292 
0.60549 
0.56600 
0.45995 
0.29948 
0.15349 
5.89E-28 
2.52E-33 
1.01E-34  
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

 
From Table 4, it is observed that the higher the number of dimensions the higher the cumulative 
explained variance. The total dimension in Table 4 is twenty-three (23), which is the total number 
of dimensions in the original dataset. To select relevant features from the original dataset, a 
dimension is chosen in order to achieve 94.1% of the original information retained. In the case of 
this system, the best minimum number of dimensions is Feature 6 (TIME) with a cumulative 
explained variance of 2.24%.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 6: Cumulative Screen Plot of the original dataset. 

 
From the results shown in Figure 6, the first six principal components (RELY, DATA, CPLX, 
RUSE, DOCU, and TIME) have been selected as the new feature vector because these six 
principal components have a total cumulative variance of 94.1. The algorithm of PCA calculates 
these scores by making use of covariance matrix, eigenvector, and eigenvalues from the original 
feature vector. The number of dimensions used was six (6) because six (6) is the minimum 
dimension that explains more than 94.1% variance in the original dataset. Hence the new (or 
reduced) dataset had a dimension of six (6).  

 
5. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS)  
ANFIS model is trained using the reduced feature vector generated by principal component 
analysis. The structure of the ANFIS model shown in Figure 7 comprises the crisp input 
(represented by the input linguistic variables), Gaussian input membership functions with 
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parameters; standard deviation,�, and mean :rules, output membership functions, and the crisp 
output.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 7: The ANFIS structure. 

 
The six inputs (principal components) are fuzzified at ANFIS layer 1. Each input variable is made 
up of five membership functions (very low, low, normal, high, and very high). The ANFIS model 
successfully learned from the data and produced an optimal Fuzzy Inference System (FIS). This 
initial FIS generated using Subtractive Clustering is composed of a rule base with 5 rules for 5 
clusters, and the membership function used is the Gaussian membership functions, and auto-
generated rule-base. The number of rules generated by the ANFIS model is 5 computed with 
Subtractive Clustering with ; input, ; rules and n mf using Cluster Influence Range of 
0.5.However, the value of the cluster Influence Range was set to 0.55 which reduced the rules 
generated to 5 and data points are used as the candidates for cluster centers. For the 
comparison of Kaur et al., (2018) Model, the number of rules generated when using Grid 
Partitioning is 64 (sixty-four) computed as the number of linguistic terms (T) to the power of the 
number of linguistic variables (V) - T

V
.  

 
The components of the FIS generated by the ANFIS model is presented in Figure 8; the 
optimized FIS structure. The membership function plots for RELY, DATA, CPLX, RUSE, DOCU 
and TIME are respectively shown in Figures 9 – 14. 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 8: Optimized FIS structure. 

 
From Figure 9 to Figure 14, the ranges of each input to 4 decimal places are: RELY [-
89.2013,889.9036], DATA [-2.0196,3.9218], CPLX [-4.5516, 2.6066], RUSE [-0.5891, 1.8484], 
DOCU [-0.9441, 0.6666], and TIME [-0.4301, 0.5891]. 
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FIGURE 9: PC1-RELY membership function.              FIGURE 10: PC2-DATA membership function. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 11: PC3-CPLX membership function.             FIGURE 12: PC4-RUSE membership function. 
 

 
 
 
 
 
 
 
Figure 16: PC5-DOCU membership function           Figure 17: PC6-TIME membership function 
There are a total number of 64 rules generated using Grid Partitioning while a total number of 5 
rules are generated for 5 clusters using the subtractive clustering tool. The rules are used by the 
fuzzy inference engine to reason on the given input value in order to produce a crisp output. The 
five (5) rules generated for the inference system are given in Figure 18 
 
 
 

FIGURE 13: PC5-DOCU membership function.            FIGURE 14: PC6-TIME membership function. 

 
There are 64 rules generated using Grid Partitioning while 5 rules are generated for 5 clusters 
using the subtractive clustering tool. The rules are used by the fuzzy inference engine to reason 
on the given input value in order to produce a crisp output. The five (5) rules generated for the 
inference system are given in Figure 15. 
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Figure 18: Auto-generated rule-base 
The resulting relationship among the ANFIS input variables can be visualized using the surface 
plots presented in Figures 19 to 28. 
 
 
 
 
 
 
 

 

FIGURE 15: Auto-generated rule-base. 

The resulting relationship among the ANFIS input variables can be visualized using the surface 
plots presented in Figures 16 to 25. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 16: Effect of PC1-RELY on PC2-DATA.          FIGURE 17: Effect of PC1-RELY on PC3-CPLX. 

 
In Figure 16, Effort is fixed and non-increasing if there is no database to implement and if the 
reliability requirement of the system is minimal. The plot shows that a high software reliability 
requirement and database size increases the number of persons required to develop the 
software. In Figure 17, the Effort is high as the process complexity of the program to be 
developed increases. It can also be depicted that the reliability requirement has more effect on 
the Effort because the process complexity gets low as the reliability requirement (RELY) 
decreases.  
  

1. If (RELY is in1cluster1) and (DATA is in2cluster1) and (CPLX is in3cluster1) and (RUSE is in4cluster1) and 

(DOCU is in5cluster1) and (TIME is in6cluster1) then (EFFORT is out1cluster1) (1) 

2. If (RELY is in1cluster2) and (DATA is in2cluster2) and (CPLX is in3cluster2) and (RUSE is in4cluster2) and 

(DOCU is in5cluster2) and (TIME is in6cluster2) then (EFFORT is out1cluster2) (1) 

3. If (RELY is in1cluster3) and (DATA is in2cluster3) and (CPLX is in3cluster3) and (RUSE is in4cluster3) and 

(DOCU is in5cluster3) and (TIME is in6cluster3) then (EFFORT is out1cluster3) (1) 

4. If (RELY is in1cluster4) and (DATA is in2cluster4) and (CPLX is in3cluster4) and (RUSE is in4cluster4) and 

(DOCU is in5cluster4) and (TIME is in6cluster4) then (EFFORT is out1cluster4) (1) 

5. If (RELY is in1cluster5) and (DATA is in2cluster5) and (CPLX is in3cluster5) and (RUSE is in4cluster5) and 

(DOCU is in5cluster5) and (TIME is in6cluster5) then (EFFORT is out1cluster5) (1) 
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FIGURE 18: Effect of PC1-RELY on PC4-RUSE.        FIGURE 19: Effect of PC1-RELY on PC4-DOCU. 

 
In Figure 18, when the required reusability feature of software is high and the required reliability is 
low, it affects the number of effort required to develop the software. Also, an increasing reusability 
constraint can also increase the reliability requirement and number of Effort required to develop 
such software. In Figure 19, the Documentation match to life-cycle (DOCU) can increase to a 
high extent the number of Effort because the more the documentation the more functions and 
processes complexity of the system. However, even though detailed documentations contribute 
to a good software but when the required reliability constraint is low, the number of Effort 
reduces. It can also be seen from the plot that the effort remains fixed as the required reliability 
constraint is below or equal to 0 (not constrained).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 20: Effect of PC2-DATA on PC3-CPLX.        FIGURE 21: Effect of PC2- DATA on PC4-RUSE. 

 
In Figure 20, it can be seen that the Effort required to develop software increases when the 
process complexity of the software and database size (DATA) are the required constraints but as 
the process complexity constraint reduces and database size reduces, the Effort required is fixed 
to 120 and not zero. The 120-person-month minimal Effort in the plot accounts for the time and 
man power required to create the table and schema of the database regardless of the complexity 
of the system. 
 
In Figure 21, as the required reusability reduces and the database size increases, the number of 
person-month (Effort) required to develop a software increases from 100 person-months to 395 
person-month but when the database size becomes significant for large projects for example, and 
the reusability constraint is 0.2 – 0.4, effort increases to 600 person-month.  
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FIGURE 22: Effect of PC2- DATA on PC5-DOCU.         FIGURE 23: Effect of PC2- DATA on PC6-TIME. 

 
In Figure 22, the number of persons per month required to develop software is 600-persons-
month when Documentation match to life-cycle (DOCU) is detailed and the database size is large 
at 0.4. Even when the database size is large and the Documentation match to life-cycle (DOCU) 
small (less than zero), the number of person-month required to develop the software is minimal. 
In Figure 23, it can be seen that the person-month required developing software increases as the 
execution time (TIME) and database size (DATA) of the software are required constraints. 
However, as the execution time constraint reduces and database size reduces, the effort 
decreases to a non-zero minimum (120 person-month) and not zero. The 120 person-month 
minimal Effort in the surface accounts for the man-hours required to create the table and schema 
of the database. 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 

FIGURE 24: Effect of PC3- CPLX on PC4-RUSE.       FIGURE 25: Effect of PC3- CPLX on PC5-DOCU. 
 
Figure 24 shows that the person-hours required to develop software increase as the process 
complexity increases. The effect of the required reusability constraint compared to the process 
complexity is infinitesimal. Also, when the complexity constraint reaches the peak value of 0.4 
and the reusability requirement constraint is negative, the Effort remains at a minimum value of 
30-person-hours. Figure 25 shows the effect of process complexity (CPLX) and Documentation 
match to life-cycle (DOCU) on the Effort. The surface shows that more detailed documentation 

increases the Effort and complexity.  
 
6. PERFORMANCE EVALUATION 
The model was trained with 70% of the entire dataset and tested with 30% of the dataset. The 
model training was carried out on different epoch for Kaur et al., (2018), ANFIS back propagation 
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(BP) and hybrid models (HB) for purposes of comparison. The effect of the model testing is 
shown in Table 5. 
 

TABLE 5: Comparison of Predictions and COCOMO. 
 

SNO COCOMO 
Model 

Kaur Model HB ANFIS 
Model 

Rel. DIFF BP ANFIS Model 

1 2 1.63 2.02 0.07% -1929.282 

2 2 1.63 2.02 0.07% -1929.282 

3 2 1.63 2.02 0.07% -1929.282 

4 8 3.20 0.33 7.45% 99.827 

5 8 1.04 6.02 0.67% 98.329 

... ... ... ... ... ... 

19 48 147.34 61.54 3.57% 58.849 

20 50 161.38 42.71 1.03% 111.816 

21 60 2063.10 59.22 0.01% 118.441 

22 60 2217.61 48.31 2.15% 130.590 

23 60 700.23 90.62 13.46% -142.057 

24 60 320.10 85.82 9.8% 162.348 

25 60 270.02 66.44 0.67% 327.549 

... ... ... ... ... ... 

30 72 2461.35 19.67 29.61% -54.742 

31 82 453.63 81.31 0.01% 427.410 

32 90 374.97 119.13 8.18% 160.002 

33 97 45243.13 191.20 59.26% 378.720 

... ... ... ... ... ... 

91 4178 45243.13 4179.06 0% 4834.174 

92 4560 271398.02 4558.77 0% 5099.861 

93 8211 64507.11 8210.53 0% 6608.818 

 
The Rel. DIFF column in Table 5is the Relative Difference between the COCOMO Effort and 
ANFIS effort. It shows HB ANFIS prediction with less than a 1% difference from the COCOMO 
effort, relative to other predictions; it indicates software projects with overestimated productivity of 
team size (as in SNO. 5, 21, 25, 31, 91, 92 and 93) and underestimated productivity of team size 
(as in SNO. 1, 2, and 3). 
 
Rel. DIFF is calculated using this statistical model: 
 

100(|>?>@AB|
|>@AB| )(1 − eE|FEFGHI|

J )%       (4)  

    
Based on experiments conducted in sections 4 and 5, it can be seen that ANFIS model (with the 
productivity factor) using Hybrid Training Model with six (6) inputs reduced by PCA gave better 
estimate than the Kaur et al., (2018) Model, and the Back Propagation Model with six (6) inputs 
reduced by PCA. To further investigate this, two performance metrics (MMRE and MSE) were 
used to compare the results of Kaur et al., (2018) model and the ANFIS models. Table 6 shows 
the performance evaluation result. 
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TABLE 6: Performance Evaluation Result. 
 

Measure Kaur 2018 Model BP ANFIS Model HB ANFIS Model 

MMRE 100.4684 388.2579 31.4829 
MSE 1.8300 0.000082 0.00000187 

 
From the result, it is deduced that the hybrid training model of ANFIS is more efficient and stable 
in terms of reduced error during training. The MRE Performance Measure of Kaur et al., (2018) 
Model, Hybrid and Back Propagation were plotted. The plots are depicted in Figures 26 to 28. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 26: MRE Plot for Kaur 2018.  FIGURE 27: MRE Plot for ANFIS BP. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

FIGURE 28: MRE Plot ANFIS HB. 

 
The plots showed that the Hybrid training guaranteed convergence more than the other plots. 
Figure 26 showed that there was a premature convergence from Epoch 10 to Epoch 40, 
afterward a sudden divergence in Epoch 60 and Epoch 90. This divergence is responsible for 
some outrageous predictions in Kaur model column in Table 5 compared to the actual. In Figure 
27, the high shoots between Epoch 10, 20, 60 and 90 were responsible for negative predictions in 
BP ANFIS Model column. This is where the least square method complements the back 
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propagation algorithm to prevent large learning rate that may have occurred at early epochs. In 
Figure 28, the least square method complements the large learning rate that occurred between 
epoch 10 and 20. At Epoch 20, the large learning rate was reduced by least-square hence 
ensuring convergence at Epoch 70. 

 
7. CONCLUSION 
This work focuses on SDEE by comparing the work of Kaur at al., (2018) - which handled 
precision using ANFIS without emphasis on dimension reduction of inputs needed for the 
estimation, with ANFIS algorithms (back propagation and hybrid) by reducing the number of 
inputs from 23 to 6 using PCA and also introducing team productivity factor to the existing 
COCOMO using Hanchate and Bichkar (2015) productivity ratio.  
 
The result shows that ANFIS Model (with productivity factor) using the hybrid training algorithm 
with 6 inputs performed better than the Kaur et al., (2018) Model and other training algorithm of 
ANFIS. Also, minor variations in the ANFIS output using the productivity ratio showed how the 
productivity of team members was underestimated or overestimated. 
 
The ANFIS result using Hybrid learning best predicted the actual Effort in the COCOMO NASA 
dataset when compared to that of back propagation and Kaur et al., (2018) Model. However, in 
the course of the work, we found out that productivity of the development team accounts for why 
there are deviations from the actual effort in the original COCOMO. The productivity of the team 
members working on a software project can add up or reduce the actual person-hours (Effort) 
required developing software. For instance, the large number of programmers without requisite 
knowledge of the project tools and architectural framework will increase the number of hours to 
deliver a software job, thereby leading to overestimation. Therefore, the productivity of team 
members is a major factor responsible for both fire and drop in person hours. 
 
The implication is that the effect of fuzzy attributes in estimating the development effort of 
software professionals and managers can lead to inaccurate effort estimates which in effect can 
lead to loss-inducing bids, project management problems and poor satisfaction by clients. 
Estimates that show quality attributes with productivity of software development team members in 
view can help in estimating near to exact Effort needed to develop a software. The study has 
achieved the following: software team productivity factor is incorporated into the conventional 
COCOMO model; the number of inputs has been reduced from 23 to 6 using PCA; better 
performance in terms of accuracy, precision etc. is obtained than what is seen in Kaur 
(2018).This will assist software managers and developers in optimizing the performance of their 
staff and the cost of developing software. 
 

Software productivity involves a wide range of measures. The most critical question is what 
measure(s) to use. As a way of further research, an attempt should be made to compare the 
results of several productivity measures as well as explore other areas of productivity other than 
team size, which is quite easy to count. 
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