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Abstract 

 
This study presents an improvement to Brent’s method by reconstruction. The Brent’s method 
determines the next iteration interval from two subsections, whereas the new method determines 
the next iteration interval from three subsections constructed by four given points and thus can 
greatly reduce the iteration interval length.  
  
The new method not only gets more readable but also converges faster. An experiment is made 
to investigate its performance. Results show that, after simplification, the computational efficiency 
can greatly be improved. 
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1. INTRODUCTION 

Brent’s method, which is proposed by Brent (1973)[1] and introduced in many numerical books 
[2], is a root-finding algorithm with combining root bracketing, bisection and inverse quadratic 
interpolation, based on Dekker’s method [3] to avoid the problem that it converges very slowly, in 

particular, when 1−
− kk bb may be arbitrarily small, where k  is the index for iterative steps. 

 
Brent (1973) published an Algol 60 implementation. Netlib contains a Fortran translation of this 
implementation with slight modifications. The MATLAB function fzero also implements Brent's 
method [4], as does the PARI/GP method solve. Other implementations of the algorithm (in C++, 
C, and Fortran) can be found in the Numerical Recipes books [5]. However, due to the difficulty to 
understand this algorithm, this method was replaced by Ridders’ method [6], as mentioned in 
some books [7]. 
 

2. IMPROVEMENT OF THE BRENT’S METHOD 
 

2.1 Comparisons Between the Brent’s Method and the Simplification 
The original Brent’s algorithm can be easily found on many websites such as Wikipedia (Brent's 
method)[8], for comparison it is reprinted here: 

• input a, b, and a pointer to a subroutine for f  
• calculate f(a)  

• calculate f(b)  
• if f(a) f(b) >= 0 then error-exit end if  

• if |f(a)| < |f(b)| then swap (a,b) end if  

• c := a  

• set mflag  
• repeat until f(b or s) = 0 or |b − a| is small enough (convergence)  

o if f(a) ≠ f(c) and f(b) ≠ f(c) then  
� calculate s  (inverse quadratic interpolation)  

o else  
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� calculate s  (secant rule)  
o end if  
o if (condition 1) s is not between (3a + b)/4 and b 

  or (condition 2) (mflag is set and |s−b| ≥ |b−c| / 2) 
  or (condition 3) (mflag is cleared and |s−b| ≥ |c−d| / 2) 
  or (condition 4) (mflag is set and |b−c| < |δ|) 
  or (condition 5) (mflag is cleared and |c−d| < |δ|) 
then  

� (bisection method)  
� set mflag  

o else  
� clear mflag  

o end if  
o calculate f(s)  
o d := c (d is asigned for the first time here, it won't be used above on the first 

iteration because mflag is set)  
o c := b  
o if f(a) f(s) < 0 then b:= s else a := s end if  
o if |f(a)| < |f(b)| then swap (a,b) end if  

• end repeat  

• output b or s (return the root) 
 
As seen from the above, the Brent’s method is very complicated and difficult to understand.  It is 
obvious that, the algorithm still preserves the idea that determines the next iteration interval from 
two subsections, in which one endpoint of previous interval is replaced with the new one 
calculated using inverse quadratic interpolation. 
 
According to the computation, three points will be used for the next inverse quadratic interpolation, 
one is b, another is s, which will be one of the two endpoints of the next interval, and the other will 
be b or a. When it takes a = s, then f(a)=f(c), the Brent’s method will use the secant rule algorithm. 
 
To simplify the Brent’s method, we can add one more evaluation for the function at the middle 
point c = (a + b)/2 before the interpolation. The simplified scheme now becomes as follows: 
 

• input a, b, and a pointer to a subroutine for f  
• calculate f(a)  

• calculate f(b)  

• if f(a) f(b) >= 0 then error-exit end if  

• repeat until f(b or s) = 0 or |b − a| is small enough (convergence) 
o c =(a+b)/2 
o calculate f(c)  
o if f(a) ≠ f(c) and f(b) ≠ f(c) then  

� calculate s  (inverse quadratic interpolation)  
o else  

� calculate s  (secant rule)  
o end if  
o calculate f(s) 
o if  c> s then  swap(s,c) 
o if f(c) f(s) < 0 then 

� a: = s 
� b: = c 

o else  
� if f(s) f(b) < 0 then a: = c else b: = s endif 

o end if  

• end repeat  



Zhengqiu Zhang 

International Journal of Experimental Algorithms (IJEA), Volume (2) : Issue (1) : 2011 23 

• output b or s (return the root)  

 
As seen from the above, after simplification, the new algorithm becomes much brief, more easily 
readable and understandable. Also, we don’t need set the mflag, reducing several of its related 
conditions. 
 
In the new algorithm, it is assumed that a < b, and c is the middle. If the interploated point (s) is 
less than c, then swap s and c, which makes the four points intersected with x–axis be labelled in 
the order of a, c, s  and b by their coordinates.  
 
Note that, for the above two methods,  to avoid calulating the function again, when swapping or 
assigning a variable to another, the function variable also needs to do the same, accordingly.   
 
2.2 Analysis on the Advantages of the New Algorithm 
Because the new algorithm added one more evaluation for the root-finding function, one step of 
iteration for it will be equivalent to two steps of the Brent’s method. This will provide it with several 
advantages over the original Brent’s method. 
 
a) Reducing the Times for Evaluating the Conditions 

Since for each step the Brent’s method must evaluate the condition: if (
21

ff × <0), two iterations 

must need two times of such judgment. Whereas for the new algorithm, its conditional judgment 
is: If…else, two times of evaluating the root-finding function each loop just does the judgment 
once.  
 
Therefore, it is obvious that the new algorithm spends less time to do the judgment after two 
times of the function evaluation than the Brent’s method. 
 
b) Accelerating Reduction of the Convergence Interval 
By introducing the evaluation at the middle point, in each iterative loop for the new algorithm, the 
convergence interval must reduce more than half of the previous interval, but two iterations of the 
Brent’s method could not.  
 
Although it will get more accurate interpolated point using the inverse quadratic interpolation, two 
iterations can’t guarantee the next interval reduces half of its previous.  It is easy to find such an 
example. Suppose current iterative interval is [a, b], which can be divided into two half. If two 
continuous interpolated points are located in the same half region, it can’t guarantee the last 
interval length reduces that much.  
 
Since the Brent’s method uses the bisection method under some conditions, it is obvious that the 
new method can more greatly reduce the next interval length. 
 
2.3 Comparisons With Ridders’ Method 
Before modification, Ridder’s method is simpler than Brent’s method, but Press et al. claim that it 
usually performs about as well [9]. However, the new revised Brent’s method becomes as simple 
as the Ridder’s method.  They have the same feature as that they converge quadratically, which 
implies that the number of additional significant digits doubles at each step, and the function has 
to be evaluated twice for each step, but the revised Brent’s method converges faster. 
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The Ridders’ method can be described as follows ("exponential case"). Given three x values {x0, 
x1, x2} evenly spaced by interval d0 at which the function f(x) has been calculated, a function p(x) 
in an exponential form is found which takes the same values as f(x) at the three points, then x3 is 
found as the point where p(x) = 0. Once x3 has been found, the closest one of the original three 
points is used as one of the three new points, along with one more new point chosen so as to 
have three equally spaced points with x3 in the middle. 
 
Compared with Ridders’ method, although the simplified Brent’s method and the Ridders’ method 
both determine the next iterative subsection via four points {x0, x1, x2, x3}, the simplified Brent’s 
method will have a narrower converging subsection for the next iteration than that of Ridders’ 
method does, as can be seen from their actions to search for the converging subsection. That is, 
the next iterative subsection for the new method is one of the three subsections formed by the 
four points, whereas the next iterative subsection for Ridders’ method is the subsection double 
extended on one of the three subsections. 
 

3. EXPERIMENTAL TEST 

From the above analysis, we can tell the new algorithm will be faster than the Brent’s method. To 
confirm it, the following experiment will be used to test and compare their efficiencies. Simply, 
let’s find one root of 

0)cos(
3

=− xx , 

Using the two methods with iteration, respectively. For the initial, set a=-4 and b=4 as the two 
endpoints of a section in which the root will be located. And iteration termination error is given to 
be 1.0E-5. 
 
3.1 Analysis on the Advantages of the New Algorithm 
Due to one more evaluation of the root-finding function is needed for the new method in each do-
loop, equivalent to two times of iterations for the Brent’s method. To make them comparable, we 
compare the times of the function evaluation for the two methods.   
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

TABLE 1: Comparisons between the results from the two methods. 

 

Step Brent’s method The new method 
(a, b) ∆  (a, b) ∆  

1 4 .000000 0.000000 4.000000 — — — 

2 2.000000 0.000000 2.000000 0.000000 4.000000 4.000000 
3 0.000000 1.000000 1.000000 — — — 

4 1.000000 0.685073 0.314927 0.235070 2.000000 1.764930 
5 1.000000 0.842537 0.157463 — — — 

6 0.921268 0.842537 0.078732 0.710220 1.117535 0.407315 
7 0.842537 0.881903 0.039366 — — — 

8 0.881903 0.865107 0.016796 0.862843 0.913877 0.051035 
9 0.873505 0.865107 0.008398 — — — 

10 0.869306 0.865107 0.004199 0.865470 0.888360 0.022890 

11 0.867206 0.865107 0.002099 — — — 

12 0.866156 0.865107 0.001050 0.865470 0.865474 0.000004 
13 0.865107 0.865631 0.000525    
14 0.865631 0.865474 0.000157    

15 0.865553 0.865474 0.000079    
16 0.865513 0.865474 0.000039    
17 0.865494 0.865474 0.000020    



Zhengqiu Zhang 

International Journal of Experimental Algorithms (IJEA), Volume (2) : Issue (1) : 2011 25 

 
 
Before comparison, we design two programs for the two methods with C or other languages, 
respectively. The endpoints a, b and the interval length at each step are printed as in Table 1. 
 
In the table, the “—“ represents the function has to be evaluated twice. As seen from the table, 
under the given iteration termination error, the new method can reach the real root more quickly, 

with fewer iteration steps.  Similar to Dekker’s method (1969), when ba −  gets arbitrarily small, 

the computation of the Brent’s method converges very slowly. 
 
3.2 Converging Speed 
Generally, there are several factors that affect the converging speed, which includes the 

calculations of the function )(xf , the interpolation, the conditional judgment and so on.  

 
In practice, we can use computer system functions to record time consumptions for the both 
methods. However, for simplicity, the following just gives an analysis on their computational 
efficiencies.  
 
As seen from the above experiment, when getting the root of the equation, the new method 
needs to calculate 12 times of the function: 

     
3

)cos()( xxxf −= , 

While the Brent’s method needs to calculate )(xf  for 18 times. Since )(xf  is the same, 

indicating one time calculation of the function for the two methods need the same computational 

time, thus the new method spends less total time on evaluating the )(xf . On the other hand, the 

above analysis and the code’s structures also indicated that the new method needs less time. 
 
Briefly, comparing with the original Brent’s method, the new algorithm not only gets more 
understandable but also will improve its computational efficiency. 
 

4. CONCLUSIONS 
This study proposes an improvement to the Brent’s method, and a comparative experiment test 
was conducted. The new algorithm is simpler and more easily understandable. Experimental 
results and analysis indicated that the proposed method converges faster. Other experiments 
also show this advantage.  
 
In short, the proposed method has a lot of advantages over the original Brent’s method, and it will 
be useful for engineering computations. 
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