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Abstract 
 
We propose a brain tumor segmentation method from multi-spectral MRI images. The method is 
based on classification and uses Multiple Kernel Learning (MKL) which jointly selects one or more 
kernels associated to each feature and trains SVM (Support Vector Machine). 
 
First, a large set of features based on wavelet decomposition is computed on a small number of 
voxels for all types of images. The most significant features from the feature base are then 
selected and a classifier is then learned. The images are segmented using the trained classifier 
on the selected features. In our framework, a second step called re-learning is added. It consists 
in training again a classifier from a reduced part of the training set located around the segmented 
tumor in the first step. A fusion of both segmentation procures the final results. 
 
Our algorithm was tested on the real data provided by the challenge of Brats 2012. This dataset 
includes 20 high-grade glioma patients and 10 low-grade glioma patients. For each patient, T1, 
T2, FLAIR, and post-Gadolinium T1 MR images are available. The results show good 
performances of our method. 
 
Keywords: Cerebral MRI, Tumor, Segmentation, Feature Selection, Multiclass, Classification, 
Multiple Kernel Learning, Multimodal. 

 
 
1. INTRODUCTION 

Brain tumor is among the most frequent cancers and its mortality rate is very high. The most 
aggressive forms of the disease, classified as HG gliomas (High-Grade gliomas), possess a two 
years survival mean rate and even less than two years and require an immediate treatment. The 
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disease variants having a slow development, classified as LG gliomas (Low-Grade gliomas), 
have a many years' life expectancy. For these two types of gliomas, various protocols of medical 
imaging are necessary before and after the treatment to estimate the progress of the disease as 
well as the performance of the chosen treatment strategy. As it provides a good soft tissue 
contrast, Magnetic Resonance Imaging (MRI) is currently the standard technique for brain tumor 
diagnostic [1, 2, 3]. MRI can also produce different types of tissue contrasts by varying excitation 
and repetition times, enhancing different aspects of the tissues and revealing different subregions 
of the tumor such as necrotic, active or edema subregions. Despite continuous advances in 
imagery technology, brain tumors, owing to their extremely heterogeneous shapes, appearances 
and locations still present a serious challenge to segmentation techniques. 
 
In the literature, a large number of medical image segmentation methods were proposed. Among 
these methods, the methods based on classification are particularly well adapted for multi-
sequence data: We can merge multi-sequence data by selecting features. In the case of 
supervised learning, classification methods are based on two main elements: the first element is 
the description of the data, in a features extraction step, aiming to represent in a discriminative 
way the raw information given by voxels intensity observed through several modalities. The 
second element is the learning of a decision rule from labelled data. 
 
In our segmentation problem, the most discriminative features are unknown a priori. Besides, 
they are different according to the modality. Thus it is necessary to select them among all the 
features extracted from the images multi-sequence. Over the years, many features were 
proposed in the literature, trying to include a lot of information or to supply a high distinctive 
power. From our point of view, to obtain a good classification, the choice of the features is 
important, particularly in the case of several types of image such as the MRI sequences. 
However, we do not know a priori the most informative features for each type of MRI sequence. 
Thus, it is necessary to extract various types of feature and choose the most significant ones for 
each MRI sequence before the classification, according to their individual discrimination power 
[4], or according to their class separability [5].  
 
Multiple Kernel Learning (MKL) [6] jointly operates kernel selection and classification via a SVM 
[10]. Its principle is to associate one or more kernels to each feature. The MKL algorithm will then 
jointly determine the weight associated with each kernel (feature selection) and the separating 
hyperplans of an SVM (classification step). A sparse constraint is also applied on the kernel 
weights in order to select as few features as needed. Regarding the advantages of this technique, 
MKL is adopted in our brain tumor segmentation framework. 
 
In this paper, we propose a semi-automatic brain tumor segmentation method from MRI multi-
sequence. The proposed method is based on classification and uses a MKL algorithm to exploit 
the diversity and the complementarity of the data supplied by the different images. The method 
needs a minimal humain interaction to include doctor's expertise and produces relatively precise 
results. First, a large set of features based on wavelet coefficients is computed on all types of 
images from a small number of voxels, allowing us to build a training feature base. Using the MKL 
algorithm, we can associate one or more kernels to each feature in order to solve jointly the two 
problems: (1) selection of the features and their corresponding kernels, (2) training of the 
classifier. The tumor and edema are then segmented using the trained classifier on the selected 
features extracted from the whole image volumes. Finally, a post-processing step is performed to 
improve the results by using a second learning step (second application of the MKL algorithm). 
Combining the two tumor regions obtained from the first and the second learnings gives the final 
results. 
 
The idea of using the MKL-SVM algorithm to segment  brain tumor from multi-spectral MRI 
images was published in previous work [12]. In this paper we add a post-processing step based 
on a re-learning step. 
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We have tested our method using the database provided by the Multimodal Brain Tumor 
Segmentation (BraTS) 2012 challenge [11]. It is a large dataset of brain tumor MR scans in which 
the tumor and edema regions have been manually delineated and been made available to the 
public. 
 
The paper is organized as follows: The next section of this paper is devoted to our method and its 
different steps, including a brief presentation of the MKL. Then, we compare our results in the 
different steps of the method. We conclude finally. 

 
2. METHOD 
As seen Figure1, our proposed methods is divided into three main steps : a learning step, a 
classification step and a post processing step. 
 
The purpose of the learning step is to solve the MKL-SVM problem and to validate its 
regularization parameter C, based on a reduced set of labelled voxels extracted from a MRI 
sequence. This step itself, is based on three stages : the labeling of a reduced set of voxels, the 
computing of the features associated with these voxels and the MKL-SVM training. 
 
The MKL-SVM training is repeated several times to select the regularization parameter C 
associated to the MKL-SVM problem : First, the features are extracted from a reduced set of 
voxels labelled by experts. Then, the most relevant features among all the features are selected 
by the MKL method using a sparsity constraint (to reduce the number of features). The 
hyperparameter C of the MKL algorithm is estimated during this learning step. 
 
The classification step is a two stages procedure: first, we calculate the features associated to all 
the voxels of all MRI images. Then, we use the MKL-SVM classifier using the already chosen 
value of C, to segment three classes: edema, tumor and healthy tissues. 
 
The post-processing step is used to correct some errors in the tumor boundary and the edema 
boundary. It is based on a re-learning step on a reduced area around the first detected tumor and 
edema areas. Very small regions are filtered for both learnings. The final result is obtained by 
merging the results of both learnings and by applying a 3D connection on the fusion result. 
 

 
 

FIGURE 1: Proposed Framework of Our Method. 
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2.1 Learning Step    
The learning step takes place in three stages: the labeling of a reduced set of voxels, the 
computing of the associated features and the MKL-SVM training. This last stage allows to 
validate and to select the regularization parameter C associated to the MKL-SVM problem.  
 
3.2.1 Training Set 
For each patient, the expert is brought to select points on the border of the tumor, the border of 
the edema as well as on a healthy zone, on a single slice in a single sequence. These points 
allow to draw the boundaries of each tissue. From these boundaries, we can generate a learning 
set for each tissue class. Numerous features can be extracted to describe brain tumor texture in 
MR images, such as intensity based features [7], texture based features [8] and wavelet 
coefficients [7]. 
 
3.2.2 MKL Training 
We can associate one or more kernel functions to each type of features for each image 
sequence. Each kernel is associated with a positive coefficient reflecting the importance of the 
corresponding feature in the classification. As a linear combination of these kernels weighted with 
these coefficients is also a kernel, a SVM with this new kernel could be used to classify. The best 
classification is obtained when the best combination of the kernels is found. 
 
Multiple kernel learning methods were introduced by Lanckriet et al. in [6] and have been 

developed to determine the positive weight 
m

d  associated to each kernel 
m

k . In a MKL-SVM 

framework, the decision function has the following form : 
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FIGURE 2: Feature and Kernel Selection via Kernel Weights. 
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As seen in Figure 2, we can associate each kernel weight to a single kernel applied to one 
feature. The sparsity constraint on the kernel weights allows us to select both the informative 
features and adapted kernels. In practice, we can use several kernels of the same family with 
different parametrizations. 
 
Numerous methods and formulations exist for solving the MKL problem in literature. We chose 
the SimpleMKL algorithm [9] in our method mainly because a version is provided for multi-class 
settings using a common kernel weights determination for all classes. It will enable a better 
interpretation of the selected kernels. The SimpleMKL algorithm is based on solving the primal 
problem using a simple gradient method. The primal problem determines jointly the kernel 

functions 
m

f , the kernel weights 
m

d and the soft margin parameters 
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The 
1
l norm−  sparsity constraint on the positive weights 

m
d is given by fixing their sum equal to 

one. The regularisation hyperparameter C is initialized with a very small value and then 
incremented regularly. On a multi-class problem, there is still an interval of C-value  where the 
segmented region is stable, corresponding to stable kernel weights. The adopted validation 

strategy is then : once the variations of kernel weights become lower than a given threshold ( )
i

ξ , 

the current value of C is chosen. 
 
2.2 MKL based SVM Classification 
Thanks to the learning step and the the sparse constraint, we can use only the subset of features 

associated to the chosen kernels (with non-null weights 
m

d ) to classify the voxels. Indeed, the 

values of 
m

d  define if the corresponding features are selected. If 
m

d  = 0, the corresponding 

feature is not selected. Test features are then computed for all the voxels of the different MRI 

volumes, and the MKL-SVM algorithm is run using the 
stab

C  value and the learned MKL model. 

 
2.3 Post-processing Step and Re-learning 
The aim of the post-processing step is to improve the obtained classification results. Very small 
regions are first eliminated by using morphological operations. A re-learning step is then 
performed, which can be viewed as a reapplication of our MKL-SVM algorithm on a reduced area 
including abnormal tissues and normal tissues around the tumor area (a second learning step, a 
second feature extraction step and a second classification step). This second learning allows to 
train the classifier specifically to deal with boundary regions. New results of tumor and edema 
segmentations are finally obtained. the second learning improves tumor detection for the most of 
the patients. For that reason, we combine the new results with the first step ones in order to find 
the best segmentation using two simple fusion rules : the union of the two sets of tumor labelled 
voxels for tumor segmentation and the set of edema labelled voxels of the first trial for edema 
segmentation. A 3D connection is finally applied to eliminate isolated voxels. The fusion strategy 
is presented in Table 1: 1 is the edema label, 2 is the tumor label and 0 is the healthy tissue label. 
The post-processing step is presented in Figure 3. 
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Fusion 0 1 2 

0 0 0 2 

1 1 1 2 

2 2 2 2 

 

TABLE 1: The fusion strategy. Bold column : first learning labels. Bold line: second learning labels. 
 
 

 
 

FIGURE 3: The Post-processing Step. 

 
3. MATERIAL AND RESULTS 
3.1 Material 
We evaluate our approach on real patients MRI of the dataset of the MICCAI 2012 BraTS 
challenge. This dataset includes 20 high-grade glioma patients, where tumor tissues and healthy 
tissues are well differentiated, and 10 low-grade glioma patients, where tumor tissues and healthy 
tissues are poorly differentiated, both with and without resection, along with expert annotations for 
active tumor and edema. For each patient, T1, T2, FLAIR, and post-Gadolinium T1 MR images 
are available as seen in Figure 4. All volumes were linearly co-registered to the T1 contrast 
images, skull stripped, and interpolated to 1mm isotropic resolution. The MR scans are provided 
as well as the corresponding reference segmentations. 
 
Figure 5 shows examples of slices and their corresponding ground truths for four patients: two 
from the HG dataset and two others from the LG dataset. 
 

 
 

FIGURE 4: Slices of the four volumes of a patient (from left to right: post-Gadolinium T1, T1-weighted, T2-
weighted and Flair). 
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FIGURE 5: Example slices and their ground truths for 4 patients. left column : patient HG11 (top) patient 
HG14 (bottom) right column : patient LG02 (top) patient LG14 (bottom). 

 
3.2 Experiments & Results 
In this paper, we used a set of features based on Multilevel 2-D Discrete wavelet decomposition 
calculated on a patch surrounding each labeled voxel, as feature for brain tumor description in 
MR images [7]. The whole feature set is composed of nine different details and one residual 
coefficients of Haar 2D wavelet decomposition calculated separately on each modality, combined 
through Gaussian kernels with different parameters defined as the standard deviation of the 
feature multiplied by factors 0:1,1 or 10. It results on 120 kernels.  
 
Given a fixed value of the regularisation parameter C, we studied the influence of the size of the 
learning set to the Dice score value and to the learning time. The Dice score as well as the 
learning time increase with the increasing of the learning set. With the best value of dice score 
and a reasonable learning time, the chosen size of the learning set is 150 points. 
 
As presented earlier in this paper, we do a 're-learning' step and merge the labels in a late fusion 
step. So for each patient, we can provide three evaluation results corresponding to the 
segmentations obtained by the initial learning, by the second learning and by the fusion of the 
labels. That allows to show improvements given by the re-learning and fusion steps. We will also 
present as a control experiment the dice score of the segmentation given by the most-weighted 
kernel of the MKL. Ideally, all three evaluations results should perform better than any single 
kernel of the MKL kernel set. The dice score is computed using the on-line tool available during 
the challenge. 
 
3.2.1 Results for High-Glioma Patients 
Table 2 details the Dice scores for the high-grade patients of the datatset. We compare results of 
the different steps of the method as well as the results given by the single best kernel. It can be 
observed that the results using the best single kernel in the control experiment are worse than the 
results obtained at each step of the method, except for patient HG14. In this case, the results of 
the two-first steps and the control experiment are similar, but the fusion significantly improve the 
results. That means a fusion of the different steps allows to improve the results. 
 
The edema mean dice score of the second learning step segmentation is lower than that of the 
first segmentation. However the tumor mean dice score lightly increases. That shows that the 
fusion strategy of the two different classification results enables a better segmentation of the core 
part of the tumor, with a 5% higher mean dice score for this class. It proves a good performance 
of our choice of fusion strategy of the two segmentation steps. Figure 6 shows a first example of 
segmentation results for one high gliomas patients (HG14) detailed at each step of our method. 
The initial segmentation is first improved by the second learning and further refined by the fusion 
strategy and post-processing step (3D connection). However, as seen in Figure 7, the second 
learning can lead to some false positives for edema labelling, but this can be corrected by the 
fusion strategy. This is reflected in the corresponding mean dice score. 
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Volume 1rst training 2nd training Fusion Best kernel 

E T E T E T E T 
HG01 0.62 0.60 0.60 0.66 0.64 0.67 0.60 0.46 

HG02 0.74 0.51 0.58 0.61 0.70 0.61 0.52 0.34 

HG03 0.82 0.84 0.81 0.76 0.80 0.77 0.39 0.74 

HG04 0.52 0.69 0.51 0.80 0.51 0.80 0.46 0.54 

HG05 0.47 0.33 0.48 0.39 0.44 0.36 0.08 0.20 

HG06 0.45 0.59 0.53 0.56 0.48 0.57 0.34 0.52 

HG07 0.53 0.60 0.46 0.67 0.55 0.70 0.50 0.44 

HG08 0.71 0.68 0.76 0.84 0.72 0.85 0.27 0.51 

HG09 0.68 0.71 0.60 0.59 0.69 0.74 0.63 0.59 

HG10 0.39 0.59 0.23 0.49 0.48 0.54 0.29 0.08 

HG11 0.77 0.87 0.45 0.73 0.75 0.87 0.45 0.68 

HG12 0.42 0.61 0.48 0.37 0.45 0.64 0.27 0.10 

HG13 0.59 0.70 0.56 0.66 0.56 0.72 0.47 0.68 

HG14 0.24 0.52 0.23 0.67 0.29 0.75 0.28 0.58 

HG15 0.78 0.87 0.70 0.87 0.77 0.87 0.34 0.78 

HG22 0.66 0.41 0.52 0.61 0.65 0.63 0.65 0.17 

HG24 0.62 0.71 0.52 0.75 0.61 0.76 0.38 0.19 

HG25 0.51 0.55 0.51 0.32 0.41 0.35 0.08 0.20 

HG26 0.71 0.50 0.54 0.46 0.70 0.53 0.41 0.14 

HG27 0.67 0.80 0.56 0.77 0.67 0.81 0.55 0.55 
Mean 0.60 0.63 0.54 0.64 0.60 0.68 0.40 0.42 
Min 0.24 0.33 0.23 0.32 0.29 0.35 0.08 0.08 
Max 0.82 0.87 0.81 0.87 0.80 0.87 0.65 0.78 

 

TABLE 2: Detailed MKL-SVM segmentation results of high-grade gliomas patients in the BRATS dataset. 
Dice score is reported for the segmentation of edema (E) and active tumor (T). 

 
Table 3 shows the mean weights of the 120 initial kernels with respect to the different modalities 
and wavelet coefficients (Horizontal, Vertical, Diagonal, Accuracy) at each decomposition levels 
(N). Each table cell contains the three kernel weights represented in percentages associated to a 
single feature through three different Gaussian kernel. The selected kernels correspond to non-
null weights. Some of them are selected with very small weights lower than 1%, which are 
denoted by ε  in the table. Note that only 40 mean kernel weights are non-null. In fact, only an 

average of 8 features is selected per patient, which means that the segmentation step only 
requires the computation of a very small number of features among all 120 features on the whole 
image volumes. 
 
The most-weighted kernels correspond to the details of the last level of the wavelet 
decomposition (table 2, N=3, A).This information is complemented by kernels with very small 
weights (ε ) which are selected at all level of decomposition. Even with very small weights, these 

kernels contribute to the decision. Thanks to the sparsity constraint, uninformative kernels won't 
be selected. Through the selected kernels, all modalities take part in the classification process. 
Flair and T2 modalities have the three most weighted kernels. Their weights have about the same 
order of magnitude. Theses modalities are known to be decisive in the segmentation process and 
are retrieved by our kernel selection method. Moreover, we can see that the other modalities 
especially T1c can also contribute to the segmentation process depending on patient. 
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FIGURE 6: Examples of intermediary segmentations for one slide of Patient HG0014. Left: edema region, 
Right: tumor region Green : True Positives, Blue : False Negatives and Yellow : False Positives. 

 

 
 

FIGURE 7: Segmentation results for Patient HG0027 for the Edema region. Green : True Positives, Blue : 
False Negatives and Yellow : False Positives. 
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wavelet 
coefficients 

Modality 

T1 T1c T2 Flair 
N=1, H 0/0/0 ε /ε /0 0/0/0 0/0/0 

N=1, V 0/0/0 ε /ε /0 0/ε /0 0/0/0 

N=1, D 0/0/0 0/0/0 0/ε /0 0/0/0 

N=2, H ε /0/0 ε /ε /0 0/0/0 0/1/0 

N=2, V ε /0/0 ε /ε /0 0/ε /0 0/ε /0 

N=2, D 0/0/0 ε /ε /0 0/ε /0 0/0/0 

N=3, A ε /11/0 2/5/8 0/2/16 0/20/21 

N=3, H 0/0/0 ε /ε /0 0/1/0 0/2/0 

N=3, V ε /ε /0 ε /ε /0 0/ε /0 0/3/0 

N=3, D 0/0/0 ε /ε /0 0/ε /0 0/0/0 

 

TABLE 3: Detailed Kernel weights (%) of the three gaussian kernel associated to each feature (HG 

patients). ε  denotes selected kernels with very small associated weights. 

 
3.2.2 Results for Low-Glioma Patients 
Table 4 details the Dice scores for the low-grade patients of the dataset obtained at each step of 
the method as well as the results given by the single best kernel control experiment. The first 
learning step is not as effective as the control experiment for three patients out of 10. However in 
one of those cases (LG12), the fusion strategy with the second set allows to compensate the 
errors. These results are less globally satisfying than the results for High-grade patients, because 
the quality of images is not as good as for high grade patients. Notice that if the fusion and re-
learning steps appear inefficient on average compared to the segmentation results of the first 
learning, they compensate bad first learning step results as indicated by the major amelioration 
on the tumor dice score.  
 
Table 5 shows the mean weights of selected kernels among the 120 initial kernels with respect to 
the different modalities and wavelet decomposition levels. The selection pattern among the 
different features and modalities is quite similar to the high-gliomas case, except for the weight 
given for the most-weighted kernel and the reduction of the number of complementary kernels. 
This concentration of the weight on one kernel explains why the control experiment performs 
more similarly than our methods in LG patient case. Figure 8 shows an example of our 
segmentation results on a low glioma patients (LG12) at different steps of the method. As we can 
see, the post-processing step improves significantly tumor and edema detection. 
 

Volume 1rst training 2nd training Fusion Best kernel 

E T E T E T E T 
LG01 0.29 0.26 0.24 0.51 0.27 0.52 0.28 0.36 

LG02 0.71 0.73 0.61 0.58 0.61 0.58 0.71 0.69 

LG04 0.60 0.64 0.53 0.56 0.57 0.55 0.42 0.26 

LG06 0.67 0.54 0.65 0.41 0.67 0.42 0.24 0.52 

LG08 0.58 0.69 0.51 0.56 0.58 0.69 0.59 0.44 

LG11 0.41 0.86 0.39 0.87 0.39 0.87 0.44 0.85 

LG12 0.51 0.66 0.42 0.80 0.55 0.80 0.53 0.70 

LG13 0.43 0.69 0.26 0.57 0.45 0.61 0.13 0.32 

LG14 0.15 0.46 0.17 0.50 0.18 0.50 0.15 0.52 

LG15 0.60 0.78 0.54 0.77 0.58 0.77 0.15 0.73 
mean 0.49 0.63 0.43 0.61 0.49 0.63 0.36 0.54 
min 0.15 0.26 0.17 0.41 0.18 0.42 0.13 0.26 
max 0.71 0.78 0.65 0.87 0.67 0.87 0.71 0.85 

 

TABLE 4: Detailed MKL-SVM segmentation results of low-grade gliomas patients in the BRATS dataset. 
Dice score is reported for the segmentation of the edema and the active tumor. 

 



Naouel Boughattas, Maxime Berar, Kamel Hamrouni & Su Ruan 

International Journal of Image Processing (IJIP), Volume (10) : Issue (2) : 2016 60 

wavelet 
coefficients 

modality 

T1 T1c T2 Flair 
N=1, H 0/0/0 0/0/0 0/0/0 0/0/0 

N=1, V 0/0/0 ε /0/0 0/0/0 0/0/0 

N=1, D 0/0/0 0/0/0 0/0/0 0/0/0 

N=2, H ε /0/0 ε /0/0 0/ε /0 0/0/0 

N=2, V ε /0/0 ε /0/0 0/0/0 0/0/0 

N=2, D 0/0/0 0/0/0 0/0/0 0/0/0 

N=3, A 4/8/0 3/3/ε  0/ε /17 0/45/9 

N=3, H ε /0/0 ε /ε /0 0/2/0 0/ε /0 

N=3, V 2/ε /0 ε /0/0 0/1/0 0/1/0 

N=3, D ε /0/0 0/ε /0 0/ε /0 0/0/0 

 

TABLE 5: Kernel weights (%) of the three gaussian kernel associated to each feature (LG patients). 
ε denotes selected kernels with very small associated weights. 

 
 

 
 

FIGURE 8: Examples of intermediary segmentations for one slide of Patient LG0014 without (top) and with 
(bottom) the post processing step. The left column : edema region, The right column : tumor region Green : 

True Positives, Blue : False Negatives and Yellow : False Positives. 
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3.2.3 Discussion 
In order to evaluate the performance of the proposed method, we use the mean Dice scores to 
compare our segmentation results with those of participating methods of the challenge 
BRATS'12. This comparison is shown in Table 6. The winning methods of the challenge were : 
Zikic et al. [13], Bauer et al. [10] and Hamamci et al. [14]. Only Hamamci et al. don't use 
classification based on features extracted from all modalities. Compared with these three 
methods, only the method of Zikic et al. [13] performs better than ours. Among all the other 
methods of the challenge, only that of Subbana et al. [11] performs slightly better than us. The 
methods presented by Zikic et al. [13] and Geremia et al. [15] use forest classification. The 
method of Bauer et al. [10] replaced a SVM judged less sophisticate used in a previous version of 
their method by a random forest classification. In [11], Subbanna et al. used a Bayesian classifier. 
However, for all those methods the classification step is either completed by a priori information 
learned on other patients such as tissue-specific intensity based models [13] or regularized via a 
Conditional Random Field [10], while our method uses a very simple training process. 
 
From Table 6, we can see that our method globally performs better in both edema and tumor 
segmentation for low-grade dataset than all methods of the challenge, but less for the high-grade 
dataset. 
 

 HG LG global 

Edema Tumor Edema Tumor 

MKL-SVM 0.60 0.68 0.49 0.63 0.60 

Zikic [13] 0.70 0.71 0.44 0.62 0.62 

Bauer [10] 0.61 0.62 0.35 0.49 0.52 

Hamamci [14] 0.56 0.73 0.38 0.71 0.60 

Geremia [15] 0.56 0.58 0.29 0.20 0.41 

Zhao [11] - - - - 0.33 

Subbanna [11] - - - - 0.61 

Fernandez [11] - - - - 0.49 

Menze[11] 0.57 0.56 0.42 0.24 0.45 

Menze[11] 0.70 0.71 0.49 0.23 0.54 

Riklin[11] 0.61 0.59 0.36 0.32 0.52 

 
4. CONCLUSION 
We presented a brain tumor segmentation system from multi-spectral MRI images. The system is 
based on classification and uses a MKL-SVM algorithm. It allows to deal with multi-input data, to 
exploit the diversity and the complementarity of all used data and to automatically select the most 
informative features thanks to a sparsity constraint posed on kernel weights. 
 
Our MKL-SVM algorithm is followed by a post-processing step : The tumor region resulting from 
our first learning is eroded and the MKL-SVM algorithm is applied on the eroded area. The final 
result is the fusion of the first and the second learning results.  
 
Our system was tested on the real data provided by the challenge of Brats 2012. The results 
show good performances of our system. 
 
It is important to note that our method is general and can be used to segment any object from 
images multi-sequence. In future works we would like to test different MKL implementation, to 
involve more diverse features and kernels and to compare on brain tumor datasets labelled with 
many classes. 
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