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Abstract 
 
Owing to the innumerable appearances due to different writers, their writing styles, technical 
environment differences and noise, the handwritten character recognition has always been one of 
the most challenging task in pattern recognition. The emergence of deep learning has provided a 
new direction to break the limits of decades old traditional methods. There exist many scripts in 
the world which are being used by millions of people. Handwritten character recognition studies of 
several of these scripts are found in the literature. Different hand-crafted feature sets have been 
used in these recognition studies. Feature based approaches derive important properties from the 
test patterns and employ them in a more sophisticated classification model. Feature extraction 
using Zernike moment and Polar harmonic transformation techniques was also performed and a 
moderate classification accuracy was also achieved. The problems faced while using these 
techniques led us to use CNN based recognition approach which is capable of learning the 
feature vector from the training character image samples in an unsupervised manner in the sense 
that no hand-crafting is employed to determine the feature vector. This paper presents a deep 
learning paradigm using a Convolution Neural Network (CNN) which is implemented for 
handwritten Gurumukhi and devanagari character recognition (HGDCR). In the present 
experiment, the training of a 34-layer CNN for a 35 class self-generated handwritten Gurumukhi 
and 60 class (50 alphabet and 10 digits) handwritten Devanagari character dataset was 
performed on a GPU (Graphic Processing Unit) machine.  The experiment resulted with an 
average recognition accuracy of more than 92% in case of Handwritten Gurumukhi Character 
dataset and 97.25% in case of Handwritten Devanagari Character dataset. It was also concluded 
that the training and classification through our network design performed about 10 times faster 
than on a moderately fast CPU.  The advantage of this framework is proved by the experimental 
results. 
 
Keywords: Handwritten Character Recognition, Neural Network, Deep Learning, Convolution 
Neural Network. 

 
 
1. INTRODUCTION 

Traditionally handwritten character recognition [1] techniques were based upon template and 
feature based approaches. Feature based approaches followed the principle of deriving the 
important features from the test sample character images and feeding them to a sophisticated 
classification model. Both spatial domain (e.g. Hu and Zernike moment [2, 3] based) and 
transform domain approaches (e.g. Wavelet [4] and Polar harmonic transform [5, 6, 7] based) 
were deployed. Features extracted using these approaches were used to create and train a 
classification model usually built using artificial neural networks [8]. But it is also established that 
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manually extracted features require prior knowledge of the language and these are not 
particularly robust to the diversity and complexity of handwriting. 
 
Recently the advent of deep learning has led to the development of Convolutional neural network 
(CNN) [9-11] systems are the absolute most persuasive developments in the field of computer 
vision and pattern recognition. As a new feature extraction method, deep learning has made 
achievements in text mining. The major difference between deep learning [10, 11] and 
conventional methods is that deep learning automatically learns features from the supplied data, 
instead of adopting handcrafted features including millions of parameters. At present, deep 
learning feature representation includes autoencoder, restricted Boltzmann model, deep belief 
network [9, 10], convolutional neural network and recurrent neural network, etc. 
 
The year 2012 was the principal year that neural nets developed to noticeable quality as Alex 
Krizhevsky utilized them to win ImageNet competition during that year. Ever from that point 
forward, a large group of organizations has been utilizing profound learning at the center of their 
administrations. Facebook utilizes neural nets for their programmed labeling calculations, Google 
for their photograph seeking and Amazon for their product suggestions.  
 
Deep learning algorithms try to learn high-level features from data. This is a very distinctive part 
of Deep Learning and a major step ahead of traditional Machine Learning. Among all deep 
learning approaches, CNN is one of the most popular model and has been providing the state-of-
the-art performance on object recognition. CNN approach has been designed to imitate human 
visual processing, and it has highly optimized structures to process 2D images. Further, CNN can 
effectively learn the extraction and abstraction of 2D features.  
 
A Convolutional Neural Network (CNN) is made of at one or more convolutional layers and then is 
taken after by at least one or more completely associated layers as in a standard multilayer 
neural system. The engineering of a CNN is intended to exploit the 2D structure of an information 
picture. This is accomplished with nearby associations and tied weights which are carried further 
by some type of pooling which brings about interpretation invariant highlights. Another advantage 
of CNNs is that they are simpler to train and have numerous fewer parameters than completely 
associated systems with a similar number of shrouded units.  
 
Convolutional Neural Networks (ConvNets or CNN's) [12, 13] are a class of Neural Networks that 
have demonstrated extremely compelling in application zones, for example, picture 
acknowledgment and characterization. ConvNets have been fruitful in distinguishing faces, 
objects and movement signs separated from controlling vision in robots and self-driving autos. 

 
2. LITERATURE STUDY 

In the field of pattern recognition, the curse of dimensionality [14] means that that the learning 
complexity grows exponentially with linear increase in the dimensionality of the data. The 
traditional approach of dealing with this curse has been through reducing the dimensionality, the 
process which is also called as feature extraction. This process of feature extraction has been 
quite challenging and highly application dependent. Besides, the incomplete or erroneous 
features may limit the performance of the classification process.  
 
The early work on the automatic recognition of characters has been concentrated either upon well 
printed text or upon small set of well distinguished hand written text or symbols. Successful but, 
constrained algorithms had been implemented mostly for Latin characters and numerals. Besides 
some studies on Japanese, Chinese, Hebrew, Indian, Cyrillic, Greek and Arabic characters and 
numerals in both printed and handwritten cases are also done. The early work on the automatic 
recognition of characters has been concentrated either upon well printed text or upon small set of 
well distinguished hand written text or symbols. Successful but, constrained algorithms had been 
implemented mostly for Latin characters and numerals. Besides some studies on Japanese, 
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Chinese, Hebrew, Indian, Cyrillic, Greek and Arabic characters and numerals in both printed and 
handwritten cases are also done. 
 
Initially G.S. Lehal and C. Singh [15] suggested “two sets of features”. Primary and Secondary 
feature sets were developed. The features used in Primary Feature Set were Number of junctions 
with the headline, Presence of sidebar, Presence of a loop and No Loop formed with headline. 
The Secondary feature set consisted of Number of endpoints and their location, Number of 
junctions and their location, Horizontal Projection Count, Right Profile depth, Left Profile Upper 
Depth, Left Profile Lower Depth, Left and Right Profile Direction Code and Aspect Ratio. A 
recognition rate of 91.6% was achieved and the average processing time was 4 millisecond for 
each character using these features. Later on in 2009, G.S. Lehal suggested OCR using Multiple 
Classifiers [15] and received an accuracy rate of 99.59%. 
 
S. Arora, D. Bhattacharjee, M. Nasipuri, D.K. Basu and M.Kundu proposed a scheme for offline 
Handwritten Devnagari Character Recognition [16], which used different feature extraction 
methodologies and recognition algorithms. First the character was preprocessed and features 
namely: Chain code histogram and moment invariant features were extracted and fed to 
Multilayer Perceptrons as a preliminary recognition step. Finally the results of both MLP’s were 
combined using weighted majority scheme. It was observed that the proposed system achieved 
recognition rates of 98.03% for top 5 results and 89.46% for top 1 result. 
 
P. Kasza presented a pseudo-Zernike feature descriptor [17] based recognition technique for 
accurate identification of printed and handwritten Chinese characters.  
 
K.C. Leung and C.H. Leung also proposed a ‘‘critical region analysis’’ [18] technique which 
highlighted the critical regions that distinguish one character from another similar character. The 
critical regions were identified automatically based on the output of the Fisher’s discriminant. 
Additional features were extracted from these regions and contributed to the recognition process. 
By incorporating this technique into the character recognition system, a record high recognition 
rate of 99.53% on the ETL-9B database was obtained. 
 
The emergence of deep learning which focusses on capturing both spatial and temporal 
dependencies in the patterns, has paved the way for the development of much more efficient 
pattern recognition models. Convolutional Neural Networks [19] which use deep learning 
approach, are a multi-layer neural networks predominantly designed for use on two-dimensional 
data, such as images.  
 
A deep learning approach using CNN was purposed for recognizing the handwritten Farsi/Arabic 
digits [20] by fusing the recognition results of a number of Convolutional Neural Networks with 
gradient descent training algorithm. Their results revealed a very high accuracy classifier 
outperforming most of the previous systems showing 99.17% in recognition rate.  
 
A model based on densely-connected belief nets [21] that have many hidden layers and which 
uses a fast, and greedy algorithm, was suggested and was proved that this model gives better 
digit classification than the best discriminative learning algorithms available at that time. And then 
performance evaluation for CNN and DBN [22] on the MNIST database was conducted and it was 
found that the classification accuracy rate of CNN and DBN on the MNIST database was 99.28% 
and 98.12% respectively.  
 
The convolutional neural networks (CNN) offered contemporary end-to-end methodology for 
handwritten Chinese character recognition (HCCR) [23] with very promising results in recent 
years. A streamlined version of GoogleNet with deep architecture generated new state of the art 
recognition accuracy of 96.35%.  For offline Arabic handwriting recognition [24], results proved 
that the new design based-SVM of the CNN classifier architecture with dropout performs 
significantly more efficiently than CNN based-SVM model without dropout and the standard CNN 
classifier. 
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3. CNN PARADIGM FOR HGDCR 

The proposed framework has been exhibited in Fig. 1. The framework majorly consists of four 
stages: First, the sample dataset preparation (includes pre-processing and normalization), CNN 
model creation and compilation, training the model (including model accuracy/error report 
preparation) and finally testing. 
 

 Dataset Formulation: Since the training of CNN requires a large number of training 
samples, the sample generation is important to provide enough number of samples to 
fully train the CNN model. Dataset is prepared systematically by labelling all the input 
images. The preprocessing and normalization of the dataset is performed using image 
resizing and histogram equalization techniques.  

 Defining CNN Architecture: The network structure of the CNN models is designed 
according to the properties of handwritten characters and several training tricks are also 
employed for model compilation and further causing better training. 

 CNN Model Training/Testing: Training of the model is prepared using various parameter 
settings and optimizers are changed for further fine tuning the model. See Table 1 for 
training details. 

 CNN Model Prediction: Testing of the model is done by providing a character image and 
predicting the class of the supplied character. 

 
FIGURE 1: The Proposed Framework. 

 

Layer(type) Output Shape Param # 
Image_array (Conv2D) (None,75,75,16) 800 

Batch_Normalization_1 (Batch) (None,75,75,16) 64 

Conv2D_1(Conv2D) (None,75,75,16) 12560 

Batch_Normalization_2 (Batch) (None,75,75,16) 64 

Activation_1(Activation) (None,75,75,16) 0 

Average_pooling2D_1(Average (None,38,38,16) 0 

Dropout_1(Dropout) (None,38,38,16) 0 

Conv2D_2(Conv2D) (None,38,38,32) 12832 

Batch_Normalization_3 (Batch) (None,38,38,32) 128 

Conv2D_3(Conv2D) (None,38,38,32) 25632 

Batch_Normalization_4 (Batch) (None,38,38,32) 128 

Activation_2(Activation) (None,38,38,32) 0 

Average_pooling2D_2(Average (None,19,19,32) 0 

Dropout_2(Dropout) (None,19,19,32) 0 

Conv2D_4(Conv2D) (None,19,19,64) 18496 

Batch_Normalization_5 (Batch) (None,19,19,64) 256 

Conv2D_5(Conv2D) (None,19,19,64) 36928 

Batch_Normalization_6 (Batch) (None,19,19,64) 256 

Activation_3(Activation) (None,19,19,64) 0 

Average_pooling2D_3(Average (None,10,10,64) 0 

Dropout_3 (Dropout) (None,10,10,64) 0 

Conv2D_6(Conv2D) (None,10,10,128) 73856 

Batch_Normalization_7 (Batch) (None,10,10,128) 512 

Conv2D_7(Conv2D) (None,10,10,128) 147584 

Batch_Normalization_8 (Batch) (None,10,10,128) 512 

Activation_4(Activation) (None,10,10,128) 0 
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Average_pooling2D_4(Average (None,5,5,128) 0 

Dropout_4 (Dropout) (None,5,5,128) 0 

Conv2D_8(Conv2D) (None,5,5,256) 295168 

Batch_Normalization_9 (Batch) (None,5,5,256) 1024 

Conv2D_9(Conv2D) (None,5,5,35) 80675 

global_average_pooling2D_1 (None,35) 0 

Predictions (Activation) (None,35) 0 
 

TABLE 1: Training Model Details for Gurmukhi & Devanagari character recognition. 

 
The following part contains details about the proposed framework. 
 
3.1 Dataset Formulation 
Due to the paucity of the standard Gurumukhi [25] dataset, we have collected the sample 
handwritten character images from the writings of persons of different age groups. Then isolated 
character images were extracted from the scanned document image and stored in their 
respective classes. And for devnagari character dataset, we have used a generic comprehensive 
devnagari numeral and character database developed by V. J. Dongre and V. H. Mankar [26]. 
The images from both the datasets have been shown in Figure 3 and Figure 4. Further the 
individual images were labelled according to their class names. Since all the character images 
present in the dataset were  of different sizes, the same were preprocessed by introducing image 
resizing i.e. resized all the images to the size [75,75].  Following that, all the images were 
converted from rgb to grayscale before being fed to input layers. Also as found in traditional 
methods, the normalization is important for reducing the variance of the characters, resulting in 
reducing the classification difficulty. Therefore normalization was performed using histogram 
equalization which enhances the image by changing the range of pixel intensity values. 
The resulting equalized image possesses approximately linear cumulative distribution function for 
every pixel proximity. Since in the future, the training process might be rerun more than one time 
before it is actually evaluated, it is useful that we don't have to go through all the images on every 
run and read every image, preprocess and normalize it, make labels for every image, split it into 
train/test for training and evaluating the model, encode the labels from text to numeric. That is 
why we store the results of each process in the form of NumPy binary files. NumPy files contain 
all images data converted in the form of multi-dimensional arrays. 
 

 
 

FIGURE 3: Gurmukhi Handwritten Dataset. 
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FIGURE 4: Devanagari Handwritten Dataset. 

 
As deep learning models take images separately, and labels separately that is why we have to 
separate them out. The whole dataset in the form of the files was loaded and split into 
corresponding train and test data (80% for train and 20% for test in our case). Resulting files were 
stored in numpy(npy) format as described in Table 2. 
 

Data File Meaning 
X_train Training Data 

X_test Test Data 

Y_train Corresponding labels for train data 

Y_test Corresponding labels for test data 

Y_train_encoded Train data labels converted into numeric 

Y_test_encoded Test data labels converted into numeric 
 

TABLE 2: Data File Details. 

 
3.2 HGDCR CNN Model 
The architecture forms a 2D sequential convolutional Neural Network model which is linear stack 
of 33 layers out of which ten convolution layers were deployed. The size of first two convolution 
filters (Total: 16) is 7 x 7 in first two layers, 5 x 5 in next subsequent two layers (Total: 32) and 3 x 
3 in the rest of six consecutive following layers (64 filters in the layer no 5 and 6, 128 filters in the 
layer 7 & 8 and 256 filters in the last two convolution layers). As the image reduces in size after 
every pooling layer, our filters are increasing to learn as much information as possible.  
 
3.2.1 Each time after convolution layer, the output is fed to batch normalization. A major glitch 
in sequence model is that as output of each layer is dependent on each layer, this steers to 
correlation between the layers. Therefore the changes made in any one layer will definitely affect 
all the following layers. This is seen as Internal Covariate Shift [27]. Batch normalization [27] 
addresses this problem by normalizing the output of each layer in mini-batches, which decreases 
the effect of changes in one layer in by both mean and variance reference. This also leads to 
allowing us to use higher learning rate to train our model. The normalized output is then fed to 
activation layer. 
 
3.2.2 In order to get better rate of approximation, the choice of an activation function [28] plays 
an important role. As the study shows that Sigmoids and tanh functions should be sometimes 
avoided because of vanishing gradient problem, ‘relu’ – rectified linear unit function was chosen. 
It’s just R(x) = max(0,x) i.e if x < 0 , R(x) = 0 and if x >= 0 , R(x) = x. Hence it is apparent from the 
mathematical form of this function that it is very simple and efficient. ReLu is nonlinear in nature. 
Using a sigmoid or tanh set off almost all neurons to fire in an analog way, which indicates that 
almost all activations are processed to describe the output of a network. In other words the 
activation becomes dense which is a costly affair. Ideally a few neurons in the network should not 
activate so that activations could be sparse and efficient. 
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ReLU function provides this benefit. If we construct a CNN and randomly initialize the weights, 
almost 50% of the network then will yield 0 activation because of the characteristic of ReLU which 
gives output 0 for negative input values. This means a fewer neurons are firing and the network is 
lighter. It is also evident from the mathematical forms of all activation functions that ReLU is less 
computationally expensive than tanh and sigmoid because it involves simpler mathematical 
operations compelling it a better choice while designing CNNs. 

 
3.2.3 After ReLU layers, we applied pooling layers [29] which is also referred to as down 
sampling layer. When we get a high activation value and we establish a particular feature in the 
original input volume, its exact location is not as significant as its relative location with respect to 
the other features. This becomes the prime reason behind using this layer. This layer radically 
reduces the spatial dimension of the input volume. This performs two main functions. The first is 
that the amount of weights is reduced by almost 75% thereby reducing the computation cost. The 
second is that it helps in controlling over fitting. Over fitting might occur when the model is so fine-
tuned to the training examples that it is not able to generalize well for the validation and test sets.  
The available options to pooling layer were max pooling or average pooling. As the choice of the 
pooling method depends on the structure of the image dataset therefore, we experimented with 
both pooling methods on our dataset. Comparative classification performances with both pooling 
methods are depicted in the Table 3. 
 

Method Training Error % Accuracy % 
Average Pooling 32.0684% 92.2857% 

Max Pooling 33.1124% 91.7568% 
 

TABLE 3: Comparative Classification Performances using different Pooling techniques. 

 
3.2.4 We did make use of drop out layer [30] after the average pooling layer whose output was 
fed to drop out layer.  The function of this layer is to drop out a random set of activations by 
setting them to zero. By doing so, it forces the network to be redundant and establishes that the 
network is able to provide the right classification even if some of the activations are dropped out. 
It also makes sure that the network doesn’t get over fitted to the training data and thus assists 
alleviate the over fitting problem. We have set 50% of randomly chosen nodes to zero to prevent 
overfitting for each iteration so that network may not start using only a few filters. It enforces 
network to utilize all network paths as if one is set to zero, network tries to learn non-zero path. 
 
3.2.5 Global average pooling layer [19] has been introduced before the final activation layer 
instead of fully connected layer. GAP layer takes the average of each feature vector for each 
corresponding category of the classification process. The subsequent feature vector is supplied 
into softmax layer. Also the GAP layer does not require any parameter optimization therefore 
there is less probability of over fitting. This structure bridges the convolutional structure with 
traditional neural network classifiers. Nevertheless, the fully connected layers being prone to over 
fitting, hinder the generalization ability of the whole network.  
 
In our Gurumukhi handwritten character recognition, we had 35 different mutually exclusive 
classes, hence, the dimension of the output class is 35. For Devanagari character recognition we 
had 60 different mutually exclusive classes so the dimensionality of the output class has been set 
to 60. Ideally, the best prediction is if the probability comes out to be 1.0 for a single output node, 
and probability of rest of the output nodes comes out zero. We have used Softmax function as 
output layer which roughly work like Max layer as well as it is differentiable to train by gradient 
descent. Finally, a softmax layer trained on our Gurumukhi dataset will output a separate 
probability for each of the thirty five characters, and the probabilities will all add up to 1. The 
output of this softmax classifier is in the form of an array of probabilities for each class. The 
highest probability in this array is the class that is predicted. 
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3.3 Experiment 
We performed this experiment on Intel Core I-7 7th Generation, 16GB RAM, nVidia GTX 1060 
6GB Graphics Card, machine.  The code was run on linux which was having Anaconda for 
python, Keras 2.1.5 as frontend model and Tensorflow r1.7 as backend. Keras is a high-level API 
for neural networks. It is written in Python and capable of running on top of TensorFlow. Our 
gurmukhi dataset contained hundred handwritten character images, out of which 80 images were 
used for testing and 20 were used for testing purposes. 

 
3.4 Results 
In order to compile and evaluate the quality of our neural network model, we preferred to use 
cross-entropy loss function which is also known as log loss. The principle is that as the predicted 
probability approaches 1, log loss slowly decreases whereas when the predicted probability 
decreases, the log loss increases rapidly. Once the computed output gets closer to 0.0 or 1.0, the 
chances of gradient getting smaller and smaller are diminished in case of cross entropy and the 
training does not stall out. Finally, compilation process was tested using different optimizers  
(Adam (Adaptive Moment estimation), RMSprop (root mean squared propagation) and SGD 
(Stochastic gradient descent) and nadam (Nesterov Adam) [31] out of which ‘nadam’ was found 
more efficient for our classification process as it provided better convergence rate guarantee than 
all other. As this deep learning model was expected to take hours, there were chances of losing a 
lot of work if the run was stopped unexpectedly or due to any other fault, check points have been 
introduced in the CNN model. A snapshot of the state of the system was fixed to be taken in case 
of system failure. The training data consisted of 707,475 total params (weights) out of which 
706,003 were found to be trainable and rest 1472 were non-trainable. Non-trainable parameters 
means the number of weights which were chosen to keep constant when training i.e. the 
algorithm didn’t update these weights during training. The confusion matrix after as well as 
without normalization was displayed. The classification summary was displayed showing 
precision, F1-score, recall and support values for each individual character. The f1-score 
represents the harmonic mean of precision and recall. The scores corresponding to every class 
tells the accuracy of the classifier in classifying the data points in that particular class compared 
to all other classes. The support is derived from the number of the samples with the true 
response that lie in that class. A glimpse of classification summary report is shown in Fig using 
pre-labelled input images from the dataset. 

 
Gurumukhi Character Classification 

Summary 
Devanagari Character Classification 

Summary 
Alphabet 
Labels (as 
per phonetic 
sound) 

Precision Recall F1-
Score 

Alphabet 
Labels (as 
per phonetic 
sound) 

Precision Recall F1-
Score 

Bhubba 0.90 0.95 0.93 A 0.95 1.00 0.98 

Bubba  0.83 0.95 0.88 Aa 0.95 1.00 0.98 

Chhuc-hha  0.86 0.95 0.90 Aae 0.90 0.95 0.93 

Chucha 0.90 0.90 0.90 Ae 1.00 1.00 1.00 

Dhuda 1.00 1.00 1.00 Ang 1.00 0.85 0.92 

Dhudda 1.00 1.00 1.00 Bada-Ae 1.00 1.00 1.00 

Duda 0.87 1.00 0.93 Bada-O 0.95 1.00 0.98 

Dudda 1.00 0.75 0.86 Bada-oo 1.00 1.00 1.00 

Ghugga 0.91 1.00 0.95 Ch 1.00 1.00 1.00 

Jhujja 0.95 0.95 0.95 Chh 1.00 1.00 1.00 

Jujja 1.00 0.95 0.97 Chota-O 1.00 0.95 0.97 

Lulla 1.00 0.85 0.92 Chota-oo 0.95 1.00 0.98 

Mumma 1.00 0.95 0.92 D 1.00 1.00 1.00 

Nannhha 1.00 0.75 0.97 D-dawaat 0.95 0.95 0.95 

Nunna 0.88 0.90 0.81 Dh 0.95 0.95 0.95 

Pupha 0.82 0.85 0.86 Dd 0.95 0.90 0.92 

Puppa 0.89 0.95 0.87 Dn 0.95 0.90 0.92 

Rahrha 1.00 1.00 1.00 E 0.86 0.95 0.90 
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Rara 1.00 0.85 0.92 Ee 1.00 1.00 1.00 

Tainka 0.90 0.95 0.93 G 1.00 1.00 1.00 

Thhuthha 0.73 0.95 0.83 Gh 1.00 0.95 0.97 

Thutha 0.94 0.85 0.89 Gy 1.00 0.95 0.97 

Tutta 0.89 0.85 0.87 H 1.00 1.00 1.00 

Ungga 1.00 0.90 0.95 J 1.00 1.00 1.00 

Vava 1.00 0.95 0.97 Jh 0.95 0.90 0.92 

Yaiyya 0.94 0.85 0.89 K 1.00 1.00 1.00 

Yanza 0.95 1.00 0.98 Kh 1.00 0.90 0.95 

Eerhi 0.87 0.90 0.95 Ksh 0.90 0.95 0.93 

Erha 0.95 1.00 0.98 L 1.00 0.85 0.92 

Gugga 0.87 1.00 0.93 Nn 0.91 1.00 0.95 

Haha 0.95 1.00 0.98 Nh-veena 0.91 1.00 0.95 

Khukha 0.90 0.95 0.93 P 1.00 1.00 1.00 

Kukka 0.90 0.95 0.93 Ph 1.00 1.00 1.00 

Sussa 0.80 0.80 0.80 RRishi 0.91 1.00 0.95 

Urha 0.91 1.00 0.95 S 1.00 1.00 1.00 

Avg/Total 0.93 0.92 0.92 Shh 0.95 1.00 0.98 

 T-Tamatar 0.91 1.00 0.95 

Thh 1.00 0.95 0.97 

V 0.95 0.95 0.95 

Y 0.95 1.00 0.98 

b 1.00 0.95 0.97 

Bh 1.00 0.95 0.97 

La 0.95 1.00 0.98 

m 1.00 1.00 1.00 

n 0.91 1.00 0.95 

r 1.00 0.95 0.97 

sh 1.00 1.00 1.00 

t 0.95 1.00 0.98 

th 1.00 0.85 0.92 

trra 1.00 0.90 0.95 

Avg/Total 0.95 1.00 0.98 
 

FIGURE 5: Classification summary of All Gurmukhi and Devnagari Characters. 
 
The model resulted in an average accuracy of more than 92% and 97% in case Gurumukhi and 
Devanagari Characters respectively as shown in Figure 5. In order to improve the recognition 
accuracy, Confusion matrix is generated from large amount of data of both scripts. The confusion 
matrix showed how many times one character is confused with the other character in output with 
given Input. It is reasonable that the confusion between characters occurs basically due to similar 
shape characters. A lot of algorithmic changes were done while fine tuning the model. The 
resultant model produced the highest accuracy rate while minimizing the error. As a result this 
was chosen to be the base model for this recognition process. 
 
4. CONCLUSION 
This research work deals with the recognition of Handwritten Gurmukhi and Devanagari 
Characters using deep learning algorithms by implementing convolution neural networks. 
Proposed research work delivers more efficient and accurate results than any other existing 
machine learning systems.  As a part of future work, recognition accuracy needs to be tested by 
augmenting our datasets by auto generating character images by performing different alterations 
on existing datasets. Our experimental result shows that the recognition rate is reduced a bit due 
to false detection of few characters during testing. In spite of that the overall recognition accuracy 
is acceptable and conforms to somewhat human like recognition. The recognition accuracy also 
needs to be tested by combining CNN with recurrent neural networks using LSTM or GRU like 
deep learning algorithms also and deriving the probability of a single deep learning model for 
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recognizing characters from multiple scripts instead of creating different models for different 
scripts. 
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