Subhendu Das

Rethinking Embedded System Design

Subhendu Das subhendu11das@gmail.com
ccSli
West Hills, 91307, USA

Abstract

Embedded engineering is designed using objects of nature and it also interacts with nature.
Therefore it is forced to obey the laws of nature. Nature does not make any assumptions. But all
our mathematical and scientific theories do. Therefore these theories cannot be valid for
embedded engineering applications. In this paper we present four new laws of nature that all
embedded systems follow. These laws are (1) Boundedness (2) Finite time (3) Simultaneity and
(4) Complexity. During the last fifty years embedded analog and digital engineering have evolved
and changed significantly. However our mathematical and scientific theories remained in the
original state. We select several theories commonly used in embedded engineering and show
that none of them satisfy these laws. As a result, when we implement these theories in our
embedded software, we are forced to add so many patches and kludges to make the engineering
work, that our systems become very unreliable.

Keywords: Software, Embedded, Mathematics, Science, Engineering, Kalman, Education.

1. INTRODUCTIONS

In this paper our focus is on the problem of embedded system software and its failure to provide
reliability and stability [1]. The embedded software has two categories of problems. The first
problem is related to its own software design, implementation, and test issues. The second
problem is related to the algorithm and theories that the software uses in its design. In this paper
we are concerned with this second problem.

We believe that if we understand the root cause of the problem then we will be able to
automatically find the solution. Unlike internet or PC type software, embedded system is part of
nature. Therefore it must follow the laws of nature. We discuss four natural laws that all
embedded systems follow: (a) boundedness law of all physical variables (b) finite time law of all
activities, (c) simultaneity law of natural phenomena, and (d) the complexity law of nature. If we
examine any embedded system software and hardware, we will find that all four laws are
implemented very carefully. On the other hand if we examine the mathematical and scientific
theories with similar care we will find none of them obey the above four laws. These
inconsistencies are the root cause of the software unreliability issues of the second problem
mentioned above.

It is not that we did not know about these laws. They existed in nature for eternity. They slowly
started emerging as our engineering became more and more complex. We started integrating
many subsystems together; and we configured them to communicate with each other, to create
more realistic systems. Eventually we implemented real time multitasking software, which
highlighted our focus on finite time repeating concepts and the simultaneity law of nature. The
technology advanced so rapidly and implemented things in such details, thus increasing the
complexity, that other branches of mathematics and science did not get opportunities to realize it.
As a result we see a crisis in embedded system software and in our theories.

It must be recognized that our engineering requirements are significantly more complex [2] than
what they were during the time of Newton. As an example, we may say that the first missile must
make a hole in the building and the second missile must go through that hole. We have used this
kind of technology in our recent battle fields of Iraq during 2003. This kind of precise requirements

International Journal of Engineering (IJE), Volume (6) : Issue (2) : 2012 70



Subhendu Das

cannot be implemented using the theories that still inherit the characteristics of the simpler days
of Newton. The problems are in the details; math and science do not go at that level of details,
only engineering does. Note that this is not about approximations; this is on gross violations of the
laws of nature. Our embedded technology has significantly advanced during the last fifty years,
but our math and science did not keep pace with it.

Using standard examples from mathematics and science we show that they cannot work in
embedded engineering because they violate the new laws presented. We use (a) all three
Newton’s laws, (b) Laplace and Fourier transforms, and (c) Kalman filtering to present the
concepts of this paper.

The objective in this paper is only to discuss the problems, and highlight their root causes. The
problem itself is very complex and big. It should be realized that the details must be avoided to
present the comprehensive nature of the problem in a paper of this size. In reality all solutions are
embedded in the detailed understanding of the problems. It is possible to create new
architectures, based on Kalman’s philosophy of using only measurements, and thus help to
produce reliable embedded software. We present, however, an alternative approach little bit, near
the end. The paper may appear like a philosophical presentation to people in the areas of
mathematics, science, analysis, and simulation etc., but for all experienced hands-on engineers it
will be quite realistic, obvious, and normal.

2: DEFINITIONS

Before we talk about math, science, engineering, their theories, assumptions, and compare them
with new laws mentioned; it may be necessary to define the terminologies. Nature has only two
kinds of things; some objects (living and non-living) and some actions. Actions are like forces of
nature and have some energy associated with them. In some sense actions are characteristics of
objects also. For example light energy is a characteristic of sun; similarly wind force is a
characteristic of earth.

Definition of Laws of Nature
The laws of nature are the universal characteristics of the objects of nature. They are physical.
They exist independent of human experiences and assumptions.

Everything that we see around us is engineering. The cars, airplanes, roads, buildings are all
products of engineering. A product is a physical hardware that we can touch. Our modern
engineering products are very sophisticated and satisfy complex requirements.

Definition of Engineering
It is a process that is required to create an useful product.

Thus engineering is not the textbooks on engineering subjects, like mechanical, electrical, etc. All
products use natural components, and therefore they also obey natural laws. Thus we can define
science in the following way:

Definition of Science
It is a collection of manmade theories that tries to explain the laws of nature.

Consider an example to clarify the distinction between science and engineering. If we place a
magnetic needle under a wire, and pass current through the wire, then the magnet will be
deflected. We call this an engineering experiment. It is a product that we can see, touch, and
learn about it; and it does something useful also. The process used to demonstrate this needle
movement is engineering. The science part says that the magnet has a field called magnetic field,
the electricity creates a field called electric field (or may be a magnetic field); these two fields
interact and create a force that deflects the magnet. The mathematics is a symbolic language. lts
main purpose is to justify the scientific theories.

International Journal of Engineering (IJE), Volume (6) : Issue (2) : 2012 71



Subhendu Das

Definition of Mathematics

It is a symbolic language, used to describe expressions of natural language.

The theory is always a set of conclusions or a set of rules. But it also says that these rules or
results will hold only under certain assumptions. These assumptions are thus a part of the theory.

Definition of Theory
A Theory is (a) a collection of assumptions and (b) a collection of conclusions that only hold
under the assumptions.

Example of a Theory

Newton’s First law: (a) In the absence of any interaction with something else (b) An object at rest
will remain at rest (c) An object in motion will continue in motion at constant velocity, that is, in
constant speed in a straight line

The item (a) in the above law is the assumption. The items (b) and (c) are the conclusions. The
last two items will be valid only when the first item (a) is valid. A theory has two parts, if any one
of the two parts fails then that theory will be invalid and we will say that the theory does not work
in engineering or simply does not work.

Definition of Invalidity
A Theory is invalid if (a) Its assumptions cannot be tested or implemented or (b) Its conclusions
cannot be verified by any experiment

3: THELAWS OF NATURE

In this section we present the following new laws of nature: (a) boundedness law (b) finite time
law (c) simultaneity law and (d) the complexity law. We describe them in details in the
subsections below.

3.1 Boundedness Law

Let x denote any engineering variable, like voltage, current, water pressure, etc. In engineering x
always has a lowest and a highest possible value. Or in other words they cannot take any
arbitrary value from minus infinity to plus infinity. We call this feature of a variable as the
boundedness law of nature. We will also call it the nonlinearity or saturation law of engineering.
Using mathematical notations we can express this law in the following way:

L<x<U (1)

Here L can be positive, zero, or any negative number but cannot be minus infinity. Similarly U can
be negative, zero, or any positive number, but cannot be positive infinity. However U must be
greater than L.

Figure 1 describes graphically the logic to implement (1). The horizontal axis is the input axis for
the variable x. Along the horizontal axis, x can take any value from minus infinity to plus infinity.
We show the boundedness of x in the vertical or output axis of the graph. The graph shows when
x is between a and b, whatever way x changes, similar changes happen in the output axis.
However, when x goes beyond b you can see that on the output axis it stays fixed at U. That is
the output is limited to U. The same is true in the lower direction of x, and is limited by L. The box
in Figure 1 represents a non-linear system.

Wherever there is an engineering variable in a system, an embedded engineer adds this box at
that location of the system, to protect the components there, otherwise the system will fail or
burnout. The box is also known as limiter. This box is implemented in analog hardware circuits in
the form automatic gain control. It is also implemented in both digital hardware and embedded
microprocessor based software. All hands-on experienced engineers will automatically place
these boxes in their design. This is a very common embedded engineering practice.

International Journal of Engineering (IJE), Volume (6) : Issue (2) : 2012 72



Subhendu Das

U

A

b x- inpuT

FIGURE 1: Saturation Non-Linearity

Since the box is a nonlinear box representing the natural law, and implemented by design, all
engineering systems are nonlinear systems by nature. Or in other words there are no linear
systems in engineering. Note that linear systems are not approximations to this kind of
boundedness law. We explain later that local linearized solutions do not satisfy modern complex
engineering requirements. They will violate the complexity law mentioned below.

The examples of such systems with boundedness law are abundant in engineering. All we have
to look for is to see the schematic of any embedded hardware and the source code of real time
embedded software or firmware. It is not that engineering has completely ignored it, theory has
been developed, as an example see [3]. But it is still not practical for the complex problems of our
time. However mathematics and science have largely ignored the boundedness law, as we show
later with examples. Observe that this is not a philosophical issue, it is a real engineering
problem, and creates conflict with existing theories that we use.

3.2 Finite Time Law

These days most of the complex engineering systems are controlled by one or more digital
microprocessors and software. All activities that these systems perform are done in small interval
of time duration, of the order of several micro or milliseconds. And such activities are repeated
continuously [4].

Consider the example of a robotic arm, picking up an item from one place and dropping it in
another place and repeating the process in, say, less than a second of time. Similarly a digital
communication receiver system, like GPS, receives an electrical signal of microsecond duration,
for example, representing the data, extracts the data from the signal, sends it to the output, and
then goes back to repeat the process.

Our software runs under real time multitasking operating systems which are also nothing but finite
state machines. A finite state machine is a collection of finite number of activities of finite
durations, repeated asynchronously and/or synchronously based on the external as well as
internal events. Every time a task returns, it finds a different environment. The previous tasks
have operated on the system and created a new environment. Thus the same finite duration task
or activity is always performed on different signal and under different environment.

Although our systems run continuously, like GPS transmitters and receivers, traffic light systems
at street corners, but if you look at the internals you will always find that the building blocks are
based on finite duration processes.

It is quite surprising that the embedded system evolved to perform things as continuous repetition
of finite time activities. If we observe carefully we will see that the nature is also composed of
finite time activities. Everything in nature has a birth process, maturity process, and death
process. Each one of the processes is also a finite duration process. We also see that earth
rotates over finite time around its axis and around the sun. Thus repeating finite time process is a
law of nature. Yet, most of the mathematical theories that we commonly use, assume infinite

International Journal of Engineering (IJE), Volume (6) : Issue (2) : 2012 73



Subhendu Das

time, as we show later with examples. We also show that if we replace the infinite time by finite
number, however large, the theory completely fails. Thus again, these are not approximations of
large numbers, these are collapse of theories, as explained later.

3.3 Simultaneity Law

A very important characteristic of nature is its simultaneity. Everything in nature occurs
simultaneously and interactively. All humans are interacting constantly, simultaneously, and all
over the world and for all time. So is true with all physical objects. We are never isolated. A
company on precision weight measurement system [5] uses the moon’s gravity effect, as it
travels over earth, to precisely measure the weight of a mass on earth. Thus simultaneity is global
and not just local. This company’s products show how complex and sophisticated our modern
requirements are. Before we even realize, everything in engineering will be simultaneously
integrated together just like our natural world is. But our math and science are not yet ready for it.
Most of the theories that we use now are more than hundred years old. Requirements, concepts,
and philosophies of those simpler days are deeply embedded in those theories.

The real time operating system (RTOS) also implements this simultaneity law in engineering. It is
a multitasking system that interacts with interrupts from external and internal sources. Basically
RTOS is a finite state machine, running on finite time intervals, and is designed to simultaneously
accept the changes in the environment. Many of our embedded systems interact with external
computers via serial interfaces. In many cases these interfaces bring user commands also. These
interfaces are constantly monitored by several tasks to reconfigure the system according to the
changes in the environment. Thus simultaneity is built into all embedded systems.

Clearly, RTOS is beyond the scope of mathematics and science, but it is an integral part of
modern engineering. Anytime a task switches from one to another, it finds the environment
completely changed. When the task was in sleep mode, the simultaneity law worked and
changed that environment. But our present theories rely on the continuity of states from one task
to another, but that does not hold under RTOS and all other laws discussed here. We show later
that most of our theories do not have means to accommodate all the laws mentioned,

3.4 Complexity Law

All natural systems are immensely complex and indescribable. To illustrate, consider the Grand
Canyon. If we ask the best author of the world to describe the Grand Canyon in written language;
you will find that the description will be of no match with your experience and feeling when you
personally see the Grand Canyon. This written document is a model of the Grand Canyon. Thus
nature is beyond description by our language and therefore cannot be modeled by a symbolic
language like mathematics. The Grand Canyon is a static example of complexity. The dynamic
complexity of nature is even more severe than Grand Canyon. Here is one more example to
convince the readers about the complexity law. Watch the 3D simulation of the human brain in
operation from the discovery channel [6] to comprehend the nature. This is only a simulation; the
real thing is actually lot more complex.

Nature has evolved over billions of years. As a result everything is very complex in nature. From
a very small thing like an atom to a very large system like a galaxy are all very complex. We
should recognize that not only the components are complex; the laws that govern them are also
equally complex. Our engineering uses these complex components from nature and implements
these laws of nature to make products that are supposed to satisfy very complex requirements.
Thus embedded engineering is as complex as nature.

Imagine what is inside a microprocessor. It has billions of electronic components inside it. The
processor has hundreds or thousands of 32-bit registers, each bit must be carefully programmed
to make it work according to desired performances and requirements. These registers exchange
and process information with nature via analog to digital and digital to analog converters at
nanoseconds and microseconds speed. The numbers inside the microprocessor also change
continuously because of variations in nature, like changes in temperature, drift of component

International Journal of Engineering (IJE), Volume (6) : Issue (2) : 2012 74



Subhendu Das

parameters etc. The nature looks completely different at that level of speed and 32-bit details.
Our mathematics, which was developed hundreds of years back, cannot comprehend such
complexities.

Even today many embedded software do not use floating point processors. The integer
processors require scaling of variables. Scaling is a nonlinear process to keep variables within
bounds, essentially implementing the boundedness law. This statics scaling process can never
work, in real time and under the circumstances governed by the laws mentioned. Texas
Instrument, which manufactured such a processor finally decided to make a floating point version
to accommodate requirements of embedded engineering. Matlab simulation software created
dynamic scaling every time it scaled a variable in its simulation to give correct results. This
approach, although correct, is clearly not feasible in real time engineering.

All the previous three laws, boundedness, finite time, and simultaneity, are all working together in
nature and therefore also in embedded engineering. This togetherness adds another dimension
to the complexity of nature. We call this complex nature as the global space time (GST)
environment and it is tightly integrated with all embedded systems. We should also point out that
simulation environment cannot be created to test out such a complex and simultaneous
environment for a real time embedded engineering system.

4. VIOLATING THE LAWS

In embedded engineering software, we use many mathematical and scientific algorithms. None of
these theories obey the new laws mentioned in the previous section. In the following subsections
we take many well known theories that are often used in embedded systems and show their
incompatibility with these laws of nature. All these theories make simplifying assumptions, but
nature does and cannot make any assumptions. Note that we are not trying to find faults in these
theories; they work perfectly according to their definitions and assumptions. All we are saying is
that they were invented hundreds of years back and not valid any more for our modern
engineering. Engineering has advanced significantly during the last fifty years but our theories did
not make similar progress.

When we implement these theories they fail to work. But the software and test engineers know
how to fix them. They are forced to add many adhoc patches and kludges to make the
engineering work. That is why we say math and science do not work, but engineering does.
However, as a result of these patches the embedded system remains very unreliable and
unpredictable.

The two worlds, designers and testers, are isolated and do not know the tools and languages of
each other and cannot communicate. We see an interesting parallel highlighted [7] by the Nobel
Laureate in economics Wassily Leontief — “How long will researchers working in adjoining fields
abstain from expressing serious concern about the splendid isolation in which economics now
finds itself?” System engineers do not seem to recognize the inadequacy of our mathematical and
scientific theories, which are in complete isolation with embedded engineering.

4.1 Linear Theories

The above boundedness law shows that all engineering systems are nonlinear by design
requirements. Therefore all mathematical and scientific theories that are based on the
assumption of linearity are no good for any engineering system. As an example, linear control
system theories, based on linear Laplace transform theory cannot work. Their applications to
engineering problems are theoretically incorrect. Violating the boundedness law is not an
approximation; it is a violation of fundamentals. It will lead to wrong results, instability, and system
crashes. According to our definition of invalidity, Kalman filter, Laplace transform, and linear
control theory cannot work in embedded systems because they violate the assumption of
boundedness.

International Journal of Engineering (IJE), Volume (6) : Issue (2) : 2012 75



Subhendu Das

Most of the engineering systems have multiple modes of operations, like transient mode, steady
state mode, low voltage mode, high voltage mode etc. In many cases, abnormal situations
happen and cannot be avoided. This boundedness law protects the systems from failures. In
almost all cases there is no theory that considers such assumptions and possibilities in their
theoretical proof, mostly because they are all linear theories and therefore ignore this
boundedness law.

Because of the boundedness law, in a typical engineering system there can be more than ten
such nonlinear boxes. In many large systems there can be hundreds of such boxes. In most
cases we have to show that the system is working properly at the boundary points of the
nonlinearity. In many applications it will be a requirement to go to the boundary points L and U of
Figure 1, and maintain the operating conditions at these limits. For example, the motor must run
at the maximum speed, the voltage used must be of full value, the angular position must reach
the limiting position etc. to achieve the desired performances.

It will be rarely required to operate the system in the linear region of the saturation nonlinearity.
Moreover, when there are more than one or two or ten such nonlinear boxes in a system, it will be
almost impossible to keep all variables simultaneously in the linear region of the saturating boxes,
and still maintain the optimal performance. This will happen because the nonlinear equations that
define the operation of the system, such as (3) below, will not necessarily create equilibrium
positions in the linear region at all operating conditions.

Besides the boundedness law, almost all systems are also nonlinear. These systems are
modeled using nonlinear equations. For example expression (2) is a linear model but (3) is not.

dx

i (2)

dx
i bx + cx? (3)

In an isolated environment, as discussed later, (3) can be linearized to (2) and linear theories can
be used as approximations. However under boundedness law both (2) and (3) will fail to work.
Moreover, there are no isolated systems or environments in nature or engineering.

4.2 Laplace and Fourier Transforms

Under the operational environment of the finite time law any scientific or mathematical theory that
is based on infinite time assumption will be inappropriate for embedded engineering systems.
According to our definition they will be invalid, because they violate the finite time assumptions.
Consider for example the very well known Laplace transform theory defined by (4):

F(s) = f et F(t)dt (4)

In the expression (4) the variable t is usually considered as time. It shows that the time must be
valid from zero to infinity. Thus the function F(s) on the left hand side, called infinite Laplace
transform (ILT), will be valid only for infinite time system. Thus a major theory, Laplace
Transform, of mathematics is invalid for embedded engineering applications. It is also well known
that (4) is based on the assumption of linearity. And therefore it will also not be applicable for any
engineering systems under the boundedness law.

Let us consider an example with finite time T to bring out the fact [8] that the Laplace transform is
based on infinite time assumptions, that is, it cannot be used for finite duration signals. The finite
duration step function f(t) is defined by

oy ={ 0Sts<T

0 otherwise

()

International Journal of Engineering (IJE), Volume (6) : Issue (2) : 2012 76



Subhendu Das

Using the definition (4) we get the expression for the finite Laplace transform (FLT):

T

L;(1) = f e~st.1.dt

0

1 1

=———eT (6)
s s
1—esT

_—° (7)

We can see from (6) that the FLT has the standard ILT term i and another expression

involving e~5T. The second term is zero only when T is infinity. Thus if we use only the first part of
(6), the ILT part, then we will implicitly assume infinite time situation for our finite time problems
and the Laplace model will not be correct for real engineering problems.

Observe from expression (7) that the FLT does not have any poles at the origin, but the ILT has.
At s=0 the expression (7) takes 0/0 form. Thus by using the first part of (6) for finite time
engineering problems we artificially inject poles in the models. The entire Laplace Transform
theory must be revised and rewritten for applications in finite time engineering [9]. For embedded
engineering applications ILT is not a correct tool and its use will make the software unreliable.

Similarly, data analysis that we have done using infinite time Fourier theory could be wrong also
[4]. If you analyze this way then you will find that all mathematical theories will be invalid under all
four laws. It has been shown that by switching from infinite time to finite time Nyquist Sampling
theorem changes [10]. This new sampling theorem can change the design of embedded systems
significantly, and may even give a new direction for embedded design.

4.3 Newton’s First Law

The assumption behind the first law is — “In the absence of any interaction with something else”.
Is there a place on earth where there is no interaction with something else? The answer is no.
Everything in nature is tied together by the simultaneity law. Embedded engineering is embracing
that law more and more in its implementations. Therefore the first law will become invalid, by our
definition, if we use in embedded engineering.

You cannot place a ball above the surface of earth and leave it alone there, because earth is
interacting with the ball and it will make it fall. Thus in near earth all objects are interacting with
earth’s gravitational force. If you put the ball in deep space, then it will face the gravitational
attractions of sun, earth, moon, and all other planets. Their resultant force will not be zero. Thus
there is no place in the universe where there is no interaction with something else.

If you leave the ball in the deep space, it will immediately start moving in a curved path. The path
will be curved because the objects in our universe are constantly moving. The total force on the
ball will be changing all the time, both in magnitude and in direction; therefore it cannot go in a
straight line. Thus we see that the conclusions of the law cannot be true. The conclusion is false
because the assumption is wrong. Newton [1642-1727] discovered these laws almost three
hundred years back. We should not expect that they will work now for our modern engineering.

The following statements can be found in the textbook [11, p. 8] about the Newton’s first law:
“We could hardly sustain that this principle [First law] is a strict experimental result. On the one
hand it is not evident how to recognize whether a body is free of forces or not. Even if a unique
body in the universe were thought, it is undoubted that its movement could not be rectilinear and
uniform in every reference system”.

Clearly, to make the law work in embedded engineering, we have to use kludges and patches in
our engineering software, and the software will never be robust. Newton’s first law violates the

International Journal of Engineering (IJE), Volume (6) : Issue (2) : 2012 77



Subhendu Das

Simultaneity law discussed before, which says everything is interconnected and working
simultaneously at same time to make things happen. Newton’s all three laws assume isolated
environment, which is not feasible in modern embedded engineering. Thus all three Newton’s
laws are invalid for engineering.

4.4 Newton’s Second Law
In terms of mathematical notations this simple law is expressed as:

f=mxa (8)

Here f is the net force acting on an object of mass m. And the resultant acceleration of the object
is a. Assuming that the mass is one, and replacing the acceleration by the second derivative of
position x, we can rewrite (8) as in (9).

d’x

=f (©)

The first level of modifications that engineers have added to the right hand side (RHS) is the
gravitational force g:

d?x

TE= a0 (10)

In (10) we write g as a function of x, because gravity depends on the position. Note that the
quantity x is a three dimensional vector in space, it has North, East, and Up (NEU) coordinates,
near earth. The earth has been modeled as an ellipsoid, like the World Geodetic System 1984,
(WGS84), and then extensive formulae has been developed by mathematicians, physicist, and
engineers to define g(x) as a function of NEU coordinates. These expressions of g are quite
complex and can be found in [12, Ch. 7].

Since the earth is rotating around its axis, there is always a force, called Coriolis force that acts
on all objects near the earth space. This force has been shown to be dependent on the velocity of
the object. Thus the expression (10) should be modified to (11) following [13, p. 76]. Where Q is
related to the earth’s angular velocity, which is a constant. A derivation of the formula can be
found at [14].

d’x dx 11

Thus we can see that Newton created a very simple equation (8). Such a simple equation violates
the complexity law. Since Newton’s original equation did not consider x and dx/dt in the RHS of
expression (11) we can safely say that the Newton’s formula cannot satisfy modern requirements.
The second law makes the same assumption as that of the first law. It assumes an isolated
environment [15, p. 114], which does not exist anywhere in the universe. It should be pointed out
that even after significant modifications of (11) engineers were still not satisfied with the
requirements. At present navigation engineers use the help of GPS (global positioning system) to
augment inertial navigation system [16] based on (11). We must satisfy all four laws of embedded
systems simultaneously with valid design concept without any flaws. At this time we do not have
any theory to accomplish that.

It is not necessary to know the modified or better formula to express nature. For, there is no end
of improvement in any formula. At the same time 