
Sanjeev Kumar Sharma & Ugrasen Suman

International Journal of Data Engineering (IJDE), Volume (2) : Issue (2) : 2011 53

A Performance Based Transposition Algorithm for Frequent
Itemsets Generation

Sanjeev Kumar Sharma spd50020@gmail.com
Research Scholar
Devi Ahilya University, Takshashila Campus,
Khandwa Road, Indore (M.P.) India

Ugrasen Suman ugrasen123@yahoo.com
Associate Professor
Devi Ahilya University,Takshashila Campus,
Khandwa Road Indore (M.P.) India

Abstract

Association Rule Mining (ARM) technique is used to discover the interesting association or
correlation among a large set of data items. It plays an important role in generating frequent
itemsets from large databases. Many industries are interested in developing the association rules
from their databases due to continuous retrieval and storage of huge amount of data. The
discovery of interesting association relationship among business transaction records in many
business decision making process such as catalog decision, cross-marketing, and loss-leader
analysis. It is also used to extract hidden knowledge from large datasets. The ARM algorithms
such as Apriori, FP-Growth requires repeated scans over the entire database. All the input/output
overheads that are being generated during repeated scanning the entire database decrease the
performance of CPU, memory and I/O overheads. In this paper, we have proposed a
Performance Based Transposition Algorithm (PBTA) for frequent itemsets generation. We will
compare proposed algorithm with Apriori and FP Growth algorithms for frequent itemsets
generation. The CPU and I/O overhead can be reduced in our proposed algorithm and it is much
faster than other ARM algorithms.

Keywords: Data Mining, Association Rule Mining (ARM), Association rules.

1. INTRODUCTION

There are several organizations in the mainstream of business, industry, and the public sector,
which store huge amount of data containing their transaction information online and offline. Such
data may contain hidden information that can be used by an organization’s decision makers to
improve the overall profit. The efficient transformation of these data into beneficial information is
thus a key requirement for success in these organizations. Data mining techniques are heavily
used to search information and relationships that would be hidden in transaction data. There are
various techniques of data mining such as clustering, classification, pattern recognition,
correlation, and Association Rule Mining (ARM). The ARM is most important data mining
technique that is used to extract hidden information from large datasets. In ARM algorithms,
association rules are used to identify relationships among a set of items in database. These
relationships are not based on inherent properties of the data themselves (as with functional
dependencies), but rather based on co-occurrence of the data items.

The association rules are firstly introduced and subsequently implemented for the generation of
frequent itemsets from the large databases [1],[2]. Association rules identify the set of items that
are most often purchased with another set of items. For example, an association rule may state
that 75% of customers who bought items A and B also bought C and D. The main task of every
ARM is to discover the sets of items that frequently appear together called frequent itemsets.

Sanjeev Kumar Sharma & Ugrasen Suman

International Journal of Data Engineering (IJDE), Volume (2) : Issue (2) : 2011 54

ARM has been used for a variety of applications such as banking, insurance, medicine, website
navigation analysis etc.

Frequent itemset can be produced from discovering useful patterns in customer’s transaction
databases. Suppose T ={t1,t2,t3…..tn} is a customer's transaction database, which is a sequence

of transactions where each transaction is an itemset (ti ⊆ T). Let J ={i1,i2,…..in} be a set of items,
and D is a task relevant data, which can be a set of database transactions where each

transaction T is a set of items such that T ⊆ J. Each transaction is associated with identifier

called TID. Let A be a set of items and the transaction T is said to contain A if and only if A ⊆ T.

The rule A⇒B holds in the transaction set D with support s, where s is the percentage of

transaction in D that contain A∪B (i.e. both A and B). This is taken to be the probability P(A∪B).

The rule A⇒B has confidence c in the transaction set D if c is the percentage of transaction in D
containing A that also contain B. This is taken to be the conditional probability P(B|A). Therefore,

the Support(A⇒B) = P(A∪B) and Confidence(A⇒B) = P(B|A). Those rules that satisfy both
minimum support threshold and minimum confidence threshold are called strong. The values for
support and confidence have to occur between 0% and 100%. The problem of mining association
rules is to generate all rules that have support and confidence greater than some user specified
minimum support and minimum confidence thresholds, respectively. This problem can be
decomposed into the following sub-problems: i). All itemsets that have support above the user
specified minimum support are generated. These itemsets are called the large itemsets. ii). For
each large itemset, all the rules that have minimum confidence are generated as follows: for a

large itemset X and any Y ⊂ X, if support(X)/support(X - Y) ≥ minimum- confidence, then the rule
X - Y → Y is a valid rule.

There are various algorithm of ARM such as Apriori, FP-growth, Eclat etc. The most important
algorithm of ARM is Apriori, which is not only influenced the association rule mining community,
but it has affected other data mining fields as well [3]. Association rule and frequent itemset
mining has become now a widely research area and hence, faster and faster algorithms have
been presented. Numerous of them are Apriori based algorithms or Apriori modifications. Those
who adapted Apriori as a basic search strategy, tended to adapt the whole set of procedures and
data structures as well [4],[5],[6],[7]. Since the scheme of this important algorithm was not only
used in basic association rules mining, but also used in other data mining fields such as
hierarchical association rules [8],[9],[10], association rules maintenance [11],[12],[13] , sequential
pattern mining [14], episode mining [15] and functional dependency discovery [16],[17] etc.
Basically, ARM algorithms are defined into two categories; namely, algorithms respectively with
candidate generation and algorithms without candidate generation. In the first category, those
algorithms which are similar to Apriori algorithm for candidate generation are considered. Eclat
may also be considered in the first category [9]. In the second category, the FP-Growth algorithm
is the best–known algorithm. Table-1, defines the comparison among these three algorithms [3].

Algorithm Scan Data Structures
Apriori M+1 HashTable &Tree
Eclat M+1 HashTable &Tree
FP-Growth 2 PrefixTree

TABLE 1: Comparison of Algorithms

The main drawback of above discussed algorithms given above is the repeated scans of large
database. This may be a cause of decrement in CPU performance, memory and increment in I/O
overheads. The performance and efficiency of ARM algorithms mainly depend on three factors;
namely candidate sets generated, data structure used and details of implementations [18]. In this
paper we have proposed a Performance Based Transposition Algorithm (PBTA) which uses
these three factors. Transactional database is considered as a two dimension array which works
on boolean value dataset. The main difference between proposed algorithm and other algorithms
is that instead of using transactional array in its natural form, our algorithm uses transpose of
array i.e. rows and columns of array are interchanged. The advantage of using transposed array

Sanjeev Kumar Sharma & Ugrasen Suman

International Journal of Data Engineering (IJDE), Volume (2) : Issue (2) : 2011 55

is to calculate support count for particular item. There is no need to repeatedly scan array. Only
by finding the row sum of the array will give the required support count for particular item, which
ultimately results in increased efficiency of the algorithm. In the first pass of PBTA, we will receive
all the support count value for the 1-itemset. Mining of association rules is a field of data mining
that has received a lot of attention in recent years.

The rest of this Paper is organized as follows. In Section 2, we will explain the Apriori algorithm
through association rules mining. Section 3 introduces our proposed PBTA algorithm with an
illustration and compare with other algorithms. Experimental results are shown in Section 4. The

concluding remarks are discussed in Section 5.

2. APRIORI ALGORITHM

ARM is one of the promising techniques of data mining to extract interesting correlations, frequent
patterns, associations or casual structures among sets of items in the transaction databases or
other data repositories. There are several ARM algorithms such as Apriori, FP-Growth, Eclat. The
Apriori algorithm is also called the level-wise algorithm to find all of the frequent sets, which uses
the downward closure property. The advantage of the algorithm is that before reading the
database at every level, it prunes many of the sets which are unlikely to be frequent sets by using
the Apriori property, which states that all nonempty subsets of frequent sets must also be
frequent. This property belongs to a special category of properties called anti-monotone in the
sense that if a set cannot pass a test, all of its supersets will fail the same test as well. Using the
downward closure property and the Apriori property the algorithm works as follows. The first pass
of the algorithm counts the number of single item occurrences to determine the L1 or single
member frequent itemsets. Each subsequent pass, K, consists of two phases. First, the frequent
itemsets Lk-1 found in the (k-1)

th
 pass are used to generate the candidate itemsets Ck, using the

Apriori candidate generation algorithm. Therefore, the database is scanned and the support of the
candidates in Ck is determined to ensure that Ck itemsets are frequent itemsets [19].

Pass 1
1. Generate the candidate itemsets in C1
2. Save the frequent itemsets in L1

Pass k

1. Generate the candidate itemsets in Ck from the frequent
itemsets in Lk-1
a) Join Lk-1 p with Lk-1 q, as follows:

insert into Ck
select p.item1, p.item2, . . . , p.itemk-1, q.itemk-1
from Lk-1 p, Lk-1q
where p.item1 = q.item1, . . . p.itemk-2 = q.itemk-2,
p.itemk-1 < q.itemk-1

b) Generate all (k-1)-subsets from the candidate itemsets in Ck
c) Prune all candidate itemsets from Ck where some (k-1)-subset of the candidate
 itemset is not in the frequent itemset Lk-1
2. Scan the transaction database to determine the support for each candidate
 itemset in Ck
3. Save the frequent itemsets in Lk

We will use Apriori algorithm for ARM as a basic search strategy in our proposed algorithm. The
proposed algorithm will adapt the whole set of procedures of Apriori but the data structure will be
different. Also, the proposed algorithm will use the transposition of transactional database as data
structures.

Sanjeev Kumar Sharma & Ugrasen Suman

International Journal of Data Engineering (IJDE), Volume (2) : Issue (2) : 2011 56

3. PERFORMANCE BASED TRANSPOSITION ALGORITHM (PBTA)
In Apriori algorithm, discovery of association rules require repeated passes over the entire
database to determine the commonly occurring set of data items. Therefore, if the size of disk
and database is large, then the rate of input/output (I/O) overhead to scan the entire database
may be very high. We have proposed Performance Based Transposition Algorithm (PBTA), which
improves the Apriori algorithm for repeated scanning of large databases for frequent itemsets
generation. In PBTA, transaction dataset will be used in the transposed form and the description
of proposed algorithm is discussed in the following sub-sections.

3.1 Candidate Generation Algorithm
In the candidate generation algorithm, the frequent itemsets are discovered in k-1 passes. If k is
the pass number, Lk-1 is the set of all frequent (k-1) itemsets. Ck is the set of candidate sets of
pass k and c denotes the candidate set. l1,l2 …lk are the itemsets[19]. The candidate generation
procedure is as follows.
Procedure Gen_candidate_itemsets (Lk-1)
 Ck = Ф

for all itemsets l1 ∈ Lk-1 do

for all itemsets l2 ∈ Lk-1 do
if l1[1] = l2 [1] ^ l1 [2] = l2 [2] ^ … ^ l1 [k-1] < l2 [k-1]
then c = l1 [1], l1 [2] … l1 [k-1], l2 [k-1]

Ck = Ck ∪{c}

3.2 Pruning Algorithm
The pruning step eliminates some candidate sets which are not found to be frequent.

Procedure Prune(Ck)

for all c∈ Ck
for all (k-1)-subsets d of c do

if d ∉∉∉∉ Lk-1
then Ck = Ck – {c}

3.3 PBTA Algorithm Description
The PBTA uses candidate generation and pruning algorithms at every iteration. It moves from
level 1 to level k or until no candidate set remains after pruning. The step-by-step procedure of
PBTA algorithm is described as follows.
1. Transpose the transactional database
2. Read the database to count the support of C1 to determine L1 using sum of rows.
3. L1= Frequent 1- itemsets and k:= 2
4. While (k-1 ≠ NULL set) do

Begin
 Ck := Call Gen_candidate_itemsets (Lk-1)
Call Prune (Ck)

for all itemsets i ∈ I do
Calculate the support values using dot-multiplication of array;
Lk := All candidates in Ck with a minimum support;
K:k+1

 End
5. End of step-4

3.3.1 An Illustaration
Suppose we have a transactional database in which the user transactions from T1 to T5 and
items from A1 to A5 are stored in the form of boolean values, which is shown in Table 1. We have
assumed that this database can be generated by applying Apriori algorithm for frequent itemsets
generation.

Sanjeev Kumar Sharma & Ugrasen Suman

International Journal of Data Engineering (IJDE), Volume (2) : Issue (2) : 2011 57

.

TABLE 2: Transaction Database

Consider the transpose of transactional database of Table 1 is stored in Table 2 by applying
metrics arithmetics that can be used in our proposed algorithm (PBTA). Assume the user-
specified minimum support is 40%, and then the steps for generating all frequent item sets in
proposed algorithm will be repeated until NULL set is reached. In PBTA, transactional dataset will
be used in the transposed form. Therefore, candidate set and frequent itemset generation
process will be changed as compared to Apriori algorithm. In the first pass, we will receive L1.

{A1}→ 1, {A2}→2, {A3}→1, {A4}→2, {A5}→3

L1 := { {A1}→1, {A2}→2, {A3} →1, {A4} → 2, {A5} → 3}

Then the candidate 2-itemset will be generated by performing dot-multiplication of rows of array,
as array consist of boolean values, the resultant cell will be produce in the form of 1. If the
corresponding cells of the respective rows have 1, otherwise 0 will be in the resultant cell. In this
approach, we will receive a new array consisting of candidate 2-itemsets to get the higher order
of itemsets. The above process between rows of array can be performed to find out the results.

TABLE 3: Transpose Database of Transaction

In the second pass, where k=2 , the candidate set C2 becomes
C2: = {{A1*A2}, {A1*A3}, {A1,*A4}, {A1*A5}, {A2*A3}, {A2*A4},{A2*A5},{A3*A4},{A3*A5},{A4*A5} }
The pruning step does not change C2 as all subsets are present in C1.
Read the database to count the support of elements in C2 to get:

{ {A1*A2}→ 0, {A1*A3}→0, {A1*A4} →0, {A1*A5}→1, {A2*A3}→ 1,

{A2*A4} →1, {A2*A5}→0, {A3*A4}→0, {A3*A5}→0, {A4*A5}→1}} and reduces to

L2 = { {A1*A5}→1, {A2*A3}→1, {A2*A4}→1, {A4*A5}→1}}

In the third pass where k=3, the candidate generation step proceeds:
In the candidate generation step,

• Using {A1*A5} and {A4*A5} it generates {A1*A4*A5}

• Using {A2*A3} and {A2*A4} it generates {A2*A3*A4}
• Using {A2*A4} and {A4*A5} it generates {A2*A4*A5}

Thus, C3:= { {A1*A4*A5}, {A2*A3*A4}, {A2*A4*A5}}

The pruning step prunes {1,4,5}, {2,3,4},{2,4,5} as not all subsets of size 2, i.e., {1,4}, {3,4}, {2,5}
are not present in L3.

 A1 A2 A3 A4 A5

T1 1 0 0 0 1

T2 0 1 0 1 0

T3 0 0 0 1 1

T4 0 1 1 0 0

T5 0 0 0 0 1

A1 1 0 0 0 0

A2 0 1 0 1 0

A3 0 0 0 1 0

A4 0 1 1 0 0

A5 1 0 1 0 1

Sanjeev Kumar Sharma & Ugrasen Suman

International Journal of Data Engineering (IJDE), Volume (2) : Issue (2) : 2011 58

So C3:= Ф

Hence the total frequent sets becomes L:= L1 ∪L2.

By comparing both Apriori and proposed algorithm, we found that Apriori algorithm requires
multiple passes of the dataset to calculate support count for different itemsets. Therefore, in the
case of Apriori, the record pointer moves the order of candidate item set * no of records while in
the case of PBTA algorithm, record pointer moves equal to only order of candidate itemsets. For
example, if we have to find out support count value for 2-itemset in a dataset having 5 items with
5 records using Apriori algorithm number of time record pointer will be 2*5 i.e. 10 while in case of
our proposed algorithm it will be 2 only.

4. EXPERIMENTAL EVALUATIONS
The performance comparison of PBTA with classical frequent pattern-mining algorithms such as
Apriori, FP-Growth is presented in this Section. All the experiments are performed on 1.50 Ghz
Pentium-iv desktop machine with 256 MB main memory, running on Windows-XP operating
system. The program for Apriori, FP-Growth and proposed algorithm PBTA were developed in
Java JDK1.5 environment. We report the experimental results on three synthetic boolean
datasets with 300K, 500K and 700K records, each having 130 columns. The datasets consists of
boolean values are shown in table 3, table 4 and table 5. The performances results of Apriori, FP-
growth and PBTA are shown with Fig. 1, Fig. 2 and Fig. 3 with data size 300K, 500K, and 700K
represented in the graphical form. The X-axis in these graphs represents the support threshold
values while the Y-axis represents the response times (in milliseconds) of the algorithms being
evaluated as shown.

Response Time
(in ms)

Support Count
(in %) Apriori FP-Growth PBTA

50 50 40 10

40 100 80 40

30 150 100 150

20 300 230 60

10 500 400 80

TABLE 4: Response Time Comparison of algorithms with 300k database

FIGURE 1: Performance analysis of algorithms (300k database)

Sanjeev Kumar Sharma & Ugrasen Suman

International Journal of Data Engineering (IJDE), Volume (2) : Issue (2) : 2011 59

In the first case, we have considered the transactional database with 300k in size as it is shown in
Fig. 1. We have compared the performance of Apriori, FP-Growth with PBTA on the basis of
response time. The observation shows that as the support count will be decreased and the
response time taken by PBTA is much lesser then Apriori and FP-Growth algorithm.

Response Time
(in ms)

Support Count
(in %) Apriori FP-Growth PBTA

50 84 67 17

40 167 134 67

30 251 167 251

20 501 384 100

10 835 668 134

TABLE 5: Response Time Comparison of algorithms with 500k database

FIGURE 2: Performance analysis of algorithms (500k database)

In the another case, the transactional database with 500k size is considered, which is shown in
Fig. 2. Hence, we have observed that as the support count threshold is reduced and the response
time taken by PBTA is much lesser then Apriori and FP-Growth algorithm.

Response Time
(in ms)

Support Count
(in %) Apriori FP-Growth PBTA

50 117 93 23

40 233 186 93

30 350 233 350

20 699 536 140

10 1165 932 186

TABLE 6: Response Time Comparison of algorithms with 700k database

Sanjeev Kumar Sharma & Ugrasen Suman

International Journal of Data Engineering (IJDE), Volume (2) : Issue (2) : 2011 60

FIGURE 3: Performance analysis of algorithms with 700k database

In the Fig. 3, the transactional database with 700k is used. Here, we observed that in comparison
to Apriori and FP-Growth, PBTA will take lesser response time while support threshold is
reduced. This PBTA algorithm may be used for extraction of useful frequent hyperlinks or URLs
for web recommendation [20].

5. CONCLUSIONS
ARM algorithms are important to discover frequent itemsets and patterns from large databases.
In this paper, we have designed a Performance Based Transposition Algorithm (PBTA) for
generation of frequent itemsets similar to Apriori algorithm. The proposed algorithm can improve
the efficiency of Apriori algorithm and it is observed to be very fast. Our algorithm is not only
efficient but also very fast for finding association rules in large databases. The proposed
algorithm drastically reduces the I/O overhead associated with Apriori algorithm and retrieval of
support of an itemset is quicker as compared to Apriori algorithm. This algorithm may be useful
for many real-life database mining scenarios where the data is stored in boolean form. At present
this algorithm is implemented for only boolean dataset that can also be extend to make it
applicable to all kind of data sets.

6. REFERENCES
[1] R.Agrawal, T. Imielinski, and A.Sawmi, “Mining association rules between sets of items in

large databases” in proc. of the ACM SIGMOD Conference on Management of Data, pages
(207-216), 1993.

[2] D.W-L.Cheung, S.D.Lee, and B.Kao, “A general incremental technique for maintaining

discovered association rules” in Database Systems for advanced Applications, pages 185-
194, 1997.

[3] M.H.Margahny and A.A.Mitwaly, “Fast Algorithm for Mining Association Rules” in the

conference proceedings of AIML, CICC, pp(36-40) Cairo, Egypt, 19-21 December 2005.

[4] J.S.Park, M-S. Chen and P.S.YU, “An effective hash based algorithm for mining association

rules” in M.J. Carey and D.A. Schneider, editors, Proceedings of the 1995 ACM SIG-MOD
International Conference on Management of Data, pages 175-186, San Jose, California, 22-
25. 1995.

[5] S.Brin, R.Motwani, J.D.Vllman, and S.Tsur, “Dynamic itemset counting and implication rules

for market basket data” SIGMOD Record (ACM Special Interest Group on Management of
Data), 26(2): 255, 1997.

Sanjeev Kumar Sharma & Ugrasen Suman

International Journal of Data Engineering (IJDE), Volume (2) : Issue (2) : 2011 61

[6] H.Toivonen, “Sampling large databases for association rules” in the VLDB Journal, pages
134-145, 1996.

[7] A.Sarasere,E. Omiecinsky, and S.Navathe, “An efficient algorithm for mining association

rules in large databases” in Proceedings of 21St International Conference on Very Large
Databases (VLDB) , Zurich, Switzerland, Also Catch Technical Report No. GIT-CC-95-04
1995.

[8] Y.F.Jiawei Han., ”Discovery of multiple-level association rules from large databases” In the

Proceedings of AIML 05 Conference, 19-21 December 2005, CICC, Cairo, Egypt the 21
St

International Conference on Very Large Databases (VLDB), Zurich, Switzerland, 1995.

[9] Y.Fu., “Discovery of multiple-level rules from large databases”, 1996.

[10] D.W-L.Cheung, J.Han, V.Ng, and C.Y.Wong, “Maintenance of discovered association rules
 in large databases : An incremental updating techniques” In ICDE, pages 106-114,1996.

[11] D.W-L.Cheung, S.D.Lee, and B.Kao, “A general incremental technique for maintaining

discovered association rules” in Database Systems for advanced Applications, pages
 185-194, 1997.

[12] S.Thomas, S.Bodadola, K.Alsabti, and S.Ranka, “An efficient algorithm for incremental

updation of association rules in large databases” in Proc. KDD'97, Page 263-266, 1997.

[13] N.F.Ayan, A.U. Tansel, and M.E.Arkm, ”An efficient algorithm to update large itemsets with
 early pruning”, in Knoweldge discovery and Data Mining, pages 287-291,1999.

[14] R.Agrawal and R.Srikant, “Mining sequential patterns”, In P.S.Yu and A.L.P. Chen, editors,
 Proc.11the Int. Conf. Data engineering. ICDE, pages 3-14. IEEE pages, 6-10, 1995.

[15] H.Mannila, H.Toivonen, and A.I.Verkamo, “Discovering frequent episodes in sequences” in
 proceedings of the First International Conference on knowledge Discovery and Data
 mining”, pages 210- 215. AAAI pages, 1995.

[16] Y.Huhtala, J.Karkkainen, P.Pokka, and H.Toivonen, ”TANE: An efficient algorithm for
 discovering functional and approximate dependencies”,. The computer Journal, 42(2):
 100-111, 1999.

[17] Y.Huhtala, J.Kinen, P.Pokka, and H.Toivonen, “Efficient discovery of functional and

approximate dependencies using partitions” in ICDE, pages 392- 401, 1998.

[18] F.Bodon, “A Fast Apriori Implementation”, in the Proc.1st IEEE ICDM Workshop on Frequent

Itemset Mining Implementations (FIMI2003, Melbourne,FL).CEUR Workshop Proceedings
90, A acheme, Germany 2003.

[19] Akhilesh Tiwari, Rajendra K. Gupta, and Dev Prakash Agrawal, “Cluster Based Partition

Approach for Mining Frequent Itemsets” in the International Journal of Computer Science and
Network Security(IJCSNS), VOL.9 No.6,pp(191-199) June 2009.

[20] Sanjeev Kumar Sharma, Ugrasen Suman, “A Semantic Enhance Data-Mining Framework for

Web Personalization”, In the proceedings of International conference on Data Analysis, Data
Quality and Metadata Management(DAMD-2010), pp(49-57),Singapore,2010.

