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Abstract 

 
Object detection and recognition are important problems in computer vision. Since these 
problems are meta-heuristic, despite a lot of research, practically usable, intelligent, real-time, 
and dynamic object detection/recognition methods are still unavailable. The accuracy level of any 
algorithm or even Google glass project is below 16% for over 22,000 object categories. With this 
accuracy, it’s practically unusable. This paper reviews the various aspects of object detection and 
the challenges involved. The aspects addressed are feature types, learning model, object 
templates, matching schemes, and boosting methods. Most current research works are 
highlighted and discussed. Decision making tips are included with extensive discussion of the 
merits and demerits of each scheme. The survey presented in this paper can be useful as a quick 
overview and a beginner’s guide for the object detection field. Based on the study presented 
here, researchers can choose a framework suitable for their own specific object detection 
problems and further optimize the chosen framework for better accuracy in object detection. 
 
Keywords: Boosting, Object Detection, Machine learning, Survey. 

 
 
1 .  INTRODUCTION 

Object detection is a technologically challenging and practically useful problem in the field of 
computer vision. Object detection deals with identifying the presence of various individual objects 
in an image. Great success has been achieved in controlled environment for object 
detection/recognition problem but the problem remains unsolved in uncontrolled places, in 
particular, when objects are placed in arbitrary poses in cluttered and occluded environment. As 
an example, it might be easy to train a domestic help robot to recognize the presence of coffee 
machine with nothing else in the image. On the other hand imagine the difficulty of such robot in 
detecting the machine on a kitchen slab that is cluttered by other utensils, gadgets, tools, etc. The 
searching or recognition process in such scenario is very difficult. So far, no effective solution has 
been found for this problem.  
 
A lot of research is being done in the area of object recognition and detection during the last two 
decades. The research on object detection is multi-disciplinary and often involves the fields of 
image processing, machine learning, linear algebra, topology, statistics/probability, optimization, 
etc. The research innovations in this field have become so diverse that getting a primary first 
hand summary of most state-of-the-art approaches is quite difficult and time consuming,  
 
This paper is an effort to briefly summarize the various aspects of object detection and the main 
steps involved for most object detection algorithm or system. Section 2 provides brief introduction 
about the generic object detection framework and the importance of this study. Section 3 
discusses various types of features used as key points for learning and subsequent object 
detection. Section 4 elaborates on generative and discriminative learning and comparison among 
them. Section 5 briefly discuss about the various types of representation used for storing the 
features after the machine learning stage. Various types of matching schemes used by various 
algorithms for object detection have been discussed in Section 6. Section 7 elaborates about 
boosting steps of object detection framework. The paper is concluded in Section 8. 
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2 . PURPOSE AND SCOPE OF THE STUDY 

 
FIGURE 1: Basic block diagram of a typical object detection/recognition system.  

 
In order to facilitate the discussion about the methods and ideas of various research works, we 
first present a general block diagram applicable to any object detection/recognition method in 
FIGURE 1 Specific methods proposed by various researchers may vary slightly from this generic 
block diagram. 
 
Any such algorithm can be divided into two different phases, viz. learning phase and testing 
phase. In the learning phases, the machine uses a set of images which contains objects 
belonging to specific pre-determined class(es) in order to learn to identify the objects belonging to 
those classes. Once the algorithm has been trained for identifying the objects belonging to the 
specified classes, in the testing phase, the algorithm uses its knowledge to identify the specified 
class objects from the test image(s).   
 
The algorithm for learning phase can be further subdivided into two parts, viz. learning through 
training and learning through validation. A set of images containing objects of the specified 
classes, called the training dataset, is used to learn the basic object templates for the specified 
classes. Depending upon the type of features (edge based features or patch based features), the 
training images are pre-processed and passed into the learning block. The learning block then 
learns the features that characterize each class. The learnt object features are then stored as 
object templates. This phase is referred to as 'learning through training'. The object templates 
learnt in this stage are termed as weak classifiers. The learnt object templates are tested against 
the validation dataset in order to evaluate the existing object templates. By using boosting 
techniques, the learnt object templates are refined in order to achieve greater accuracy while 
testing. This phase is referred to as 'learning through validation' and the classifiers obtained after 
this stage are called strong classifiers. 
 
The researchers have worked upon many specific aspects of the above mentioned system. Some 
examples include the choice of feature type (edge based or patch based features), the method of 
generating the features, the method of learning the consistent features of an object class, the 
specificity of the learning scheme (does it concentrate on inter-class variability or intra-class 
variability), the representation of the templates, the schemes to find a match between a 
test/validation image and an object template (even though the size and orientation of an object in 
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the test image may be different from the learnt template), and so on. The following discussion 
considers one aspect at a time and provides details upon the work done in that aspect. 
  
3 . FEATURE TYPES 

Most object detection and recognition methods can be classified into two categories based on the 
feature type they use in their methods. The two categories are edge-based feature type and 
patch based feature type. It is notable that some researchers have used a combination of both 
the edge-based and patch-based features for object detection [1-5]. In our opinion, using a 
combination of these two features shall become more and more prevalent in future because such 
scheme would yield a system that derives the advantages of both the feature types. A good 
scheme along with the advances in computational systems should make it feasible to use both 
feature types in efficient and semi-real time manner. 
 
3.1 Edge-based features 
The methods that use edge-based feature type extract the edge map of the image and identify 
the features of the object in terms of edges. Some examples include [1, 2, 6-22]. Using edges as 
features is advantageous over other features due to various reasons. As discussed in [6], they 
are largely invariant to illumination conditions and variations in objects' colors and textures. They 
also represent the object boundaries well and represent the data efficiently in the large spatial 
extent of the images. 
 
In this category, there are two main variations: use of the complete contour (shape) of the object 
as the feature [7-12, 14, 17] and use of collection of contour fragments as the feature of the 
object [1, 2, 6, 13-20, 23, 24]. FIGURE 2 shows an example of complete contour and collection of 
contours for an image. 
 

 
               (a) Example image                 (b) Contour (shape) as feature         (c) Contour fragments as 

feature 
FIGURE 2: Edge-based feature types for an example image 

 
The main motivation of using the complete contours as features is the robustness of such 
features to the presence of clutter [6, 11, 17, 25]. One of the major concerns regarding such 
feature type is the method of obtaining the complete contours (especially for training images). In 
real images, typically incomplete contours are inevitable due to occlusion and noise. Various 
researchers have tried to solve this problem to some extent [7, 11, 12, 14, 17, 20]. Hamsici [7] 
identified a set of landmark points from the edges and connected them to obtain a complete 
shape contour. Schindler [11] used segmenting approaches [26, 27] to obtain closed contours 
from the very beginning (he called the areas enclosed by such closed contours as super pixels). 
Ferrari [17, 20] used a sophisticated edge detection method that provides better edges than 
contemporary methods for object detection. These edges were then connected across the small 
gaps between them to form a network of closed contours. Ren [14] used a triangulation to 
complete the contours of the objects in natural images, which are significantly difficult due to the 
presence of background clutter. Hidden state shape model was used by Wang [28] in order to 
detect the contours of articulate and flexible/polymorphic objects. It is noticeable that all of these 
methods require additional computation intensive processing and are typically sensitive to the 
choice of various empirical contour parameters. The other problem involving such feature is that 
in the test and validation images, the available contours are also incomplete and therefore the 
degree of match with the complete contour is typically low [11]. Though some measures, like 
kernel based [7, 29] and histogram based methods [8, 9], can be taken to alleviate this problem, 
the detection of the severely occluded objects is still very difficult and unguaranteed [30]. Further, 
such features are less capable of incorporating the pose or viewpoint changes, large intra-class 
variability, articulate objects (like horses) and flexible/polymorphic objects (like cars) [11, 17, 20]. 
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This can be explained as follows. Since this feature type deals with complete contours, even 
though the actual impact of these situations is only on some portions of the contour, the complete 
contour has to be trained. 
 
On the other hand, the contour fragment features are substantially robust to occlusion if the learnt 
features are good in characterizing the object [1, 6, 8, 16, 17, 20, 31]. They are less demanding in 
computation as well as memory as the contour completion methods need not be applied and 
relatively less data needs to be stored for the features. The matching is also expected to be less 
sensitive to occlusion [6, 32]. Further, special cases like viewpoint changes, large intra-class 
variability, articulate objects and flexible/polymorphic objects can be handled efficiently by training 
the fragments (instead of the complete contour) [2, 6, 8, 17, 20, 32].  
 
However, the performance of the methods based on contour fragment features significantly 
depends upon the learning techniques. While using these features, it is important to derive good 
feature templates that represent the object categories well (in terms of both inter-class and intra-
class variations) [1, 33]. Learning methods like boosting [31, 33-54] become very important for 
such feature types. 
 
The selection of the contour fragments for characterizing the objects is an important factor and 
can affect the performance of the object detection/recognition method. While all the contour 
fragments in an image cannot be chosen for this purpose, it has to be ensured that the most 
representative edge fragments are indeed present and sufficient local variation is considered for 
each representative fragment. In order to look for such fragments, Opelt [1] used large number of 
random seeds that are used to find the candidate fragments and finally derives only two most 
representative fragments as features. Shotton [6] on the other hand generated up to 100 
randomly sized rectangular units in the bounding box of the object to look for the candidate 
fragments. It is worth noting that the method proposed in [1] becomes computationally very 
expensive if more than two edge fragments are used as features for an object category. While the 
method proposed by Shotton [6] is computationally efficient and expected to be more reliable as it 
used numerous small fragments (as compared to two most representative fragments), it is still 
limited by the randomness of choosing the rectangular units. Other computationally efficient way 
of approximating the contour fragments is by using dominant points or key points of the contours 
[55-59], guideline to choose suitable dominant point detection method has been given in [57, 60]. 
 
On the other hand, Chia [15] used some geometrical shape support (ellipses and quadrangles) in 
addition to the fragment features for obtaining more reliable features. Use of geometrical 
structure, relationship between arcs and lines, and study of structural properties like symmetry, 
similarity and continuity for object retrieval were proposed in [61]. Though the use of geometrical 
shape (or structure) [62-65] for estimating the structure of the object is a good idea, there are two 
major problems with the methods in [15, 61]. First problem is that some object categories may not 
have strong geometrical (elliptic [66, 67] and quadrangle) structure (example horses) and the use 
of weak geometrical structure may not lead to robust descriptors of such objects. Though [15] 
demonstrates the applicability for animals, the geometrical structure derived for animals is very 
generic and applicable to many classes. Thus, the inter-class variance is poor. The classes 
considered in [15], viz., cars, bikes and four-legged animals (four-legged animals is considered a 
single class) are very different from each other. Similarly, [61] concentrates on logos and the 
images considered in [61] have white background, with no natural background clutter and noise. 
Its performance may degrade significantly in the presence of noise and natural clutter. The 
second problem is that sometimes occlusion or flexibility of the object may result in complete 
absence of the components of geometrical structure. For example, if the structural features learnt 
in [61] are occluded, the probability of detecting the object is very low. Similarly, if the line 
features learnt in [15], used for forming the quadrangle are absent, the detection capability may 
reduce significantly.  
 
Though we strongly endorse the idea of using geometric shapes for object detection [68], we 
suggest that such information should not be used as the only features for object detection. In 
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addition, they can be used to derive good fragment features and reduce the randomness of 
selection of the fragments.  
 
3.2 Patch-based features 
The other prevalent feature type is the patch based feature type, which uses appearance as 
cues. This feature has been in use since more than two decades [69], and edge-based features 
are relatively new in comparison to it. Moravec [69] looked for local maxima of minimum intensity 
gradients, which he called corners and selected a patch around these corners. His work was 
improved by Harris [70], which made the new detector less sensitive to noise, edges, and 
anisotropic nature of the corners proposed in [69]. 
 
In this feature type, there are two main variations: 
 
1) Patches of rectangular shapes that contain the characteristic boundaries describing the 
features of the objects [1, 71-76]. Usually, these features are referred to as the local features. 
 
2) Irregular patches in which, each patch is homogeneous in terms of intensity or texture and the 
change in these features are characterized by the boundary of the patches. These features are 
commonly called the region-based features.  

 

 
               (a) Example image                 (b) Regular patches         (c) Regular patches of various sizes 

                   
(d) Oriented regular patches                                 (e) Irregular region patches  

    
FIGURE 3: Patch-based feature types for an example image. Feature types shown in (b)-(d) are called local 

features, while the feature type shown in (e) is called region-based features. 
 
FIGURE 3 shows these features for an example image. Subfigures (b)-(d) show local features 
while subfigure (e) shows region based features (intensity is used here for extracting the region 
features). As shown in FIGURE 3(b)-(d), the local features may be of various kinds. The simplest 
form of such features use various rectangular or square local regions of the same size in order to 
derive the object templates [77]. Such features cannot deal with multi-scaling (appearance of the 
object in various sizes) effectively. A fixed patch size may not be suitable because of the following 
reason. If the patch size is small, it may not cover a large but important local feature. Information 
of such feature may be lost in the smaller patch. On the other hand, if the patch size is large, it 
may cover more than one independent feature, which may or may not be present simultaneously 
in other images. Further, there is no way to determine the size that is optimal for all the images 
and various classes. Another shortcoming is that many small rectangular patches need to be 
learnt as features and stored in order to represent the object well. This is both computationally 
expensive and memory intensive. 
 
A better scheme is to use features that may be small or big in order to appropriately cover the 
size of the local feature such that the features are more robust across various images, learning is 
better and faster, and less storage is required [78].  
 
A pioneering work was done by Lowe [74], which enabled the use of appropriately oriented 
variable sized features for describing the object. He proposed a scale invariant feature 
transformation (SIFT) method. Lowe describes his method of feature extraction in three stages. 
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He first identified potential corners (key points) using difference of Gaussian function, such that 
these feature points were invariant to scale and rotation. Next, he identified and selected the 
corners that are most stable and determined their scale (size of rectangular feature). Finally, he 
computed the local image gradients at the feature points and used them to assign orientations to 
the patches. The use of oriented features also enhanced the features’ robustness to small 
rotations. With the use of orientation and scale, the features were transformed (rotated along the 
suitable orientation and scaled to a fixed size) in order to achieve scale and rotational invariance. 
In order to incorporate the robustness to illumination and pose/perspective changes, the features 
were additionally described using the Gaussian weighing function along various orientations. 
 
One of the major concerns in all the above schemes is the identification of good corner points (or 
key-points) that are indeed representative of the data. This issue has been studied by many 
researchers [4, 56, 57, 60, 74, 79-81]. Lowe [74] studied the stability of the feature points. 
However, his proposal would apply to his schema of features only. Carneiro [80] and Comer [82] 
proposed stability measures that could be applied to wide range and varieties of algorithms.  
 
Another major concern is to describe these local features. Though the features can be directly 
described and stored by saving the pixel data of the local features, such method is naive and 
inefficient. Researchers have used many efficient methods for describing these local features. 
These include PCA vectors of the local feature (like PCA-SIFT) [21, 83], Fischer components [84, 
85], wavelets and Gabor filters [13], Eigen spaces [86], kernels [7, 21, 29, 87, 88], dominant 
points [56-59], etc. It is important to note that though these methods use different tools for 
describing the features, the main mathematical concept behind all of them is the same except for 
the dominant points. The concept is to choose sufficient (and yet not many) linearly independent 
vectors to represent the data in a compressed and efficient manner [13]. Another advantage of 
using such methods is that each linearly independent vector describes a certain property of the 
local feature (depending on the mathematical tool used). For example, a Gabor wavelet 
effectively describes an oriented stroke in the image region [13]. Yet another advantage of such 
features is that while matching the features in the test images, properties of linear algebra (like 
linear dependence, orthogonality, null spaces, rank, etc.) can be used to design efficient matching 
techniques [13].  
 
The region-based features are inspired by segmentation approaches and are mostly used in 
algorithms whose goal is to combine localization, segmentation, and/or categorization. While 
intensity is the most commonly used cue for generating region based features [51, 79, 89], 
texture [2, 89-92], color [91-93], and minimum energy/entropy [94, 95] have also been used for 
generating these features. It is notable that conceptually these are similar to the complete 
contours discussed in edge-based features. Such features are very sensitive to lighting conditions 
and are generally difficult from the perspective of scale and rotation invariance. However, when 
edge and region based features are combined efficiently, in order to represent the outer boundary 
and inner common features of the objects respectively, they can serve as powerful tools [2]. 
Some good reviews of feature types can also be found in [71, 96, 97].  
 
In our opinion, SIFT features provide a very strong scheme for generating robust object templates 
[74, 98]. It is worth mentioning that though SIFT and its variants were proposed for patch-based 
features, they can be adapted to edge-fragments based features too. Such adaptation can use 
the orientation of edges to make the matching more efficient and less sensitive to rotational 
changes. Further, such scheme can be used to incorporate articulate and flexible/polymorphic 
objects in a robust manner.  
 
It has been argued correctly by many researchers that a robust object detection and 
characterization scheme shall typically require more than one feature types to obtain good 
performance over large number of classes [1, 2, 5, 17, 18, 20, 50, 99-104]. Thus, we shall use 
region features along with contour fragments. As compared to [1], which has used only one kind 
of object template for making the final decision, we shall use a combined object template that 
stores edge, shape, and region features and assigns a strength value to each feature so that 
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combined probabilistic decision can be made while testing. Such scheme shall ensure that 
potential objects are identified more often, though the trust (likelihood) may vary and the decision 
can be made by choosing appropriate threshold. This shall be especially useful in severely 
occluded or noisy images. 
 
4 . GENERATIVE MODEL VS. DISCRIMINATIVE MODEL OF LEARNING 
The relationship (mapping) between the images and the object classes is typically non-linear and 
non-analytic (no definite mathematical model applicable for all the images and all the object 
classes is available). Thus, typically this relationship is modeled using probabilistic models [105]. 
The images are considered as the observable variables, the object classes are considered as the 
state variables, and the features are considered as intermediate (sometimes hidden) variables. 
Such modeling has various advantages. First, it provides a generic framework which is useful for 
both the problems of object detection and recognition (and many other problems in machine 
vision and outside it). Second, such framework can be useful in evaluating the nature and extent 
of information available while training, which subsequently helps us to design suitable training 
strategies. 
 
The probabilistic models for our problems can be generally classified into two categories, viz. 
discriminative models and generative models [106-110]. It shall be helpful to develop a basic 
mathematical framework for understanding and comparing the two models. Let the observable 
variables (images) be denoted by 

i
x , 1 to i N= , where N  is the number of training images. Let 

the corresponding state variables (class labels) be denoted as 
i

c  and the intermediate variables 

(features/ feature descriptors) be denoted as 
i
θ . Accordingly, a simplistic graphical 

representation [107] of the discriminative and generative models is presented in FIGURE 4.  
 
 

 
(a) Discriminative model                                                  (b) Generative model 

 
FIGURE 4: Graphical illustration of the discriminative and generative models. The probabilities in boxes are 

the model defining probabilities for the respective models. 
 
As seen in the FIGURE 4, the discriminative model uses a map from the images to the class 
labels, and thus the flow of information is from the observables (images) to the state variables 
(class labels) [107]. Considering the joint probability ( , , )P c θ x , discriminative models expand 

( , , )P c θ x  as ( )( )( , , ) , ( ) ( )P c P c P P=θ x θ x θ x x . Thus, ( )( ),P c θ x  is the model defining probability 

[106] and the training goal is: 
 

 ( )( )
if  contains object of class 

,
otherwise

c
P c

α

β


= 


x

θ x  (1) 

 
Ideally, 1α =  and 0β = . Indeed, practically this is almost impossible to achieve, and values 
between [0,1] are chosen for α  and β . 
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In contrast, the generative model uses a map from the class labels to the images, and thus the 
flow of information is from the state variables (class labels) to the observables (images) [107]. 
Generative models use the expansion of the joint probability ( )( )( , , ) , ( ) ( )P c P c P c P c=θ x x θ θ . 

 
Thus, ( )( ),P cx θ  and ( )P c  are the model defining probabilities [106] and the training goal is: 

 

 ( )( )
if  contains object of class 

, ( )
otherwise

c
P c P c

α

β


= 


x

x θ  (2) 

 
Ideally, 1α =  and 0β = . Indeed, practically this is almost impossible to achieve, and some 
realistic values are chosen for α  and β . It is important to note that in unsupervised methods, the 

prior probability of classes, ( )P c  is also unknown. 
 
Further mathematical details can be found in [106, 107]. The other popular model is the 
descriptive model, in which every node is observable and is interconnected to every other node. It 
is obvious that the applicability of this model to the considered problem is limited. Therefore, we 
do not discuss this model any further. It shall suffice to make a note that such models are 
sometimes used in the form of conditional random fields/forests [12, 51, 90]. 
 
With the above mentioned mathematical structure as a reference, we can now compare the 
discriminative and generative models from various aspects, in the following sub-sections. 
 
4.1 Comparison of their functions 
As the name indicates, the main function of the discriminative models is that for a given image, it 
should be able to discriminate the possibility of occurrence of one class from the rest. This is 
evident by considering the fact that the probability ( )( ),P c θ x  is the probability of discriminating 

the class labels c  for a given instance of image x . On the other hand, the main function of 
generative models is to be able to predict the possibility of generating the object features θ  in an 
image x  if the occurrence of the class c  is known. In other words, the probabilities 

( )( ), ( )P c P cx θ  together represent the probability of generating random instances of x  

conditioned to class c . In this context, it is evident that while discriminative models are expected 
to perform better for object detection purposes, generative models are expected to perform better 
for object recognition purposes [18]. This can alternatively be understood as the generative 
models are used to learn class models (and be useful even in large intra-class variation) [50, 75, 
111, 112] while discriminative models are useful for providing maximum inter-class variability 
[112]. 
 
4.2  Comparison of the conditional probabilities of the intermediate variables 

In the discriminative models, the intermediate conditional probability is ( )P θ x , while in the 

generative models, the intermediate conditional probability is ( )P cθ . Since we are interested in 

the joint probability ( , , )P c θ x , the probabilities ( )P θ x  and ( )P cθ  play an important role, though 

they do not appear in the training goals. In the discriminative models, ( )P θ x  represents the 

strength of the features θ  in representing the image well [17, 20], while in the generative models, 
( )P cθ  represent the strength of features in representing the class well. Though ideally we would 

like to maximize both, depending upon the type of feature and the problem, the maximum value 
of these probabilities is typically less than one. Further, it is difficult to quantitatively measure 
these probabilities in practice. In our opinion, while the shape features (closed contours) and 
region features (irregular patches) are more representative of the class (the object's 3-
dimensional or 2-dimensional model), the edge fragments and local features are more 
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representative of the images [1, 50]. Thus, while shape and region features are widely used for 
segmentation and recognition, local features and edge fragments have been used more often for 
object detection [17, 18, 20, 50, 101]. Considering this argument, though most methods that use 
multiple feature types choose these feature types randomly, we recommend to choose a 
combination of two feature types where one feature is robust for characterizing the image, while 
the other is good in characterizing the class. In this regard, combining edge fragments and region 
features is the combination that is easiest to handle practically. Due to this many new methods 
have used a combination of these features [2, 5, 102-104]. 
 
4.3 Training data size and supervision 
Mathematically, the training data size required for generative model is very large (at least more 
than the maximum dimension of the observation vector x ). On the other hand, discriminative 
models perform well even if the training dataset is very small (more than a few images for each 
class type). This is expected because the discriminative models invariably use supervised training 
dataset (the class label is specifically mentioned for each image). On the other hand, generative 
models are unsupervised (semi-supervised, at best) [113]. Not only the posterior probability 

( )( ),P cx θ  is unknown, the prior probability of the classes ( )P c  is also unknown for the 

generative models [106]. Another point in this regard is that since generative models do not 
require supervision and the training dataset can be appended incrementally [18, 106, 111] as 
vision system encounters more and more scenarios, generative models are an important tool for 
expanding the knowledge base, learning new classes, and keeping the overall system scalable in 
its capabilities. 
 
4.4 Comparison of accuracy and convergence 
The discriminative models usually converge fast and correctly (explained by supervised dataset). 
If the size of training dataset is asymptotically large, the convergence is guaranteed for the 
generative models as well. However, such convergence may be correct convergence or 
misconvergence. If the generative models converge correctly, then the accuracy of generative 
models is comparable to the accuracy of the discriminative models. But, if there has been a 
misconvergence, then the accuracy of the generative models is typically poorer than the 
discriminative models [114]. Since the dataset is typically finite, and in most cases small, it is 
important to compare the accuracy of these models when the dataset is finite. Mathematical 
analysis has shown that in such cases, the accuracy of the generative models is always lower 
than the discriminative methods [114]. It is notable that due to their basic nature, generative 
models provide good recall but poor precision, while discriminative models provide poorer recall 
but good precision. The restrictive nature of generative models has prompted more and more 
researchers to consider discriminative models [1, 17, 20, 93, 115-121]. On the other hand, 
considering the scalability, generalization properties, and non-supervised nature of generative 
models, other researchers are trying to improve the performance of generative models by using 
partial supervision or coupling the generative models and discriminative models in various forms 
[4, 18, 31, 75, 93, 111, 113, 122]. 
 
4.5 Learning methods 
Generative models use methods like Bayesian classifiers/networks [18, 31, 75, 111], likelihood 
maximization [111, 122], and expectation maximization [4, 93, 113, 122]. Discriminative models 
typically use methods like logistic regression, support vector machines [17, 20, 93, 115-119], and 
k-nearest neighbors [93, 120, 121]. The k-nearest neighbors scheme can also be used for multi-
class problems[109, 123-141] directly, as demonstrated in [120]. Boosting schemes are also 
examples of methods for learning discriminative models [1], though they are typically applied on 
already learnt weak features (they shall be discussed later in greater detail). In the schemes 
where generative and discriminative models are combined [93, 142], there are two main 
variations: generative models with discriminative learning [4, 102, 106], and discriminative models 
with generative learning [107]. In the former, typically maximum likelihood or Bayesian 
approaches are combined with boosting schemes or incremental learning schemes [4, 50, 102, 
106, 111], while in the latter, usual discriminative schemes are augmented by 'generate and test' 
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schemes in the feedback loop [107, 143]. Learning scheme can be offline or online based on the 
demand of the application [144]. Online learning is now feasible due to advancement of cloud 
technology [145]. 
 
5 . OBJECT TEMPLATES AND THEIR REPRESENTATION 
The learning method has to learn a mapping between the features and the classes. Typically, the 
features are extracted first, which is followed by either the formation of class models (in 
generative models) or the most discriminative features for each class (in discriminative models) or 
random fields of features in which a cluster represents an object class (descriptive models, 
histogram based schemes, Hough transform based methods, etc). Based on them, the object 
templates suitable for each class are learnt and stored for the future use (testing). This section 
will discuss various forms of object templates used by researchers in computer vision.  
While deciding on an object template, we need to consider factors like: 
 
Is the template most representative form of the class (in terms of the aimed specificity, flexibility 
of the object, intra-class variation, etc)? For example, does it give the required intra-class and 
inter-class variability features? Does it need to consider some common features among various 
classes or instances of hierarchical class structure? Does it need to consider various poses 
and/or perspectives? Does it need to prioritize certain features (or kind of features)? 
Is the model representation an efficient way of storing and using the template? Here, memory and 
computations are not the only important factors. We need to also consider if the representation 
enables good decision mechanisms. 
 
The above factors will be the central theme in discussing the specific merits and demerits of the 
various existing object templates. We begin with the object templates that use the spatial location 
of the features. Such templates specifically represent the relative position of the features (edge 
fragments, patches, regions) in the image space. For this, researchers typically represent each 
feature using a single representative point (called the centroid) and specify a small region in 
which the location of the centroid may vary in various objects belonging to the same class [1, 6]. 
Then all the centroids are collected together using a graph topology. For example some 
researchers have used a cyclic/chain topology [11]. This simplistic topology is good to represent 
only the external continuous boundary of the object. Due to this, it is also used for complete 
contour representation, where the contour is defined using particular pivot points which are joined 
to form the contour [11]. Such a topology may fail if the object is occluded at one of the centroid 
locations, as the link between the chain is not found in such case and the remaining centroids are 
also not detected as a consequence. Further, if some of the characteristic features are inside the 
object boundary, deciding the most appropriate connecting link between the centroids of the 
external and internal boundaries may be an issue and may impact the performance of the overall 
algorithm. Other topology in use is the constellation topology [111, 146, 147], in which a 
connected graph is used to link all the centroids. A similar representation is being called multi-
parts-tree model in [94], though the essentials are same. However, such topology requires extra 
computation in order to find an optimal (neither very deep nor very wide) representation. Again, if 
the centroids that are linked to more than one centroid are occluded, the performance degrades 
(though not as strongly as the chain topology). The most efficient method in this category is the 
star topology, in which a central (root) node is connected to all the centroids [1, 6, 8, 76]. The root 
node does not correspond to any feature or centroid and is just a virtual node (representing the 
virtual centroid of the complete object). Thus, this topology is able to deal with occlusion better 
than the other two topologies and does not need any extra computation for making the topology. 
Other methods in which the features are described using transformation methods (like the kernel 
based methods, PCA, wavelets, etc., discussed in section 3), the independent features can be 
used to form the object templates. The object templates could be binary vectors that specify if a 
particular feature is present in an object or not. Such object templates are called bag-of-words, 
bag of visual words, or bag of features [1, 95, 115, 116, 119, 148-150]. All the possible features 
are analogous to visual words, and specific combinations of words (in no particular order) 
together represent the object classes. Such bag of words can also be used for features like 
colors, textures, intensity, shapes [95], physical features (like eyes, lips, nose for faces, and 
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wheels, headlights, mirrors for cars) etc. [93, 149, 151]. As evident, such bag of words is a simple 
yet powerful technique for object recognition and detection but may perform poorly for object 
localization and segmentation. Fusing the generic object template and visual saliency for salient 
object detection has been explored by Chang et. al. [152].As opposed to them, spatial object 
templates are more powerful for image localization and segmentation. 
 
In either of the above cases, the object templates can also be in the form of codebooks [1, 6, 17, 
20, 75, 76, 150, 153]. A codebook contains a specific code of features for each object class. The 
code contains the various features that are present in the corresponding class, where the 
sequence of features may follow a specific order or not. An unordered codebook is in essence 
similar to the concept of bag of words, where the bag of words may have greater advantage in 
storing and recalling the features and the object templates. However, codebooks become more 
powerful if the features in the code are ordered. A code in the order of appearance of spatial 
templates can help in segmentation [6], while a code in the order of reliability or strength of a 
feature for a class shall make the object detection and recognition more robust.  
 
Other hierarchical (tree like) object templates may be used to combine the strengths of both the 
codebooks and bag of words, and to efficiently combine various feature types [4, 18, 75, 84, 89, 
92, 102, 113, 122, 147, 150, 154].  
 
Another important method of representing the object templates is based on random forests/fields 
[90, 143, 155]. In such methods, no explicit object template is defined. Instead, in the feature 
space (where each feature represents one dimension), clusters of images belonging to same 
object class are identified [74, 75, 155]. These clusters in the feature space are used as the 
probabilistic object templates [84]. For every test image, its location in feature space and distance 
from these clusters determine the decision. 
 
We prefer a hierarchical codebook, similar to the multi-parts-tree model [94, 113], which 
combines at least two feature types. We intend to place the strongest (most consistent and 
generic) features at the highest level and weaker features in subsequent nodes. Any single path 
in the hierarchy shall serve as a weak but sufficient object template and typically the hope is that 
more than one path are traversed if object of the class is present in an image. If all the paths are 
traversed, the image has a strong presence of the object class. The final inference will be based 
on the number and depth of the paths traversed. It is worth mentioning that while [94] used a 
minimization of the energy and Mahalanobis distance of the parts for generating the tree, we shall 
use the likelihood of each feature independently, and likelihood of each feature conditioned to the 
presence of higher level features in the tree. We might have considered another hierarchical 
structure where the strongest (but few) descriptors appear at the leaf nodes and the path towards 
the root incrementally confirms the presence of the object. But that would either require multiple 
bottom-up traversals (in order to reach the root) or a top-down traversal with very low initial 
confidence. On the other hand, the chosen top-down structure will ensure that we begin with a 
certain degree of confidence (due to the generic features with high likelihood at the highest level, 
details in section 6) in the presence of the object class and then tweak our confidence as we go 
further down the tree. If we cannot go further down the tree, we need not look for multiple other 
traversal paths beginning again from the top.  
 
6 . MATCHING SCHEMES AND DECISION MAKING 
Once the object templates have been formed, the method should be capable of making decisions 
(like detecting or recognizing objects in images) for input images (validation and/or test images). 
We first discuss about the methods of finding a match between the object template and the input 
image and then discuss about the methods of making the final decision. 
 
Discussion regarding matching schemes is important because of various reasons. While the 
training dataset can be chosen to meet certain requirements, it cannot be expected that the test 
images also adhere to those requirements. For example, we may choose that all the training 
images are of a particular size, illumination condition, contain only single object of interest viewed 
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from a fixed perspective, in uncluttered (white background), etc., such restrictions cannot be 
imposed on the real test images, which may be of varying size, may contain many objects of 
interest and may be severely cluttered and occluded and may be taken from various viewpoints. 
The problem of clutter and occlusion is largely a matter of feature selection and learning methods. 
Still, they may lead to wrong inferences if improper matching techniques are used. However, 
making the matching scheme scale invariant, rotation and pose invariant (at least to some 
degree), illumination independent, and capable of inferring multiple instances of multiple classes 
is important and has gained attention of many researchers [6, 68, 80, 82, 147, 156-185]. 
 
If the features in the object templates are pixel based (for example patches or edges), the 
Euclidean distance based measures like Hausdorff distance [174, 184, 186, 187] and Chamfer 
distance [1, 6, 17, 25, 94, 161, 170] provide quick and efficient matching tools. However, the 
original forms of both these distances were scale, rotation, and illumination dependent. Chamfer 
distance has become more popular in this field because of a lot of incremental improvement in 
Chamfer distance as a matching technique. These improvements include making it scale 
invariant, illumination independent, rotation invariant, and more robust to pose variations and 
occlusions [1, 6, 17, 25, 94, 161, 170]. Further, Chamfer distance has also been adapted for 
hierarchical codebooks [161]. In region based features, concepts like structure entropy [95, 188], 
mutual information [95, 154], and shape correlation have been used for matching and inference 
[157, 158]. Worth attention is the work by Wang [95] that proposed a combination of local and 
global matching scheme for region features. Such scheme can perform matching and similarity 
evaluation in an efficient manner (also capable of dealing with deformation or pose changes) by 
incorporating the spatial mutual information with the local entropy in the matching scheme. Amiri 
et. al. have proposed an improved SIFT based matching of  potential interest points  identified by 
searching for local peaks in Difference-of-Gaussian (DoG) images[189]. 
 
Another method of matching/inferring is to use the probabilistic model in order to evaluate the 
likelihood ratio [2, 4, 75] or expectation in generative models [105, 113]. Otherwise, correlation 
between the object template and the input image can be computed or probabilistic Hough 
transform can be used [77, 92, 93, 118]. Each of these measures is linked directly or indirectly 
with the defining ratio of the generative model , ( )( ),P cx θ , which can be computed for an input 

image and a given class through the learnt hidden variables θ  [13]. For example, in the case of 

wavelet form of features, ( )( ),P cx θ  will depend upon the wavelet kernel response to the input 

image for a particular class [13]. Similarly, the posterior probability can be used for inference in 
the discriminative models. Or else, in the case of classifiers like SVM, k-nearest neighbors based 
method, binary classifiers, etc, the features are extracted for the input image and the posterior 
probability (based on the number of features voted into each class) can be used for inference [17, 
20, 84]. If two or more classes have the high posterior probability, multiple objects may be 
inferred [75, 94]. However, if it is known that only one object is present in an image, refined 
methods based on feature reliability can be used. 
 
If the object class is represented using the feature spaces, the distance of the image from the 
clusters in feature space is used for inference. Other methods include histograms corresponding 
to the features (the number of features that were detected) to decide the object category [74, 84, 
149, 155]. 
 
7 . BOOSTING METHODS - LEARNING WHILE VALIDATION 
The weak object templates learnt during training can be made more class specific by using 
boosting mechanisms in the validation phase [190-211]. Boosting mechanisms typically consider 
an ensemble of weak features (in the object templates) and gives a boost to the stronger features 
corresponding to the object class. Technically, boosting method can be explained as follows. 
Suppose validation images 

i
x , 1 to i N=  contain the corresponding class labels 1

i
c = ± , where 

the value 1 indicates that the object of the considered class is present and 1−  represents its 
absence. Let the weak classifier learnt while training be a combination of several individual 
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classifiers ( )
j

h ⋅ , 1 to j J= . Here, ( )
j

h ⋅  operates on the input image and gives an 

inference/decision regarding the presence/absence of class object. Evidently, ( )
j

h ⋅  is determined 

by the feature 
j

θ  in the codebook and the inference mechanisms. Further, let us say that we 

want to extract maximum T  strong classifiers. Then most boosting methods can be generally 
explained using the algorithm below: 
 
Step 1: Initialize the image weights 

,
1 ;

i t
w N i= ∀  

Step 2: For 1 to t T=  
Step 2.1: Find the strongest classifier, ( )

t
h ⋅ , using the current image weights. For this, first 

compute the error function for each classifier: ( ), ,j i t j i

i

w Iε =∑ , where 
,

1
j i

I =  if 

( )
i j i

c h= x , and 0 otherwise. Here, the index j  is used to denote the j th classifier 

and the index i  is used to denote the i th image. Find the classifier that resulted 
in minimum error (this is the strongest classifier for the weights 

,i t
w ): 

( )( )( ) arg min
t j

h ε⋅ = . 

Step 2.2: Update the classifier weight for the chosen classifier: ( )t t
fα ε= , where the 

function ( )f ⋅  depends upon the chosen boosting technique and 
t

ε  is the error 

corresponding to the current strongest classifier ( )
t

h ⋅ . 
Step 2.3: If a termination condition is satisfied, then go to step 3. The termination condition 

depends upon the application or the boosting method used. 
Step 2.4: Update the weights 

, 1 ,
( )

i t i t t i
w w g Iα+ = . Here, ( )g ⋅  is the function that changes the 

weight distribution given to the validation images and is generally called the loss 
function. The general characteristic of ( )g ⋅  is that it reduces the weight of the 
images that resulted in correct classification, so that in the next iteration, the 
method is less biased towards the current strong feature. Typically, 

, 1i t
w +  is 

normalized after computation such that the sum of all the weights is 1. 
Step 3: The output of the boosting algorithm is typically specified as the strong classifier 

strong
( ) ( )

t t

t

h hα⋅ = ⋅∑ . 

 
FIGURE 5: Generic algorithm for boosting 

 
It is notable that some features may be repeatedly selected in step 2 of  
FIGURE 5, which indicates that though the method is getting lesser and lesser biased towards 
that feature, that feature is strong enough to be selected again and again.  
 
There are many variations of boosting methods, which are typically differentiated based upon 
their loss function ( )g ⋅  and the classifier update function ( )f ⋅ . We discuss some prominent 
methods used often in computer vision. The original boost used a constant value for the classifier 
update function ( ) 1f ⋅ =  and an exponential loss function ( )( ) exp ( )

t i t i t i
g I c hα α= − x  [212, 213]. It 

was shown that such technique performed marginally better than the random techniques used for 
selecting the features from a codebook. However, the performance of boosting method was 
greatly enhanced by the introduction of adaptive boosting (Adaboost) [1, 212-215]. Here, the 
main difference is the classifier update function ( )( )( ) 0.5ln 1t t tf ε ε ε= − . Since the value of 

( ) 0f ⋅ =  implies no further optimization, the termination condition is set as 0.5
t

ε ≥ . This boosting 
method was adapted extensively in the object detection and recognition field. Though it is efficient 
in avoiding the problem of over-fitting, it is typically very sensitive to noise and clutter.  
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A variation on the Ada-boost, Logit-boost [212, 213, 216] used similar scheme but a logistic 
regression function based loss function, ( )( )( ) ln 1 exp ( )t i t i t ig I c hα α= + − x . As compared to the 

Ada-boost, it is more robust to the noisy and cluttered scenarios. This is because as compared to 
the Ada-boost, this loss function is flatter and provides a softer shift towards the noise images. 
Another variation on the Ada-boost is the GentleAda-boost [6, 8, 212, 213], which is similar to 
Ada-boost but uses a linear classifier update function ( )( ) 1

t t
f ε ε= − . The linear form of the 

classifier update function ensures that the overall update scheme is not severely prejudiced. 
 
In order to understand and compare the four boosting schemes, we present the plots between the 
error ε  and the loss function (which also incorporates the classifier update function through α ) 
for the four boosting schemes in FIGURE 6. FIGURE 6(a) shows the value of loss function when 
the chosen classifier gives the correct inference for an image. If the classifier is weak (high error) 
and yet generates a correct inference for an image, that image is boosted so that the classifier 
gets boosted. Similarly, FIGURE 6(b) shows the plot when the chosen classifier generates 
incorrect inference for an image. If the classifier is strong (low error ε ) and still generates an 
incorrect inference for an image, the classifier can be suppressed or weakened by boosting such 
image. 
 

                 
(a) Loss function when the inference is correct     (b) Loss function when the inference is incorrect 

 
FIGURE 6: Comparison of boosting techniques. (a) Loss function when the inference is correct (b) loss 

function when the inference is incorrect. 
 
It is evident that the desired property is not emulated well by the original boosting, which explains 
its slight (insignificant) improvement over the random selection of classifiers. On the other hand, 
Ada-boost is too strict in weakening or boosting the classifiers. Logit-boost and GentleAda-boost 
demonstrate a rather tempered performance, among whom, evidently Gentle-boost is the least 
non-linear and indeed the most gentle in weakening or boosting the classifiers. However, in our 
opinion, Logit-boost is the best among these methods precisely because of its combination of 
being gentle as well as non-linear. Due to the non-linearity, it is expected to converge faster than 
the GentleAda-boost and due to its gentle boosting characteristic, it is expected to be more robust 
than Ada-boost for noisy and cluttered images, where wrong inferences cannot be altogether 
eliminated. 
 
The convergence of boosting techniques (except the original one) discussed above can be 
enhanced by using a gradient based approach for updating the weights of the images. Such 
approach is sometimes referred to as the Gradient-boost [123, 213, 217, 218]. However, this 
concept can be used within the framework of most boosting approaches. Similar contribution 
comes from the LP-boost (linear programming boost) methods [36, 212], where concepts of linear 
programming are used for computing the weights of the images. In both the schemes, the 
iteration (step 2 of  
FIGURE 5) is cast as an optimization problem in terms of the loss function, such that the 
convergence direction and rate can be controlled. Such schemes also reduce the number of 
control parameters and make boosting less sensitive to them. 
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A recent work by Mallapragada [219], Semi-boost, is an interesting recent  addition to the body of 
boosting algorithms. While the existing boosting methods assume that every image in the 
validation dataset is labeled, [219] considers a validation dataset in which only a few images need 
to be labeled. In this sense, it provides a framework for incorporating semi-supervised boosting. 
In each iteration (step 2 of  
FIGURE 5), two major steps are done in addition to and before the mentioned steps. First, each 
unlabeled image is pseudo-labeled by computing the similarity of the unlabeled images with the 
labeled images, and a confidence value is assigned to each pseudo-label. Second, the pseudo-
labeled images with high confidence values are pooled with the labeled images as the validation 
set to be used in the remaining steps of the iteration. As the strong features are identified 
iteratively, the pseudo-labeling becomes more accurate and the confidence of the set of 
unlabeled data increases. It has been shown in [219] that Semi-boost can be easily incorporated 
in the existing framework of many algorithms. This method provides three important advantages 
over the existing methods. First, it can accommodate scalable validation sets (where images may 
be added at any stage with or without labeling). Second, since semi-boost learns to increase the 
confidence of labeling the unlabeled images, and not just fitting the features to the labeled data, it 
is more efficient in avoiding over-fitting and providing better test performances. Third, though not 
discussed in [219], in our opinion, the similarity and pseudo-labeling schemes should help in 
identifying the presence of new (unknown) classes, and thus provide class-scalability as well. 
Although another recent work by Joshi [117] tries to attack the same problem as [219] by using a 
small seed training set that is completely labeled in order to learn from other unsupervised 
training dataset, his approach is mainly based on support vector machine (SVM) based learning. 
It may have its specific advantages, like suitability for multi-class data. However, semi-boost is an 
important improvement within the boosting algorithms, which have wider applicability than SVM 
based learning methods. 
 
Another important method in the boosting techniques is the Joint-boost [1, 90], first proposed in 
[40, 220]. It can handle multi-class inferences directly (as opposed to other boosting techniques 
discussed above which use binary inference for one class at a time). The basis of joint boosting is 
that some features may be shared among more than one class [40, 220]. For this, the error metric 
is defined as ( ),j i t i

i

w Iκ κ

κ

ε =∑∑ , where 1 to Kκ =  represents various classes, and the inference 

i
I

κ  is the binary inference for class κ . Thus, instead of learning the class-specific strong 
features, we can learn strong shared features. Such features are more generic over the classes 
and very few features are sufficient for representing the classes generically. Typically, the number 
of sufficient features is the logarithmic value of the number of classes [40, 220]. However, better 
inter-class distances can be achieved by increasing the number of features. Even then the 
number of features required for optimal generality and specificity is much lesser than boosting for 
one class at a time. Such scheme is indeed very beneficial if a bag of words is used for 
representing the object templates. Joint boost has also been combined with principal component 
analysis based system in [121] to further improve the speed of training. 
 
8 . CONCLUSION 
This review paper addresses all the major aspects of an object detection framework. These 
include feature selection, learning model, object representation, matching features and object 
templates, and the boosting schemes. For each aspect, the technologies in use and the state-of-
the-art research works are discussed. The merits and demerits of the works are discussed and 
key indicators helpful in choosing a suitable technique are also presented. Thus, the paper 
presents a concise summary of the state-of-the-art techniques in object detection for upcoming 
researchers. This study provides a preliminary, concise, but complete background of the object 
detection problem. Thus, based on this study, for a given problem environment and data 
availability, a proper framework can be chosen easily and quickly. Background codes/theories 
can be used from the works cited here relevant to the chosen framework and the focus of 
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research can be dedicated to improving or optimizing the chosen framework for better accuracy in 
the given problem environment.  
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