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Abstract 

 
We present an analysis framework to assess the quality and accuracy of vessel 
segmentation algorithms for three dimensional images. We generate synthetic (in 
silico) vessel models which act as ground truth and are constructed to embody 
varying morphological features. These models are transformed into images 
constructed under different levels of contrast, noise, and intensity. To 
demonstrate the use of our framework, we implemented two segmentation 
algorithms and compare the results to the ground truth model using several 
measures to quantify the accuracy and quality of segmentation. Furthermore, we 
collect metrics which describe the characteristics of the vessels it fails to 
segment. Our approach is illustrated with several examples. Funded by NCI 
Contract No.HHSN261200800001E. 
 
Keywords: Vessel Segmentation, Network Comparison, Quantitative Analysis, Segmentation Quality, 
Segmentation Accuracy. 

 
 
1. INTRODUCTION 
Extracting vascular networks from three dimensional images remains a difficult and exciting 
challenge. Many segmentation algorithms have been designed to target different types of 
vasculature imaged using various modalities and are applied to a wide range of problems in 
disease diagnosis, flow dynamics, surgical planning, etc... (see e.g. [2][1][3]). Despite the 
sophistication of these methods, it is often difficult to choose a particular segmentation algorithm 
given a collection of similar images since a given method may make implicit assumptions about 
image or vessel characteristics. Furthermore, it is not clear how to predict or quantify the quality 
or accuracy of a given method onthose images due to a lack of ground truth data. 
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In this paper, we provide a methodology to quantify the accuracy and effectiveness of a vessel 
segmentation algorithm. We provide tools for constructing a model vessel tree which defines the 
vessel centerline locations and vessel radius and serves as ground truth. This model is 
transformed into an image with specified contrast, noise and intensity profile and serves as input 
to the segmentation algorithm under scrutiny. At a minimum we require the segmentation 
algorithm to produce a binary image depicting vessel location. Additional data including vessel 
radius, curvature, and local coordinate system may also be specified. This data is then 
transformed into a graph (network) representation and aligned with the model tree to determine 
the quality and accuracy of segmentation. We illustrate these operations in Figure 1. 
 
We emphasize that our approach quantifies segmentation quality and accuracy by comparing 
attribute graphs and not images. By using the model vessel tree as a starting point and simulating 
the imaging process we can assess the performance of a segmentation algorithm under a variety 
of image characteristics. Furthermore, we do not require a trained observer to extract the 
centerlines from a gold standard data set since the model vessel tree contains centerline location 
as an attribute. Morphological features (e.g. vessel radius, curvature, tortuosity, etc...) are 
maintained as attributes of the model vessel tree and we can assess the segmentation 
performance as a function of these features. 
 
We provide metrics describing the correctly segmented vessels, missed vessels, false positives 
and changes in network topology to assess segmentation quality. Beyond the quality 
assessment, we determine the accuracy of segmentation by computing the deviation of the 
centerline and radius between the ground truth model and the segmentation estimation. 
Additional assessment includes collecting features where that algorithm fails (e.g. did the 
algorithm fail to detect thin or highly curvedvessels?). Thus, we provide a framework to determine 
how well a particular segmentation algorithm performs as a function of the image quality defined 
by contrast, noise, and intensity profile. This paper is organized as follows. In Section 2, we 
describe the model tree creation, transformation of the model tree to an image, segmentation of 
the image, and comparison of the segmented result to the model. Next, in Section 3, we perform 
a quality and accuracy assessment for several models. Finally, in Section 4, we summarize the 
results for the different models and describe possible extensions and improvements to our 
approach. 
 

 
 

FIGURE 1:Flow Chart of Major Operations in Vessel Segmentation Assessment Framework 

 
2. MATERIALS AND METHODS  
In this section we describe the process of model vessel tree generation, model tree to image 
formation, segmentation of vessels from a noise corrupted image, and a method to compare the 
model to the segmentation result. 
 
2.1 Model Tree Generation 
We construct model vessel trees which serve as ground truth for subsequent analysis. 
Lindenmayer systems [17][18] (L-systems) provide a natural framework for defining such objects. 
This formalism grows a tree from a root location by following a set of rules which specify the 
direction of growth, branch radius, branch length, angle between branches and number of 
branches. In Figure 2 we illustrate this procedure with a simple example. We note that L-systems 
have been used in a variety of applications in computational botany, computer graphics, and 
medicine (see e.g. [10][24][20][21]). Although our model is formally a tree, there is no 
fundamental limitation for its extension to a more complicated topology. 
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A model tree contains a collection of nodes (vertices), connections between nodes (edges), and 
node attributes. We characterize these trees by node location (  coordinates), radius, node 
spacing and node type i.e. end, middle, or junction. Furthermore, we generate a local coordinate 
system at each node given by the tangent vector , normal vector , and binormal 
vector  where  is arc length. These vectors are used to compute the 
curvature andtorsion  at each node location. 
 

 
FIGURE 2:Simple Example of Model Vessel Tree. Nodes in Red, Green and Magenta Correspond to End, 

Middle and Junctions (Respectively). 
 
2.2 Image Generation From Model Tree 
We transform a model vessel tree to a volumetric image by simulating the image formation 
process. This mapping requires specification of spatial resolution, intensity range of the vessel, 
background intensity, noise level, and intensity profile of the vessel cross-section. 
 
To generate the image, we first convert the vessel model to a binary image by rounding each 
node location in the model to the nearest voxel index. Then to create vessel thickness, we label 
all voxels inside the sphere given by each nodes radius. Next, this label map is convolved with a 
Gaussian (characterized by its standard deviation ) which blurs the boundary of the vessel 
producing a smooth cross-section intensity profile. At this point we have an image of real values 
in  where the values close to one correspond to the interior of large vessels and values close 
to zero correspond to either the exterior of vessels or the centerline of thin vessels. We use a 
linear mapping to a specified vessel intensity maximum and minimum  and 
add a background intensity  to the image. Finally, we complete the process by corrupting 
the image with additive Gaussian noise (characterized by its standard deviation ). The image 
formation steps are illustrated in Figure 3. 
 
This image formation process characterizes images by four simple qualities (i) the relationship 
between voxel intensities and vessel radius, (ii) contrast between vessel centerline and 
background, (iii) amount of noise relative to contrast and (iv) the ratio of node spacing to image 
resolution. Thus, a wide range of images can be created simulating different image acquisition 
environments. 
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(a) 

 
(b)                                              (c)                                            (d) 

FIGURE 3: Image Formation Process. (a) Generated  Slices of Label Map Overlayed on Model Tree. 
For Visualization Purposes The Model Has Been Made Artificially Thinner. (b) A Slice From The Label Map. 

(c) Slice From (b) After Gaussian Smoothing  Intensity Rescaling  and 
Background Added . (d) Slice From (c) After Addition of Gaussian Noise . 

 
2.3 Vessel Segmentation 
There is a vast amount of literature and wide range of methods for vessel segmentation (see 
e.g.[13][19] for a review). We emphasize that the main point of this paper is not the development 
of vessel segmentation algorithms but the assessment of their performance. Toward this end, we 
implemented two vessel segmentation algorithms for demonstration purposes. In what follows, 
we denote  the image intensity at position . 
 
2.3.1 Vesselness 
The first segmentation method assumes a cylindrical model for vessels and uses the eigenvalues 
of the Hessian matrix to enhance vessel voxels (see e.g. [7][25]). We begin by considering the 
voxels above a specified threshold . For each specified scale, , we form the 
Hessian matrix 

                                        (2.1) 

where , * denotes the convolution operator, and  denotes the 
partial derivative with respect to . The eigenvalues of (2.1) are computed and ordered so that 

. For each scale, we compute 

                        (2.2) 
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where  and . Finally, we determine the 

vesselness, , and construct a label map, , by considering the 
voxels above a specified vesselness threshold, . 
 
2.3.2 Fast Marching 
The second segmentation method uses the Fast Marching method (see e.g. [27][12, §9.3.1]). 
This method propagates an outward moving front satisfying 

                                                                    (2.3) 
from an initial surface  given a speed . The solution, , to (2.3) represents the arrival time at 
location . We use a sigmoidal speed function, 

 
where  is the average intensity over a  neighborhood. To construct the label map, 

, we consider all voxels whose arrival time is less than a specified threshold, 
. 

 
2.3.3 Post Processing 
To aid subsequent analysis we apply the hole filling algorithm [12, §6.6.4] to the label map 
constructed from either segmentation algorithm ( ). We determine the vessel centerline 
using the skeletonization algorithm [9] and the vessel radius at each centerline location using the 
distance transform [31]. 
 
From the labeled centerline image we generate a data structure which contains the locations of 
the vessel centerline at each point and refer to this structure as the segmentation graph 
throughout the rest of this paper. We note that its topology may deviate from a tree due to 
segmentation errors. The segmentation graph is constructed by converting each centerline voxel 
to a node in the segmentation graph where the node location is given by the voxels physical 
coordinates. The remaining attributes of the graph are then populated. Since the model has been 
discretized during the image formation process, the node locations in the segmentation graph 
may not align with those from the model. In Figure 4 we provide an example, where the spacing 
between points in the model is 1 but, the spacing between points in the segmentation graph is 
either 1,  or . 

 
FIGURE4: Model Tree in Red and Segmentation Graph in Green 
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2.4 Graph Matching 
Given a model tree and a segmentation graph we determine the nodes in the segmentation graph 
that correspond to these in the model tree. This mapping allows us to compare results of 
segmentation to ground truth. Since the spacing between nodes in the model tree and vessel 
graph may differ, we use a many-to-one mapping between nodes in the segmentation graph to 
nodes in the model tree. 
 
This association problem is often referred to as inexact graph matching (see e.g. [4][6][30][32]) 
which is often posed as a global alignment problem or largest subgraph isomorphism problem. 
However, the problem presented here is slightly different because we have node attribute 
information which can be used to assist in the association problem. Thus, we seek a method 
which optimizes the global alignment while minimizing the pairwise distance between nodes in 
the model tree and segmentation graph. 
 
For this purpose, we use the IsoRank algorithm [28] which constructs a set of constraints for all 
pairs of nodes in the model tree and segmentation graph based on neighborhood information. 
Using these constraints and minimizing the pairwise distances, the IsoRank algorithm establishes 
a ranking between pairs of nodes in the model tree and segmentation graph. We note that the 
rankings are computed by solving for the largest eigenvalue of a sparse matrix and the entries of 
the eigenvector correspond to the pairwise ranks (as in the PageRank algorithm see e.g. [16]). 
The ranking matrix in combination with a maximum allowable deviation between node positions 
and maximum number of multiple matches is uses to determine the many-to-one mapping 
between nodes in the segmentation graph to nodes in the model tree. An example matching is 
illustrated in Figure 5. 
 
Given the association between nodes in the model tree and segmentation graph we classify 
nodes in the segmentation graph as either matched, missed or false positives. A matched node in 
the segmentation graph is associated with one node in the model tree, a missed node in the 
model tree has no association with a node in the segmentation graph and a false positive is a 
node in the segmentation graph with no association to a node in the model tree. Notice in Figure 
5 thatin a limited number of cases the algorithm can fail to match nodes that appear to 
correspond to a node in the model tree. We note that this occurs due to our enforcement of a 
many-to-one mapping. Adopting a many-to-many matching policy would reduce the number of 
false positives at the cost of matching nodes that may not correspond. Finally, a one-to-one policy 
would inflate the number of missed nodes since the spacing between nodes in the model tree is 
less than or equal to the spacing in the segmentation graph. 
 

 
(a)                                                                              (b) 

FIGURE5: Model Tree and Segmentation Graph Matching. (a) Model Tree Nodes in Red, Segmentation 
Graph Nodes in Green, Association Between Matched Nodes as Dark Blue Cylinders, Missed Nodes in 

Magenta, False Positives in Light Blue. (b) Close up of (a). 
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3. RESULTS 
In this section we construct two distinct model trees, generate images under a variety of 
conditions, and compare the segmentation graph to the model tree for the purpose of quantifying 
segmentation quality and accuracy for the vesselness and fast marching algorithms. The 
segmentation quality metrics include the (i) the percentage of correctly matched nodes, (ii) 
identification of the missed node type (i.e. junction, middle or end), (iii) percentage of false 
positives and (iv) the amount of topological change between model tree and segmentation graph. 
For the matched nodes, we compute the position and radius accuracy and, furthermore, record 
the curvature and radius of missed nodes in the segmentation graph. Therefore, this analysis 
measures how well each segmentation algorithm performs and quantifies the characteristics of 
vessels each algorithm fails to segment. 
 
We present the quality measures as bar charts displaying the percentage of matched and missed 
model nodes (see Figures 7(a,d), 11(a,d)). In a similar fashion, we display the percentage of false 
positives i.e. the number of unmatched segmentation nodes over the total number of model 
nodes (see Figures 7(b,e), 11(b,e)). We note that the matching algorithm systematically over 
estimates the number of false positives due to the many-to-one constraint described in Section 
2.4. Unfortunately, we do not have a rigorous bound for the error induced but can get a rough 
estimate by examining the number of false positives under no noise. To measure the quality with 
respect to changes in the topology we use a bar chart to display the percentage of nodes in each 
connected component of the segmentation graph (see Figures 7(c,f), 11(c,f)). Recall that a 
connected component of a graph is a subgraph which contains a path between every pair of 
nodes. For example, in Figure 7(c) with  there are 4 connected components with the 
largest component containing approximately 95 percent of the segmentation graphs nodes. 
 
The position accuracy of matched nodes is computed using the max-norm . 
Since a vector with unit max-norm is bounded by a box of side length one, it facilitates a 
straightforward comparison to voxel coordinates. The position accuracy includes error from the 
quantization of the nodes position during the image formation process and error due to 
segmentation inaccuracy. To compute the position accuracy, we calculate the distance between 
every pair of matched nodes and note that due to the many-to-one mapping of segmentation 
nodes to model nodes we systematically over estimate the position error. In practice, however, 
we expect the number of many-to-one mappings to be small (compared to the total number of 
nodes in the model) and thus the effect is minimal. We display the position accuracy as a 
histogram where the x-axis denotes the error between model and segmentation node position 
and on the y-axis we display the number of nodes for each bin. We overlay the results from 
several levels of noise using different colors (see Figures 8(a,c), 12(a,c)). A similar plot is 
provided for the relative radial error (see Figures 8(b,d), 12(b,d)). 
 
We also characterize the missed nodes by radius and curvature with a histogram plot. In this 
plotthe x-axis corresponds to the value of radius (curvature) and y-axis corresponds to the 
percentageof nodes within a radius (curvature) bin that were missed by the segmentation 
algorithm. We overlaythe results from several levels of noise using different colors (see Figures 
9(a,c)(b,d), 13(a,c)(b,d)). 
 
The model trees shown in Figures 6 and 10 share similar topological features but have 
differentmorphologies. In particular, the models in Figure 6 and Figure 10 differ significantly only 
inthe curvature of the branches. In fact, the image generation process and segmentation 
algorithmused identical parameters. 
 
In what follows, we generate images of the model trees (see Section 2.2) with vessel intensity 
range of , background intensity of , smoothing factor 

,noise levels  and spacing between nodes and image 
resolution of 1.We use the same segmentation parameters for each model. For the vesselness 
algorithm (seeSection 2.3.1), we use an intensity threshold , six logarithmically spaced 
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scales ( ) from 1 to5, vesselness parameters  and , and a vesselness 
threshold .As a post processing step we removed all components with five nodes or 
less that contain no junctionpoints. For the fast marching algorithm (see Section 2.3.2) we use 
speed function parameters and , a time threshold , and one seed point 
at the root location of the tree as theinitial contour. To generate the hole filled label map (see 
Section 2.3.3) we use a majority threshold0 and a maximum of 20 iterations. For the IsoRank 
algorithm we set  (see [28, equation 5]),a maximum of 3 matches of a segmentation node 
to a model node and a maximum distance of 3 fora match. 
 
3.1 Model Tree 1 
This model has 726 nodes with radii between 0.6 and 4. Both algorithms correctly segment an 
overwhelming majority of nodes with the fast marching algorithm having a slightly greater 
percentage of matched nodes. The vesselness algorithm induces a larger percentage of false 
positives and fragments the model tree into several components with the number of components 
increasing as the noise level increases (see Figure 7). The number of matched nodes generated 
by the vesselness algorithm tends to decrease as the noise level increases whereas the number 
of matched nodes generated by the fast marching algorithm is nearly invariant to noise level.The 
position and radius accuracy are not significantly affected by the amount of noise and the 
algorithmsperform equally well with regard to the position accuracy. The vesselness algorithm 
performsslightly better with regards to radius accuracy (see Figure 8). Almost all matched nodes 
are accurateto within one voxel and approximately 50 percent are inside a box of side length  
(seeFigure 8(a,c)). The fast marching algorithm generally over estimates the vessel radius since 
weuse the average intensity over a  window when evaluating the speed function, and, 
thusartificially extend the boundary of the vessel. 
 

 
FIGURE 6: Model Tree 1 With 726 Nodes And Radii From 0.6 (red) to 4 (blue). Image of Model Tree Has A 

Maximum Intensity of 400, A Minimum Intensity of 200 And A Background Intensity of 100. 
 
The fast marching algorithm generates fewer false positives then the vesselness algorithm. 
Furthermore,the vesselness algorithm tends to produce several components while the fast 
marchingalgorithm produces only one. The behavior is expected as the fast marching algorithm 
cannot splitthe contour into multiple closed contours and the vesselness algorithm does not 
enforce connectivityconstraints. Thus, false positives generated by the fast marching algorithm 
correspond to additionalshort branches and for the vesselness algorithm correspond to additional 
components. 
 
The majority of missed nodes have small radii and their percentage increases with the level of 
noise(see Figure 9(a,c)). In some conditions, we observe that the missed nodes correspond to 
thosenear the root (see Figure 9(c)). An expected result is that nodes with larger curvature are 
morelikely to be missed and the percentage increases with the level of noise (see Figure 9(b,d)). 
Bothalgorithms tend to miss nodes with similar properties and in similar percentages. 
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(a)       (b)          (c) 

 
(d)                                      (e)                                    (f) 

 
FIGURE 7: Quality Results Associated With The Model in Figure 6. Top Row Corresponds to Results From 

The Vesselness Algorithm And The Bottom Row From Fast Marching Algorithm. (a,d) Percentage of 
Correctly Segmented Nodes (red), Missed Junction Nodes (cyan), Missed End Nodes (green), And Missed 
Middle Nodes (blue) As A Function of Noise Level ( ). (b,e) Percentage of False 

Positives As A Function of Noise. (c,f) Percentage of Nodes Within Each Component of The Segmentation 
Graph. Each Color Corresponds to A Component. 

 

 
(a)                                        (b) 

 
(c)               (d) 

FIGURE 8:Accuracy Results Associated With The Model in Figure 6. Top Row Corresponds to Results 
From The Vesselness Algorithm And The Bottom Row From Fast Marching Algorithm. Each Histogram 

Corresponds to The Noise Level 0-red, 20-yellow, 40-green, 80-light blue, 100-dark blue, 120-magenta. (a,c) 
Absolute Position Error (Using max-norm) Between Every Pair of Matched Nodes. (b,d) Relative Radius 

Error Between Every Pair of Matched Nodes. 
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3.2 Model Tree 2 
This model has 769 nodes with radii between 0.8 and 3 and is similar to themodel described in 
Section 3.1 except the vessels are more curved. We compare the quality andaccuracy results to 
those in Section 3.1 for the purpose of assessing the sensitive of each vesselsegmentation 
algorithm to curvature. 
 

 
(a)                                                                (b) 

 
(c)                                                               (d) 

 
FIGURE 9: Properties of Missed Nodes Associated With The Model in Figure 6. Top Row Corresponds 

to Results From The Vesselness Algorithm And The Bottom Row From Fast Marching Algorithm. Each 
Histogram Corresponds to The Noise Level 0-red, 20-yellow, 40-green, 80-light blue, 100-dark blue, 120-
magenta. (a,c) Percentage of Missed Nodes Within Radius Interval. (b,d) Percentage of Missed Nodes 

Within Curvature Interval. 
 

Each algorithms number of matched nodes, false positives and components is essentially the 
sameas in Section 3.1 (see Figure 11(a,b,c)). The vesselness algorithm produces two large 
componentswhen  (see Figure 11(c)). In this case, these components are created 
because of high levels of noise located at a middle branch yielding low vesselness responses. 
Furthermore, since the eigenvalues of (2.1) are sensitive to changes incurvature (see [15]) we 
expect the segmentation graph to miss more nodes in curved region andthus create more 
components in the graph. 
 
The position and radius accuracy follow similar trends as those in Section 3.1 (see Figure 12). 
Highlycurved nodes are missed as the noise level increases (see Figures 13(b,d)), however, it is 
difficult tomake a direct comparison because a percentage of missed nodes is given (not an 
absolute number)and range of curvatures in the two models varies significantly. 
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FIGURE 10:Model Tree 2 With 769 Nodes And Radii From 0.8 (red) to 3 (blue). Image of Model Tree Has A 

Maximum Intensity of 400, A Minimum Intensity of 200 And A Background Intensity of 100. 
 

 
(a)       (b)          (c) 

 
(d)                                      (e)                                    (f) 

FIGURE 11: Quality Results Associated With The Model in Figure 10. Top Row Corresponds to Results 
From The Vesselness Algorithm And The Bottom Row From Fast Marching Algorithm. (a,d) Percentage of 
Correctly Segmented Nodes (red), Missed Junction Nodes (cyan), Missed End Nodes (green), And Missed 
Middle Nodes (blue) As A Function of Noise Level ( ). (b,e) Percentage of False 

Positives As A Function of Noise. (c,f) Percentage of Nodes Within Each Component of The Segmentation 
Graph. Each Color Corresponds to A Component. 

 
4. DISCUSSION 
We have developed model vessel trees and a quantitative analysis framework to assess the 
accuracyand quality of vessel segmentation algorithms for three dimensional images. We applied 
thisframework to two models under varying image qualities using two segmentation algorithms of 
fundamentallydifferent classes. The results of this assessment can be briefly summarized by (i) 
bothalgorithms have roughly the same quality with respect to the number of correctly segmented 
nodes(ii) the vesselness algorithm introduces a significantly larger number of false positives (iii) 
the vesselnessalgorithm fragments the model tree into several components while the fast 
marching algorithmretains the tree structure and (iv) the segmentation quality degrades as the 
vessels become more thin and/or curved. This type of quantitative result is not surprising as the 
vesselness algorithm implicitlyassumes a cylindrical model and the fast marching algorithm can 
only move the contour inan outward normal direction and cannot break the closed contour. More 
importantly, this analysisprovides qualitative information on how and where the algorithm fails. 
 
We would like to point out similar work in [26] where the authors developed a framework for 
characterizingand comparing coronary artery centerline extraction algorithms. In this work the 
authorsassembled a publicly available database of Computed Tomography Angiography (CTA) 
images andderived the ground truth centerline from three trained observers. The images were 
acquired using astandard protocol and algorithms where ranked based on overlap and accuracy 
metrics. The majordifference with our approach is that we start with model generation which 
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defines ground truth ratherthan extracting the vessel tree from the image. This luxury allows us to 
easily identify the vesselfeatures that the algorithm fails to segment. Furthermore, we do not need 
to merge the centerlinetraced by each observer and determine the uncertainty this induces. 
 
Generally, we expect this framework to be used as a measure of performance tool for the 
assessmentof vessel segmentation algorithms under a wide range of scenarios. Depending on 
the applicationthe vessel segmentation algorithm may apply different principles. For example, 
techniques to segmentthe coronary artery may significantly vary from algorithms used to extract 
capillary beds (see e.g. [1][34][23][29]). With the generation of appropriate models, algorithms 
designed for either casecan be assessed using our framework. Thus, as one designs a 
segmentation algorithm it is possibleto quickly assess the impact of differing implementations or 
parameters. Another use of thisframework is to quantify the limits of detectability for a particular 
algorithm. As shown in Section 3,analysis of missed node distributions versus vessel radius is 
straightforward and could be extendedto incorporate other image, topological, or morphological 
properties (e.g. tortuosity, segment length,degree distribution, etc...). This type of analysis is 
particularly interesting when the imaging deviceis well characterized. In this case, the image 
generation process can be modified to better modela particular imaging modality. Thus, a 
candidate segmentation algorithm can be fully characterizedagainst a particular class of data. 
Although beyond the scope of this paper, we note that our approach may be used for other 
network structures e.g. neural networks. In this case the metrics of interest may be more closely 
related to network topology than morphological properties. Finally, given a vessel network, a 
segmentation algorithm and adesired quality result, one may determine the required image 
characteristics. This may assist in thedevelopment of imaging protocols with the intention of 
subsequent quantitative analysis and not justvisual clarity. For example, one may anticipate the 
need to accurately segment vessels of a certainradius (for a particular problem a biological 
argument may be made) and may want to ascertain theimage quality required so that a particular 
segmentation algorithm performs at a given quality level. 

 
(a)                                                                  (b) 

 
(c)                                                                 (d) 

FIGURE 12: Accuracy Results Associated With The Model in Figure 10. Top Row Corresponds to Results 
From The Vesselness Algorithm And The Bottom Row From Fast Marching Algorithm. Each Histogram 

Corresponds to The Noise Level 0-red, 20-yellow, 40-green, 80-light blue, 100-dark blue, 120-magenta. (a,c) 
Absolute Position Error (Using max-norm) Between Every Pair of Matched Nodes. (b,d) Relative Radius 

Error Between Every Pair of Matched Nodes. 
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We note that several improvements can be made to our framework and categorize them into 
modelimprovements and analysis improvements. Depending on the application, a more detailed 
vascularmodel may be desired than the simple L-system approach employed here (see e.g. [14]). 
For example,a study in segmentation algorithms pertaining to angiogenesis could benefit from a 
vesselmodel which more accurately reflects the vascular morphology in or near the tumor 
environment.Such methods typically use a system of reaction diffusion partial differential 
equations (see e.g. [5])to model the growth of a vessel network. If the imaging modality is well 
characterized, a better suited noise model (rather than additive Gaussian noise) can be 
implemented. As pointed out in [33] aGaussian smoothed vessel cross section may be 
insufficient. Since generating the image from themodel is explicit in our framework, changing the 
type of convolution or averaging procedure to producea particular type of vessel cross section 
profile is straightforward. Our model currently neglectsbackground objects and does not explicitly 
incorporate vessel proximity to one another. A naturalextension to our assessment is multivariate 
analysis of several properties. For example, we couldexamine if missed nodes have a correlation 
between radius, curvature or contrast. 
 
The software developed in this paper was written using the following free and open source 
libraries:Insight Toolkit [12] for image processing tasks, NetworkX [8] for the graph 
representation, Matplotlib[11] for 2D plotting, and Mayavi [22] for 3D plotting. 

 
(a)                                                                (b) 

 
(c)                                                               (d) 

 
FIGURE 13: Properties of Missed Nodes Associated With The Model in Figure 10. Top Row 

Corresponds to Results From The Vesselness Algorithm And The Bottom Row From Fast Marching 
Algorithm. Each Histogram Corresponds to The Noise Level 0-red, 20-yellow, 40-green, 80-light blue, 100-

dark blue, 120-magenta. (a,c) Percentage of Missed Nodes Within Radius Interval. (b,d) Percentage of 
Missed Nodes Within Curvature Interval. 
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