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Abstract 

 

An interferogram filtering is presented in this paper. The main concern of the 
proposed scheme is to lower the residues count mean while preserving the 
location and jump height of the lines of phase discontinuity.  
The proposed method uses Steerable wavelet decomposition. At each scale, 
a noise covariance matrix is estimated for the neighborhood of each pixel 
using an interferogram power spectral density. The estimated covariance is 
then used to produce a maximum a-posteriori estimate of the noise-free value 
of the pixel. After the image has been "de-noised" at each scale-level, it is 
then reconstructed.  
Based on Portilla et. al., neighborhoods of coefficients at adjacent positions 
and scales are modeled as the product of two independent random variables, 
the Bayesian least squares estimate of each coefficient reduces to a weighted 
average of the local linear estimates over all possible values of the hidden 
multiplier variable. The performance of this method substantially has the 
advantages of reducing number of residuals without affecting line of height 
discontinuity.  
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1. INTRODUCTION 
Synthetic aperture radar (SAR) enables imaging of the ground by processing microwave 
backscattering data collected along the flight path of an airborne or space borne platform. 
This results in high-resolution images of the local complex reflectivity of the ground. For the 
SAR images obtained from slightly different flight paths, the complex-valued pixels of one 
image are multiplied with the co-registered complex conjugate pixels of the other, the phase 
of the resulting product image constitutes a SAR interferogram. The significance of this phase 
image is that it contains information on terrain height. With proper processing, it yields a so-
called digital elevation model (DEM) which represents the topography of the terrain. Other 
significant of using phase image is to measure land subsidence, snow motion, monitoring 
sand dunes movements, and many others. 
 
The SAR interferogram presents two main features preventing its direct use. The first one is 
that the phase is wrapped within the interval (-π, π), due to the periodic nature of the phase 
signal. In order to obtain the absolute phase, and therefore, to obtain the height information, it 
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is necessary to unwrap the phase signal [1]. From the other side, the interferometric phase 
signal is corrupted by noise. This noise, on a first stage, will affect the unwrapping process as 
it induces phase residues, which make the unwrapping process difficult. On a second stage, 
the own noise degrades the derived height information. In order to overcome these problems 
it is necessary to introduce a phase filtering process before phase unwrapping. This filtering 
process can be also thought as an estimation process. 

 
The key computational problem in obtaining the DEM lies in the fact that the measured phase 
differences are undetermined within multiples of 2π. They are given as a wrapped phase field 
of principal values with range from   -π to π. It is necessary to perform a 2-D phase 
unwrapping operation, which removes phase jumps between neighboring pixels larger than π 
by adding or subtracting multiples of 2π so that the resulting distribution can be considered as 
samples of an underlying smooth function. This is a noise-sensitive problem and subject of 
recent research [2]. The 2-D phase unwrapping problem can be stated as follows: 

ψ(n1,n2) =    }
]([

{ 21
noisenni

eArg
+φ

                                                                   (1) 

 
where ψ is the noisy wrapped interferogram, φ are samples of a smooth phase surface, and   

|Arg( . )| ≤ π is determination of an estimate  φ  from ψ. A major challenge of 2-D phase 

unwrapping comes from the fact that the noise in (1) due to, temporal de-correlation 
introduces local inconsistencies of the data referred to as residues. Any phase unwrapping 
algorithm is sensitive to the presence of residues that make contour integrations path-
dependent.  

 
Many interferogram filtering are introduced. Lee et. al. demonstrated that the interferometric 
phase noise can be modeled as an additive noise [3]. Other algorithm is based on a new 
interferometric phase noise model in the complex plane [2]. Some estimate the InSAR phase 
within a local estimation window based on the InSAR sample statistics [4, 5]. In general it can 
be stated that filtering process is mandatory as it not only reduces the error probability in 
subsequent phase unwrapping but also increases processing speed considerably [3]. 

 
This paper is a modification version of Portilla et. al. where local residual removal solution 
based on Baysian least square estimator is used. A model for neighborhoods of oriented 
pyramid coefficients based on Gaussian scale mixture is used and noise covariance matrix is 
estimated for the neighborhood of each pixel using an interferogram power spectral density 
via different sets of window shapes. We assume based on [6, 7] that the amplitude of 
coefficients of similar position, orientation and scaled are highly correlated. These higher 
order dependencies may be modeled by augmenting a factor for local dependences 
(Gaussian) with random variables that govern the parameters (variance). The remainder of 
the paper is organized as follows: section 2 focus on the interferomeric residual model, 
section 3 describe a brief introduction to steerable pyramid wavelet transform, section 4 
depict the interferogram probability model, section 5 emphasis the proposed filtering process, 
section 5 shows the experiment result, and section 6 represents the conclusion. 

 

  

2. INTERFEROMETRIC RESIDUAL MODEL 
The interferometric phase is due to the interaction between two SAR images. The statistical 
behavior of the interferometric phase depends on this interaction. The interferometric 
coherence is the amplitude of the correlation coefficient between the two complex SAR 
images: 

 
                                                                                                                                     ( 2) 

 

 

 

Where I1 and I2 represent the two SAR images, ρ is the coherence and xφ is the 

corresponding interferometric phase. The interferometric phase has been completely 
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characterized in the real domain. For Gaussian scattering model and distributed scatterers, 
the interferometric phase follows the following distribution [1].                                                                                                                                           

                                                                       
 
                           (3)  

 
 

Where )cos( θφρβ −−= , 2F1 represents the Gauss hyper-geometric functions and n is the 

number of looks. The probability density function (pdf) eq. (3) is symmetric (mod 2π) about its 

mode, which occurs at φ . Based on the distribution of the interferometric phase eq. (2), [3] 

demonstrated that the interferometric phase noise can be modeled as an additive Gaussian 
noise [8, 9] 

                                       

                  φ z = φ x + v                                                                                                       (4)                                                                                                     

Where zφ  is the measured interferometric phase, xφ  is the real interferometric phase and v 

represents the noise with the distribution listed in eq. (3). The measured phase zφ  can be 

encoded in the complex plane as a point in the unit circle: 
                                                                                                                                         
                                                                                                                                        (5)                                                            
Using the distribution (3) together with the properties of the trigonometric functions, the real 
and imaginary parts of (5) can be modeled as [9]. 

               cos( zφ ) = Nc cos( xφ ) + vc                                                                                   (6)                                     

               sin( zφ ) = Nc sin( xφ ) + vs                                                                                    (7) 

Based on (2), it can be demonstrated that the value of Nc, for n = 1, is: 

 
                                                                                                                                         (8)  
               

                                              
As equations (6), (7), and (8) show, Nc only depends on ρ. The terms vc and vs can be 
considered as noise terms, as their means are zero. These noise terms depend on the 

interferometric phase xφ . This dependence does not affect the mean, which is zero, but only 

the standard deviation [9]. The dependence with the interferometric phase Φx can be 
neglected, and then, the variance of the noise terms can be approximated by the function: 

  
                                                                                                                                       (9)                                                                                                                          
 
Eq's (6) and (7) can be seen respectively as a noise model for the real and imaginary parts of 
the interferometric phase in the complex plane. In each case, the signals to recover are 

cos( xφ ) and sin( xφ ). These signals are multiplied by Nc. As shown before, this parameter 

behaves in the same way as the coherence ρ does, so instead assuming it as a noise 
parameter, it can be considered as a useful parameter to recover. It was demonstrated that 
Nc can be employed to estimate the coherence ρ [9]. The main feature of this way to estimate 
the coherence is that the coherence information can be estimated with high spatial resolution. 

 

 

3. STEERABLE PYRAMID 
The Steerable Pyramid is a linear multi-scale, multi-orientation image decomposition that 
provides a useful front-end for image-processing and computer vision applications. It was 
developed in order to overcome the limitations of orthogonal separable wavelet 
decompositions that were becoming popular for image processing (specifically, those 
representations are heavily aliased, and do not represent oblique orientations well). Once the 
orthogonality constraint is dropped, it makes sense to completely reconsider the filter design 
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problem (as opposed to just re-using orthogonal wavelet filters in a redundant representation, 
as is done in cycle-spinning or undecimated wavelet transforms!). Detailed information may 
be found in the references listed below. 
 
The basis functions of the steerable pyramid are directional derivative operators that come in 
different sizes and orientations. An example decomposition of an image of a white disk on a 
black background is shown to the right. This particular steerable pyramid contains 4 
orientation sub-bands, at 2 scales. The number of orientations may be adjusted by changing 
the derivative order (for example, first derivatives yield two orientations). The smallest sub-
band is the residual low-pass information. The residual high-pass sub-band is not shown. 
 
Figure (1) shows the block diagram for the decomposition (both analysis and synthesis). 
Initially, the image is separated into low and high-pass sub-bands, using filters L0 and H0. The 
low-pass sub-band is then divided into a set of oriented band-pass sub-bands and a low pass 
sub-band. This lower pass sub-band is sub-sampled by a factor of 2 in the X and Y directions. 
The recursive (pyramid) construction of a pyramid is achieved by inserting a copy of the 
shaded portion of the diagram at the location of the solid circle (i.e., the low-pass branch) [10].  

 

 

 
Figure: (1) Block diagram for Steerable Pyramid decomposition (analysis and synthesis). 

 

 
4. INTERFEROGRAM PROBABILITY MODEL 
Multiscale representations provide a useful front-end for representing the structures of 2-D 
signals. But they are critically sampled (the number of coefficients is equal to the number of 
image pixels), and this constraint leads to disturbing visual artifacts (i.e., “aliasing” or 
“ringing”). A widely followed solution to this problem is to use basis functions designed for 
orthogonal or biorthogonal systems, to reduce or eliminate the decimation of the subbands 
[11]. Once the constraint of critical sampling has been dropped, there is no need to limit 
oneself to these basis functions. Significant improvement comes from the use of 
representations with a higher degree of redundancy, as well as increased selectivity in 
orientation [12]. For the current paper, we have used a particular variant of an over complete 
tight frame representation known as a steerable pyramid [13]. The basis functions of this 
multiscale linear decomposition are spatially localized, oriented, and span roughly one octave 
in bandwidth. They are polar-separable in the Fourier domain, and are related by translation, 
dilation, and rotation.  

 
4.1 Gaussian Scale Mixtures 
Let an interferogram is decomposed into oriented subbands at multiple scales, and Let 
xcs,o(n,m) the coefficient corresponding to a linear basis function at scale (s) , orientation (o) , 
centered at spatial location 2sn, 2sm  . We denote as xs,o(n,m)  a neighborhood of 
coefficients clustered around this reference coefficient . in our case the neighborhood include 
coefficients from three subbands at  adjacent scale (i.e., corresponding to basis functions at 
nearby scales and orientations), as well as from the same subband.  Thus taking advantage 
of the strong statistical coupling observed through scale in multiscale representations.  
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Lee et. al. proposed that the residuals are characterized with an additive model [3]. 
We assume the coefficients within each local neighborhood around a reference coefficient of 
a pyramid subband are characterized by a Gaussian scale mixture (GSM) model. Formally, a 
random vector is a Gaussian scale mixture if and only if it can be expressed as the product of 

a zero-mean Gaussian vector (u) and an independent positive scalar random variable ( z ) 

                                        X ≡  u * z                                                             (10) 
the variable z is known as the multiplier. The vector x is thus an infinite mixture of Gaussian 
vectors, whose density is determined by the covariance matrix Cu of vector u and the mixing 
density pz(z), and ( ≡ ) mean equal in distribution. 

 
4. 2 Modeling Wavelet Coefficients  
In order to construct model for interferogram, one must specify both the neighborhood 
structure of the coefficients, and the distribution of the multipliers. Regardless to the 
neighborhood structure of the coefficients, the window selected should be aligned along 
fringes to include pixels having approximately the same elevation. For steep slope areas, the 
fringe rate is high. Square windows, will cover more than one fringe. This will destroy the 
continuity of fringes and make phase unwrapping difficult. Consequently, directional windows 
should be used, such as the ones shown in Fig. 2. This makes filtering more effective in 
preserving the fringe pattern [3]. 

 

 

 

 

 

 
Figure 2:  Sixteen directional masks for phase noise filtering. Only the white pixels                                         

are included in the computation. 

 
For neighborhood structure GSM is used as a local description of the behavior of the cluster 
of coefficients centered at each coefficient in the pyramid. Since the neighborhoods overlap, 
each coefficient will be a member of many neighborhoods. The local model implicitly defines a 
Markov model, described by the conditional density of a coefficient in the cluster given its 
surrounding neighborhood, assuming conditional independence on the rest of the coefficients. 
In this paper, we simply use the estimation problem for the reference coefficient at the center 
of each neighborhood independently. To complete the interferogram model we need to 
specify the probability density, pz(z), and interferogram power spectral density (PSD). 

 
4.3 Probability Density for Multiplier  
Several authors have suggested the generalized Gaussian (stretched exponential) family of 
densities as an appropriate description of wavelet coefficient marginal densities [14, 15]:                                  
, where the scaling variable controls the width of the distribution, and the exponent (p) 
controls the shape, and is typically estimated to lie in the range [0.5,0.8] for image subbands. 
Although these can be expressed as GSM’s, the density of the associated multiplier has no 
closed form expression, and thus this solution is difficult to implement [16]. Others stated that 
the density of the log coefficient magnitude, log x, may be expressed as a convolution of the 
densities of (log u) and (log z). Since the density of (u) is known, this means that estimation of 
the density of may be framed as a deconvolution problem. The resulting estimated density 
may be approximated by a Gaussian, corresponding to a lognormal prior for the z. This 
solution has two drawbacks. First, it is only valid to the case when all the neighbors have the 
same marginal statistics, which, in practice requires they all belong to the same subband. 
Second, it is estimated from the noise-free coefficients, and it is difficult to extend it for use in 
the noisy case. 

 
In this paper we use what is a so-called non-informative prior [16-17], which has the 
advantage that it does not require the fitting of any parameters to the noisy observation. Such 
solutions have been used in establishing marginal priors for image denoising [18]. In the 
context of estimating the multiplier from coefficients, this takes the form: 

)/exp()( p
x sxxp −α
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                                                                                                                                  (11) 

 
 

Where I(z) is the Fisher information matrix. Computing this for the GSM model is 
straightforward 
 
 
 
                                                                                                                                       (12) 
                                                
 
                                              =  
 

 
taking the square root of the expectation, and using the fact that                            we obtain 
Jeffrey’s prior which corresponds to a constant prior on log(z).  
 
                                                                                                                                      (13) 
 
4.4 Interferogram PSD 
The analysis presented in this section is based on the basic SAR interferometric system 
mode [19]. As shown in fig. 3, input to the system are the complex reflectivity functions xi(t), i 
= 1; 2. The impulse response functions are denoted with hSAR;i(t), i =1; 2. Each of these point 
target responses describes the individual end-to-end SAR imaging system. Finally, the 
interferogram Φz (t;τ) is formed from the focused SAR images i1(t; τ ) and i2(t; τ). Her we 
introduce the variable t[s] to denote a time dimension (range or azimuth), and the extension to 
the two-dimensional domain is straightforward.  

 

 

 

 

 

 

 

 

 

 
Figure 3: Interferometric system Model 

 
The distributed scattered model constitutes the input to the interferometric system. The inputs 
x1(t) and x2(t) are correlated, unit variance complex, zero-mean Gaussian processes 
constructed from a(t), b(t), and c(t) which are of uncorrelated Gaussian type 
 
                                                                                                                                   (14) 
 
 
 

a mutual correlation is realized by the factor γT (temporal coherence), and  ϑ   

 

 
                                                                                                                                       (15) 
 
 
denotes a fringe frequency attached to the second interferometric channel for ease of 
formulation. All parameter cases discussed in the following section are based on 
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subsequently derived formulation of the interferogram PSD function. For transfer functions 
with finite bandwidth (which is true for any real SAR system), the interferometric PSD is easily 
calculated as the Fourier transform of the interferogram sample autocorrelation function 
(ACF) [20]. 

 

 
Equation (15) represents the normalized interferogram PSD so as to emphasize that the 
square of the coherence determines the line mass of its right-hand-side second term 

( ⊗ denotes cross correlation). 

 
SI1 I1 (f) and S I2 I2 (f) denote the PSDs of the SAR images, and δ(.) denotes the Dirac Delta 
Distribution. As can be shown, the fringe frequency is found as frequency shift in the 
argument of the Delta function. From the definition of the interferogram ACF (Holzner 2002), it 
is clear that no phase bias can be measured neither from the interferogram ACF nor from the 
interferogram PSD. As described by [10], the individual terms of the PSD are defined as: 
 
                                                S(f) = PS(f) + m δ (f)                                                               (16) 
 
The first term of the PSD is referred to as pedestal PS(f) with an integral value of 1 (due to the 
normalization of the power spectrum), and  m  refers to the spectral line mass. 

     

 
5. INTERFEROGRAM FILTERING  
Recognizing the residuals sensitivity of 2-D phase unwrapping algorithms, it would be useful 
to reduce the residuals from the measured interferogram before processing them further. The 
main concern in the proposed scheme is not to affect the fringes (line of discontinuity) with 
respect to their location, sharpness, and jumps of height. Other requirements are low 
computational complexity, robustness, and ease of use. 

 
Our filter procedures use the top-level structure as most previously published approaches and 
can be summarize as follows:  
 
1) Decompose the interferogram into pyramid subbands at different scales and orientations;  
2) Apply the filter at each subband, except for the low pass band. 
3) Invert the pyramid transform, obtaining the denoised image. 
 
The assumption that the residuals are exhibits a white Gaussian with known variance [3] is 
used in this paper. A vector y corresponding to a neighborhood of N observed coefficients of 
the pyramid representation can be expressed as 

 

                                                    wuzwxy +=+=                                               (17) 

 
Based on GSM structure of N Coefficients, and the assumption that the residuals act as 
independent additive Gaussian. The parameters u, w, and z are independent. both u and w 
are zero-mean Gaussian vector [19], with associative covariance Cu and Cw. the density of 
the observed neighborhood vector conditioned on z is a zero-mean Gaussian, with 
covariance  Cy|z = zCu +Cw . The neighborhood noise covariance, Cw, is obtained by 
decomposing a function                             into pyramid subbands, where Nx ,Ny are the 

interferogram dimensions, and )(iPSDr  is  the inverse Fourier transform of the square root 

of the interferogram power spectral density. This signal has the same power spectrum as the 
residual, but it is free from random fluctuations. Elements of Cw   may then be computed 
directly as sample covariance (i.e., by averaging the products of pairs of coefficients over all 
the neighborhoods of the subband). Given Cw, the signal covariance Cu can be computed 
from the observation covariance matrix. Cy is computed from Cy|z by taking expectations over 
z: taking an assumption that E{z} = 1. 

 
                                                                                                                                   (18) 

)(iPSDNN rxyσ
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5.1 Bayes Least Square Estimation 
For each neighborhood, we wish to estimate xc, the reference coefficient at the center of the 
neighborhood, from y, the set of observed coefficients. The Bayes least squares (BLS) 
estimate is just the conditional mean.  

 
 
                                                                                                                                      (19) 
 
 
 

 

 
 
 
 
 
Thus, the solution is the average of the Bayes least squares estimate of x when conditioned 
on z, weighted by the posterior density, p(z|y) .We now describe each of these individual 
components. 

 
According to GSM model, the neighborhood coefficients of vector x is Gaussian when 
conditioned on z. Coupled with the assumption that the residuals are characterized as 
Gaussian noise. This means that the expected value inside the integral 8 is local linear 
(Wiener) estimate.  Writing this for the full neighborhood vector 
                                                                                                                                   (20) 

 

 

 
Portellia et. al, simplified this expression [10] result in:  

 

 
                                                                                                                                               (21) 

 

 
where mi,j  represents an element ( i-th row, j-th column) of the matrix M , s is the symmetric 
square root of the positive definite matrix cw and A is the eigenvalue expansion of the matrix 

S
-1

CuS
-T

, nλ are the diagonal elements of A, vn   is the elements of v = M
-1

 y , and  c  is the 

index of the reference coefficient within the neighborhood vector, which considered a first part 
of eq. (8). The other component of the solution given in (8) is the distribution of the multiplier, 
conditioned on the observed neighborhood values. We use Bayes’ rule to compute this

 

 

 

 
                                                                                                                                               (22) 

 

 
 
we choose a non-informative Jeffrey’s prior, corrected at the origin, for the function pz(z). The 
conditional density p(y|z)  is given in eq. (6), and its computation may be simplified using the 
relationship in eq. (10) and the definition of v  

 

 
                                                                                                                                   (23) 
 

{ } ( ) cccc dxyxpxyxE ∫=

( ) ccc dzdxyzxpx ,
0

∫ ∫
∞

=

( ) ccc dzdxyzpzyxpx ),(,

0

∫ ∫
∞

=

( ) { }dzzyxEyzp c ,,∫=

{ } ( ) yCzCzczyxE wuu
1

,
−+=

( ) ( ) ( )

( ) ( )∫
∞

=

0

ααα dpyp

zpyzp
yzp

z

z

( )
( ) ( )∏

∑

=

=

+

+
−

=
N

n

nw
N

N

n n

n

zC

z

v

zyp

1

1

2

12

12

1
exp(

λπ

λ

{ } ∑ +
=

N

n

nncn
c

z

vzm
zyxE

1
1

,
λ

λ



Gh.S.El-Taweel & Ashraf. K. Helmy 

International Journal of Image Processing, Volume(4) : Issue(4) 362 

 
 
5.2 Filtering Process  
According to the proposed scheme and [16], Filtering interferogram process can be 
summarized as follows: 
1) Decompose the interferogram into subbands. 
2) For each subband (except the low-pass): 

a) Compute neighborhood noise covariance from the image-domain noise 
covariance. 

b) Estimate noisy neighborhood covariance. 
c) Estimate Cu from Cw and Cy using eq. (18). 
d) For each neighborhood: 

i) For each value z in the integration range: 

A) Compute { }zyxE c ,  using eq. (21). 

B) Compute ( )zyp  using eq. (23). 

ii) Compute ( )yzp  using eqs. (22) and (13). 

iii) Compute { }yxE c  numerically using eq. (19). 

3) Reconstruct the denoised image from the processed subbands and the lowpass band. 

 

 

6. EXPERIMENTAL RESULTS  
The proposed scheme for interferogram filtering is applied to real interferometric SAR (InSAR) 
image. The size of the image in pixels is 512 (azimuth) × 512 (range). The estimated surfaces 
are compared with the reference digital Elevation Model (DEM). Figure 4-a) shows the phase 
image of original interferogram while figure 4-b) shows the reference DEM. In the available 
literature on interferogram filtering, the method of choice is often judged by visually comparing 
original and processed interferogram. In addition to visual judgment, quantitative evaluations 
are used during this work includes: 

a) Peak Signal to Noise Ratio (PSNR) between filtered and original phase. 
b) Reduction of the residuals counts. 
c) Quantitative effect on phase unwrapping. 

In order to evaluate the effect of complex interferogram filtering on 2-D phase unwrapping 
quantitatively, we consider determination of the phase field estimation by means of Goldstein 
algorithm [1].The unwrapped phase values are compared with the reference data shown in 
figure 4(b).  Three other filtering algorithms are used for evaluation, they are: pivoting median 
filter [1]. With 3X3 window size, 2) max-flat filter defined in [1] and modified Goldstein filter 
[21]. 
 
In general, it can be stated that the Peak Signal to Noise Ratio (PSNR) for proposed scheme 
reaches 45 db. Moreover the number of residuals after filtering process decreased by 78.6%. 
Table 1 summarizes the PSNR and residual counts for different techniques  
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                                           (a)                                                (b)                                

Figure 4: Demonstrate the Input Phase Images a) Original Unwrapped Phase.                                                 
b) Reference Wrapped Phase. 

 

 

 

 

 

 

 

 

 

 

 

 
                                 (a)                                                    (b)                                

Figure 5: Demonstrate the output Images a) filtered Unwrapped Phase. b) Wrapped Phase. 

 
Another evaluation parameter applied to the complex interferogram filtering is subsequent 
phase unwrapping including height inversion (DEM). This is done by taking the interferogram 
with and without preprocessing as input to Goldstein algorithm [1]. Table 2 lists the average 
errors between wrapped phase with and without preprocessing and the original height values. 
It is verified that the proposed scheme introduces the best average error, affecting directly the 
accuracy of terrain height. 

 

 
 Table 1:  Performance Evaluation Measures 

 

 
Table 2:  Average Error of Height Inversion of Input Interferogram using Different Filters 

                                             

 Original 
Interferogram 

Proposed Max-flat 
Pivoting 
Median 

Modified 
Goldstein   

PSNR (dB)  45 11.6 15.7 38 

Number of 
Residues 

13785 2956 12306 1843 
3456 

 
DEM 

without 
filtering 

DEM after 
proposed 
filtering  

DEM after 
Max-flat 

DEM after 
Pivoting 
Median 

Modified 
Goldstein   

Average 
error(Meter) 

63.1 12.3 42.3 97.6 
18 
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Qualitative measures of the output phase data, as shown in figure (3), indicate the superiority 
of the proposed scheme. It demonstrates good adaptively of proposed scheme as it reduces 
the residues count while preserving edges and fine details. The pivoting median filter gives 
good results of residues reduction but introduces smoothness at level of phase details. Max-
flat filter is better than pivoting median filter. The output wrapped phase data is shown in 
figures (6), while figures (7,8) shows the 3d and close look images for better evaluation 
process.  
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Figure 6:  Output Unwrapped Phase Data after Different Filtering Process                                                         

a) proposed   b) Max-Flat   c) Pivoting Median d) Modified Goldstein   
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Figure 7: Perspective Phase Unwrapped Images a) Reference DEM  b) proposed filter c) modified 

Goldstein  d) Max-Flat  e) Median filter 

 
 
 
 
 
 
 
          (a)                           (b)                              (c)                           (d)                              (e)  
Figure 8: Closer Look of Perspective Phase Unwrapped Images a) Reference DEM  b) proposed filter 

c) modified Goldstein  d) Max-Flat  e) Median filter 

 
 
 
CONCLUSIONS  
To obtain a more accurate unwrapped phase, a new scheme has been proposed based on a 
local Gaussian scale mixture model for reduction residual counts in interferogram. The 
approach uses Steerable wavelet decomposition. At each scale, a noise covariance matrix is 
estimated for the neighborhood of each pixel using interferogram power spectral density. The 
covariance is then used to produce a maximum a-posteriori estimate of the noise-free value 
of the pixel. After the image has been de-noised at each scale-level, it is then reconstructed.  
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Comparing with other interferogram filtering, the proposed scheme achieves 78.6% in 
reduction of residual count. On the other hand Max-Flat, Pivoting Median , and modified 
Goldstein has also the ability to reduce the residues count by   10.7%, 86.7 % and by 74.9 
respectively.   
 
Comparing the unwrapped phase with reference DEM, median filter achieves higher average 
error followed by Max-flat, modified goldestien and the proposed method comes with the 
lowest average error. The results of the unwrapped phase image show that the proposed 
scheme has the ability to reduce the residues count while preserving the phase discontinuity.  
 
It has been proved that lowering residues count does not guarantee high unwrapping 
accuracy; since the median filter has the ability to reduce the residual count by 86.7% 
meanwhile introduces the worst DEM accuracy with 97.7 meter as an average error. 
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