
Rafa E. Al-Qutaish

International Journal of Data Engineering (IJDE), Volume (10): Issue (1): 2025 1
ISSN: 2180-1274, https://www.cscjournals.org/journals/IJDE/description.php

Maturity Models in the Software Engineering Literature: An
Analytical Overview

Rafa E. Al-Qutaish rafa.alqutaish@gmail.com
Associate Professor of Software Engineering
412-1682 Chemin du Tremblay,
Longueuil, QC J4N 1E1, Canada

Abstract

A maturity models are structured and systematic frameworks designed to outline the key
characteristics, attributes, and features that define effective processes or products. These models
serve as a reference point or benchmark, allowing organizations to assess, compare, and
evaluate the relative capabilities and effectiveness of their processes or products. By providing a
clear pathway for progression, maturity models help organizations identify areas of strength,
opportunities for improvement, and strategies for achieving higher levels of efficiency and quality.
In the context of software engineering, maturity models are widely recognized and utilized as
essential tools for evaluating both the development processes and the resulting software
products. They are particularly valuable in assessing how well processes or products align with
industry standards and best practices. Generally, maturity models in this domain are categorized
into two primary types: process maturity models and product maturity models. Process maturity
models focus on evaluating the evolution, refinement, and optimization of software development
processes. These models assess how systematically and efficiently an organization develops,
tests, delivers, and maintains software, aiming to enhance process performance and reliability
over time. On the other hand, product maturity models concentrate on evaluating the quality,
reliability, and overall sophistication of the software product itself. These models examine factors
such as functionality, usability, scalability, and maintainability, offering insights into the readiness
and robustness of the product. This paper aims to provide a comprehensive overview of the role
and significance of maturity models within software engineering. It highlights their importance as
tools for performance evaluation, fostering continuous improvement, and driving standardization
across the industry.

Keywords: Maturity Models, OSMM, SMM, SPQMM, TMM, CMMI-SW, ISO 15504, Nastro
Model.

1. INTRODUCTION

A maturity model is a structured collection of elements that describe the characteristics of
effective processes or products (Wendler, 2012). However, a maturity model can be used as a
benchmark for assessing different processes or products for equivalent comparison (Golden,
2004). Also, a maturity model evaluates the development and performance of an individual or
group. Unlike performance models, which compare an individual's activities and metrics to an
objective standard, maturity models assess performance based on predefined stages of growth
and expertise.

A maturity model is a leveled benchmark that offers organizations a framework to assess their
current state. The goal of maturity models is to steer the focus of discussions. The main
components of a maturity mode are key process area, Criteria, and levels (Torriano, 2022).
However, hundreds of maturity models have been proposed by researchers and practitioners
across multiple domains (Bruin et al., 2005; Weber, 2008). In addition, a maturity model is a
conceptual framework that maps the development of an organization’s capabilities within a
specific domain. It is structured into stages, each representing a more advanced level of maturity

Rafa E. Al-Qutaish

International Journal of Data Engineering (IJDE), Volume (10): Issue (1): 2025 2
ISSN: 2180-1274, https://www.cscjournals.org/journals/IJDE/description.php

(Maturity Model: A framework that assesses the level of maturity of an organization’s processes
and practices).

Utilizing a maturity model brings significant benefits to organizations, including a structured
approach to continuous improvement, the ability to benchmark against industry standards, and
improved overall performance (Maturity Model: A framework that assesses the level of maturity of
an organization’s processes and practices).

− Continuous Improvement: Maturity models offer a clear framework for progression, enabling
organizations to set achievable goals and monitor their development effectively. This
structured approach fosters ongoing improvement.

− Benchmarking: By comparing their capabilities with industry standards, organizations can
identify strengths and weaknesses. This benchmarking process helps align improvement
efforts with best practices, driving better outcomes.

− Enhanced Performance: Advancing systematically through the maturity levels improves
process capability and efficiency, ultimately leading to superior performance and greater
operational effectiveness.

In the software engineering literature, there are many capability and maturity models. These
capability and maturity models could be classified into two categories, that is, process and
product capability and maturity models based on what aspect of the software they could be
applied.

Maturity models are commonly applied to assess the as-is situation, to derive and prioritize
improvement measures, and to control progress (Iversen et al., 1999). However, maturity models
are expected to disclose current and desirable maturity levels and to include respective
improvement measures.

This paper is structured as follows: Section 2 presents some examples of the many available
process maturity models related to software engineering. By contrast, only five maturity models
are identified as dealing with the software product. In Section 3, we discuss these some product
maturity models, that is: the Open Source Maturity Model (OSMM) (Golden, 2004), SCOPE
Maturity Model (SMM) (Jakobsen & Punter, 1999), Software Product Quality Maturity Model
(SPQMM) (Al-Qutaish & Abran, 2011), and the Software product Maturity Model (Nastro, 1997).
At the end of this paper – in Section 4 – we discuss the strengths and weaknesses of maturity
models which are related to the software product rather than to the software process. Finaly,
Section 5 concludes the paper.

2. SOFTWARE PROCESS MATURITY MODELS

The maturity models of software development processes are useful because they indicate
different levels of process performance and, consequently, the direction in which a software
process should improve (McBride et al., 2004). In this section we will discuss the following
process capability and maturity models:

1. Capability Maturity Model Integration for Software Engineering – CMMI-SW (SEI, 1993,

2002a, 2002b).
2. Testing Maturity Model – TMM (Burnstein et al., 1996a, 1996b).
3. ISO Process Assessment Model – ISO 15504(ISO, 2003, 2004a, 2004b, 2004c, 2006).

2.1 Capability Maturity Model Integration for Software Engineering (CMMI-SW)
The Capability Maturity Model (CMM) was developed by the Software Engineering Institute (SEI)
of Carnegie Mellon University in response to a request to provide the U.S. Department of
Defense with a method for assessing its software contractors (SEI, 1993). Within the updated
Capability Maturity Model Integration (CMMI) version are currently embedded four bodies of
knowledge (disciplines) (SEI, 1993, 2002a, 2002b):

Rafa E. Al-Qutaish

International Journal of Data Engineering (IJDE), Volume (10): Issue (1): 2025 3
ISSN: 2180-1274, https://www.cscjournals.org/journals/IJDE/description.php

1. System Engineering.
2. Software Engineering.
3. Integrated Product and Process Development.
4. Supplier Sourcing.

In this subsection, we provide an overview of only the Capability Maturity Model Integration for
Software Engineering (CMMI-SW).

The components of the CMMI-SW are process areas, specific goals, specific practices, generic
goals, generic practices, typical work products, sub-practices, notes, discipline amplifications,
generic practice elaborations and references (SEI, 2002a). The CMMI-SW can organize process
areas in a staged or a continuous representation. The staged representation includes five
maturity levels to support and guide process improvement; in addition, it groups process areas by
maturity level, indicating which process areas to implement to achieve each maturity level (SEI,
2002a). Figure 1 presents the CMMI-SW maturity level architecture.

FIGURE 1: CMMI-SW maturity levels(SEI, 2002a).

Furthermore, Figure 2 shows the CMMI-SW model components in a staged representation, and
illustrates the relationships between those components (SEI, 2002a).

FIGURE 2: CMMI-SW components (SEI, 2002a).

Common Features

Maturity Levels

Process Area 1 Process Area 2

Specific Goals Generic Goals

Specific Practices

Commitment to

Perform

Ability to

 Perform

Directing

Implementation

Verifying

Implementation

Generic Practices

Rafa E. Al-Qutaish

International Journal of Data Engineering (IJDE), Volume (10): Issue (1): 2025 4
ISSN: 2180-1274, https://www.cscjournals.org/journals/IJDE/description.php

2.2 Testing Maturity Model
The Testing Maturity Model (TMM) is a framework designed to assess and improve the maturity
of an organization's software testing processes. It provides a structured approach to evaluate the
effectiveness of testing practices, helping organizations improve their testing capabilities and
align them with best practices. The model aims to guide teams from initial ad-hoc practices to
more refined, optimized processes that ensure high-quality software delivery(Burnstein et al.,
1996a, 1996b). However, the key Concepts of TMM(Burnstein et al., 1996a, 1996b):

1. Maturity Levels: The model defines a set of maturity levels that an organization can progress

through. Each level represents a different stage of testing process maturity, ranging from the
absence of formal testing practices to a highly optimized and automated testing
environment(Burnstein et al., 1996a, 1996b).

2. Process Areas: These are the core activities or focus areas for testing, such as test
planning, test execution, defect management, test automation, and continuous improvement.
The TMM evaluates how well an organization is performing in these areas(Burnstein et al.,
1996a, 1996b).

3. (Burnstein et al., 1996a, 1996b)The model encourages organizations to adopt a mindset of
continuous improvement. As organizations progress through the maturity levels, they refine
and enhance their testing practices to reduce defects, improve test coverage, and increase
the efficiency of the testing process(Burnstein et al., 1996a, 1996b).

While the exact number of levels may vary depending on the version or specific adaptation of the
model, a typical TMM often has five – see Figure 3 - maturity levels(Burnstein et al., 1996a,
1996b):

1. Level 1: Initial (Ad-Hoc Testing)

− Testing is chaotic, unstructured, and reactive.
− No formal test processes or methodologies are followed.

− Limited understanding of testing roles and responsibilities.
2. Level 2: Managed (Basic Process)

− Basic testing processes are established and followed.

− Test planning and execution are somewhat defined, but still reactive.
− The focus is on delivering the product, with little emphasis on process improvement.

3. Level 3: Defined (Standardized Process)

− Testing processes are well-defined, standardized, and integrated into the software
development lifecycle (SDLC).

− Test strategies, methodologies, and tools are chosen to fit project needs.
− Documentation is improved, and testing teams are trained and skilled.

4. Level 4: Measured (Quantitative Management)

− Metrics are used to manage and control testing processes.

− Data-driven decisions are made to improve quality and efficiency.
− Test coverage, defect density, and other metrics are used to monitor and guide test

activities.
5. Level 5: Optimizing (Continuous Improvement)

− Focus on continuous process improvement.

− Testing processes are refined based on lessons learned and feedback.
− Test automation is extensively used, and there is a proactive approach to managing

risks and improving quality.

− The organization fosters a culture of testing excellence and innovation.

Rafa E. Al-Qutaish

International Journal of Data Engineering (IJDE), Volume (10): Issue (1): 2025 5
ISSN: 2180-1274, https://www.cscjournals.org/journals/IJDE/description.php

FIGURE 3: Testing maturity levels.

The Testing Maturity Model provides a roadmap for organizations to assess and improve their
software testing capabilities. By following the maturity levels and focusing on key process areas,
companies can move from unstructured, ad-hoc testing practices to a more strategic and data-
driven approach to quality assurance(Burnstein et al., 1996a, 1996b). Thew following are the
benefits of the TMM(Burnstein et al., 1996a, 1996b):

− Improved Software Quality: As an organization matures in testing practices, the quality of the
software improves due to more thorough and structured testing(Burnstein et al., 1996a,
1996b).

− Increased Efficiency: Well-defined and optimized testing processes help in better resource
management and reduced time to market(Burnstein et al., 1996a, 1996b).

− Cost Reduction: With higher maturity, organizations can detect defects early, reducing the
cost of fixing bugs later in the development lifecycle(Burnstein et al., 1996a, 1996b).

− Better Risk Management: By implementing metrics and continuous improvement practices,
organizations can identify risks early and mitigate them effectively(Burnstein et al., 1996a,
1996b).

2.3 ISO 15504: Software Process Assessment
Also known as SPICE (Software Process Improvement and Capability Determination). ISO 15504
consists of a set of documents related to Software Process Assessment. It was first published in
1998 as a series of 9 Technical Reports. During 2003 to 2005, ISO has re-published this
international standard as a 5-part series:

1. ISO 15504-1: Concepts and Vocabulary (ISO, 2004a).
2. ISO 15504-2: Performing an Assessment (ISO, 2003).
3. ISO 15504-3: Guidance on Performing an Assessment (ISO, 2004b).
4. ISO 15504-4: Guidance on use for Process Improvement and Process Capability

Determination (ISO, 2004c).
5. ISO 15504-5: An Exemplar Process Assessment Model (ISO, 2006).

The first Part – Concepts and Vocabulary – is an entry point into ISO 15504. It gives an
introduction to the concepts of this international standard, and defines a number of related terms
(ISO, 2004a). In addition, this part describes how the other four parts fit together, and provides
guidance for their selection and use (ISO, 2004a). Figure 4 shows a potential roadmap for users
of this international standard (ISO, 2004a).

Rafa E. Al-Qutaish

International Journal of Data Engineering (IJDE), Volume (10): Issue (1): 2025 6
ISSN: 2180-1274, https://www.cscjournals.org/journals/IJDE/description.php

FIGURE 4: A potential roadmap for the users of ISO 15504 (ISO, 2004a).

The second Part – Performing an Assessment – of this international standard contains normative
requirements for process assessment and for process models in an assessment, and defines a
measurement framework for evaluating process capability. The measurement framework defines
nine process attributes that are grouped into six process capability levels that define an ordinal
scale of capability that is applicable across all selected processes. In addition, this part describes
the relationships between the components of the process assessment model, as in Figure 5 (ISO,
2003).

FIGURE 5: Process assessment model relationships (ISO, 2003).

Figure 6 illustrates the relationships between the process attributes and their ratings and the
corresponding capability levels. In this figure 6, the capability levels start at level one, that is, level
zero is excluded since it indicates that the process is not implemented, or fails to achieve its
process purpose.

Part 4: Guidance on use for Process Improvement

and Process Capability Determination

Part 1: Concepts and Vocabulary

Part 2: Performing an

Assessment

Part 3: Guidance on Performing an Assessment

Part 5: An Exemplar Process Assessment Model

m
ap

p
in

g

Measurement Framework

- Capability Levels

- Process Attributes

- Rating Scale

mapping

 1 2 3 . . . n

Process Entities

Process Reference Model

- Domain and Scope

- Processes with Purpose and Outcomes

5

4

3

2

1

C
a

p
a

b
ility

 S
ca

les

Process

Assessment

Model

Rafa E. Al-Qutaish

International Journal of Data Engineering (IJDE), Volume (10): Issue (1): 2025 7
ISSN: 2180-1274, https://www.cscjournals.org/journals/IJDE/description.php

FIGURE 6: The relationships between the process attributes, their ratings and the corresponding capability
levels.

Furthermore, this Part 2 – Performing an Assessment – of the ISO 15504 introduces the following
rating categories to be used in order to rate each of the process attributes (ISO, 2003):

− N: Not achieved (0% - 15% achievement).

− P: Partially achieved (15% - 50% achievement).

− L: Largely achieved (50% - 85% achievement).
− F: Fully achieved (85% - 100% achievement).

The third Part – Guidance on Performing an Assessment – provides guidance on how to meet the
minimum set of requirements for performing an assessment contained in the second part –
Performing an Assessment – of this standard (ISO, 2004b). It provides an overview of process
assessment and interprets the requirements through the provision of guidance on (ISO, 2004b):

1. Performing an assessment.
2. Measurement framework for process capability.
3. Process reference models and process assessment models.
4. Selecting and using assessment tools.
5. Competency of assessors.
6. Verification of conformity.

In addition, this part also provides an exemplar documented assessment process in its Annex A
(ISO, 2004b).

The fourth Part – Guidance on use for Process Improvement and Process Capability
Determination – provides guidance on how to utilize a conformant process assessment within a
process improvement program or for process capability determination (ISO, 2004c). Within a

Processes

(1)

(1), (2), (3)

Level

Mapping of the selected process

attributes with their required ratings

to a specific capability level

(1), (2), (3), (4), (5),

(6), (7), (8), (9)

(1), (2), (3), (4), (5),

(6), (7)

(1), (2), (3), (4), (5)

S
elected

 P
ro

cess A
ttrib

u
tes w

ith
 th

eir ra
tin

g
s

1

2

3

.

.

.

N

Process Attributes

Process Performance

(1)

Performance

Management

(2)

Work Product

Management

(3)

Process Definition

(4)

Process Deployment

(5)

Process Measurement

(6)

Process Control

(7)

Process Innovation

(8)

Process Optimization

(9)

1

2

3

4

5

Rafa E. Al-Qutaish

International Journal of Data Engineering (IJDE), Volume (10): Issue (1): 2025 8
ISSN: 2180-1274, https://www.cscjournals.org/journals/IJDE/description.php

process improvement context, process assessment provides a means of characterizing an
organizational unit in terms of the capability of selected processes. Analysis of the output of a
conformant process assessment against an organizational unit's business goals identifies
strengths, weaknesses and risks related to the processes. In addition, this can help determine
whether the processes are effective in achieving business goals, and provide the drivers for
making improvements. Process capability determination is concerned with analyzing the output of
one or more conformant process assessments to identify the strengths, weaknesses and risks
involved in undertaking a specific project using the selected processes within a given
organizational unit (ISO, 2004c).

Finally, the fifth Part – An Exemplar Process Assessment Model – provides an exemplar model
for performing process assessments that is based upon and directly compatible with the Process
Reference Model in ISO 12207 Amendment 1 and Amendment 2 (ISO, 2006). The process
dimension is provided by an external Process Reference Model, which defines a set of
processes, characterized by statements of process purpose and process outcomes (ISO, 2006).
The capability dimension is based upon the Measurement Framework defined in Part 2 –
Performing an Assessment – of this standard. The assessment model(s) extend the Process
Reference Model and the Measurement Framework through the inclusion of a comprehensive set
of indicators of process performance and capability (ISO, 2006).

The potential users of this set of standards are the following (ISO, 2004a):

1- Assessors.
2- Acquirers.
3- Suppliers.

3. SOFTWARE PRODUCT MATURITY MODELS
In the software engineering literature, we find only the following two maturity models which are
related to the software product:

1. Open Source Maturity Model – OSMM (Golden, 2004).
2. Software Product Maturity Model (Nastro, 1997).
3. SCOPE Maturity Model (SMM) (Jakobsen & Punter, 1999).
4. Software Product Quality Maturity Model (SPQMM) (Al-Qutaish & Abran, 2011).

It must be noted, however, that these two models of software product do not address the quality
of these products. Within this section, we will provide a brief description for these two models.

3.1 Open-Source Maturity Model (OSMM)
The Open Source Maturity Model (OSMM) (Golden, 2004) is designed to help organizations
successfully implement open-source software. The OSMM is a three-phase process, and
performs the following tasks, as in Figure 7:

1. Assessment of the maturity element.
2. Assignment of the weighting factor.
3. Calculation of the product maturity score.

Rafa E. Al-Qutaish

International Journal of Data Engineering (IJDE), Volume (10): Issue (1): 2025 9
ISSN: 2180-1274, https://www.cscjournals.org/journals/IJDE/description.php

FIGURE 7: The OSMM three-phase evaluation process(Golden, 2004).

The first phase consists of the following steps:

1. Define the requirements,
2. Locate the resources,
3. Assess the element maturity
4. Assign the element score.

The second phase involves assigning the objective weighting factors that are provided as default
weightings and that can be changed by individual organizations to reflect their particular needs
(Golden, 2004).

The last phase involves calculating the product maturity score by multiplying the score of each
element by its weight, and then summing the results to obtain the output of the OSMM
assessment as a numeric score between zero and 100. This score may be compared against
recommended levels for different purposes, which vary according to whether an organization is
an early adopter or a pragmatic user of information technology (Golden, 2004), see Figure 8 for
the recommended minimum OSMM scores.

FIGURE 8: Recommended minimum OSMM scores (Golden, 2004).

 Purpose of Use
Type of User

Early Adopter Pragmatist

Experimentation 25 40

Pilot 40 60

Production 60 70

Rafa E. Al-Qutaish

International Journal of Data Engineering (IJDE), Volume (10): Issue (1): 2025 10
ISSN: 2180-1274, https://www.cscjournals.org/journals/IJDE/description.php

Using the key software concept of maturity (i.e., how far along a product is in the software
lifecycle, which dictates what type of use may be made of the product), the OSMM assesses the
maturity level of the following key product elements (Golden, 2004):

1. Software.
2. Support.
3. Documentation.
4. Training.
5. Product integration.
6. Professional Services.

The OSMM is designed to be a lightweight process which can evaluate an open-source product’s
maturity in two weeks or less (Golden, 2004).

Software Product Maturity Model
In addition to the OSMM, Nastro (1997) developed a maturity model for the software product. His
maturity model consists of three core elements and two sub-elements, the sub-elements may be
applied to specific software applications (Nastro, 1997).

The core elements of Nastro’s (1997) model are the following:

1. Product capability.
2. Product stability.
3. Product maintainability

And the sub-elements are:

1. Product repeatability.
2. Product compatibility.

Based on the computed maturity level of each of the core and sub-elements, Nastro (1997)
proposed the following equation to calculate the product maturity level of an embedded, real-time
or signal processing system (Nastro, 1997):

 PC * (PS + PR + PM) / 3 (1)

where:

− PC is the Product Capability maturity level,

− PS is the Product Stability maturity level,

− PR is the Product Repeatability maturity level, and
− PM is the Product Maintainability maturity level.

In the above equation, PC has the highest weight among all the core and sub-elements, because
of its criticality for this application (Nastro, 1997).

3.2 SCOPE Maturity Model (SMM)
This SMM was created by members of the EuroScope consortium, a network of European
evaluators established in 1993. The consortium comprises member organizations from Denmark,
France, Hungary, Ireland, Italy, the Netherlands, Spain, and the United Kingdom. The consortium
has explored the potential for software product certification. During these discussions, it became
evident that the software market—comprising producers and acquirers/users—often fails to
recognize the benefits of certification. Customers of certification services frequently lack clarity
about what to expect, as well as how certification relates to testing or measuring software. To
address this issue, the SMM was developed to contextualize software product evaluations.

Rafa E. Al-Qutaish

International Journal of Data Engineering (IJDE), Volume (10): Issue (1): 2025 11
ISSN: 2180-1274, https://www.cscjournals.org/journals/IJDE/description.php

Additionally, a certification service named SCOPEmark Level-2 has been established. This
service, aligned with Level 2 of the SMM, is set to launch in April 1999 (Jakobsen & Punter,
1999).

The objective of the SCOPE Maturity Model (SMM) is to enable evaluation customers as well as
evaluating bodies to use a framework for the design and execution of an appropriate software
product evaluation (Jakobsen & Punter, 1999).

when a software product is assessed as a Level n product in the maturity model, it indicates that
the product meets the requirements not only for Level n but also for all preceding levels, such as
Level n-1. Each level is defined by a set of requirements for the evaluation process and its
outcomes. Below, we outline the core concepts behind each of the 5 levels. While the lower
levels are grounded in international standards, such standards are largely absent for the higher
and more advanced levels of software quality evaluation (Jakobsen & Punter, 1999):

1. SMM-1: The initial level serves as the default level, meaning there are no explicit

requirements regarding the product's quality. However, if a product is assessed as a Level 1
product, the implicit requirement is that it has undergone evaluation. This makes the initial
level an awareness stage within the model (Jakobsen & Punter, 1999).

2. SMM-2: the repeatable level, Repeatable product quality ensures that the product meets
expectations outlined in basic requirements, which are confirmed through testing with
satisfactory results. The key component of Level 2 is the ISO 12119 standard, which
provides users with confidence that the product performs as promised and documented
(Jakobsen & Punter, 1999).

3. SMM-3: the defined level, at this level, software product quality is evaluated as quality in use
(Bevan, 1997), rather than solely based on compliance with specifications or requirements.
Usage scenarios are systematically analyzed, and the insights gained guide efforts to
improve product quality. The key standard at this level is ISO 9126, which defines relevant
quality attributes for the product, including functionality, reliability, usability, efficiency,
maintainability, and portability (Jakobsen & Punter, 1999).

4. SMM-4: the managed level, at this level, the holistic approach to product quality is further
developed by incorporating quantitative measures and risk analysis. Metrics are extensively
collected to guide the planning and execution of evaluations and to assess both internal and
external software attributes, using parts 2 and 3 of ISO/IEC 9126 (Jakobsen & Punter,
1999).

5. SMM-5: the optimising level, at this level, the evaluation process is continuously optimized to
enhance software product quality. This involves implementing feedback mechanisms based
on quantitative measures to refine the evaluation process and using evaluation results to
drive product improvements. Unlike Level 4, where problem reports and coverage metrics
are collected, Level 5 takes a proactive approach by leveraging these insights to guide
further evaluations. The outcomes are then applied to improve the quality of the software
product (Jakobsen & Punter, 1999).

3.3 Software Product Quality Maturity Model (SPQMM)
The SPQMM comprises three sub-models designed to assess and enhance quality not only after
software delivery but throughout its entire lifecycle, that is, Software Product Internal Quality
Maturity Model (SPIQMM), Software Product External Quality Maturity Model (SPEQMM), and
Software Product Quality-in-Use Maturity Model (SPQiUMM). However, each of these maturity
sub-models is composed of several sub-models, each based on the ISO 9126 quality
characteristics and corresponding product quality measures (Al-Qutaish & Abran, 2011).

To implement the quantitative approach, the six-sigma methodology for assessing software
product quality has been applied in the development of this quality maturity models (Al-Qutaish &
Abran, 2011). However, the architecture of the proposed maturity model is grounded in two
widely accepted concepts in the industry (Al-Qutaish & Abran, 2011):

Rafa E. Al-Qutaish

International Journal of Data Engineering (IJDE), Volume (10): Issue (1): 2025 12
ISSN: 2180-1274, https://www.cscjournals.org/journals/IJDE/description.php

− Levels of product quality

− A quantitative approach to product quality

Based on observations of general industry practices beyond the software field, the following five
quality maturity levels have been identified for the SPQMM (Al-Qutaish & Abran, 2011):

1. Guaranteed
2. Certified
3. Neutral
4. Dissatisfied
5. Completely Dissatisfied

Sigma values are used to determine the quality maturity levels in the SPQMM, as shown in
Figure 9. This maturity scale can be applied from two perspectives: it assesses not only the
overall quality of the software product but also the quality at different stages of the lifecycle,
including internal quality, external quality, and quality-in-use (Al-Qutaish & Abran, 2011).

FIGURE 9: The quality maturity levels and their scales for the Software Product Quality Maturity Model
(SPQMM) (Al-Qutaish & Abran, 2011).

The SPQMM can be used to assess the maturity of a software product’s quality. Specifically, it
can be applied to (Al-Qutaish & Abran, 2011):

− Certify the quality maturity level of a new software product, potentially aiding its market
promotion.

− Benchmark existing software products to help in selecting the best one based on its quality
maturity level.

− Evaluate the quality of a software product throughout its development lifecycle (internally,
externally, and in-use), exploring the relationships between these stages and identifying
weaknesses to improve the product.

− Assess the maturity of the internal quality of a software product for reuse in other software
products.

− Compare the maturity levels of quality at different lifecycle stages (i.e., internal, external, and
in-use).

4. SOFTWARE PROCESS MATURITY MODELS LIMITATIONS
4.1 Capability Maturity Model Integration for Software Engineering – CMMI-SW
The Capability Maturity Model Integration (CMMI) for Software Engineering is a widely used
framework for improving and assessing software development processes. However, like any
methodology, it has several limitations:

1- Complexity and Cost of Implementation: Implementing CMMI can be resource-intensive,

requiring significant time, effort, and financial investment, especially for small to medium-
sized organizations. Also, the process involves extensive documentation, training, and
changes to existing processes, which can be costly.

2- Focus on Process, Not Product Quality: CMMI primarily emphasizes process improvement
rather than directly addressing product quality. While better processes can lead to improved

Rafa E. Al-Qutaish

International Journal of Data Engineering (IJDE), Volume (10): Issue (1): 2025 13
ISSN: 2180-1274, https://www.cscjournals.org/journals/IJDE/description.php

quality, it does not guarantee that the final product will meet customer needs or quality
expectations.

3- Heavy Emphasis on Documentation: CMMI requires a significant amount of documentation,
which may be seen as burdensome, especially for organizations that prefer lighter, more
agile approaches to software development. This documentation-focused approach may slow
down development and lead to inefficiencies.

4- Not Well-Suited for Agile Methodologies: CMMI’s structured approach to process
improvement can conflict with agile methodologies, which emphasize flexibility, iterative
development, and minimal documentation. While adaptations of CMMI for agile
environments exist (e.g., CMMI for Development), the integration can be challenging and
may not fully align with the agile philosophy.

5- Rigidity and Overhead: Organizations may become overly focused on achieving specific
maturity levels, leading to rigidity in processes. This can stifle innovation and flexibility within
teams, especially if the focus is placed more on meeting CMMI requirements than on
delivering value to customers.

6- Difficult to Scale for Smaller Organizations: CMMI can be too complex for smaller
organizations with limited resources. The full implementation of CMMI may not be practical
for companies with smaller teams or those in early stages of growth.

7- Long-Term Commitment: Achieving higher maturity levels in CMMI is a long-term
commitment that requires continuous assessment, improvement, and maintenance. This
ongoing process may be unsustainable for organizations that do not have long-term
dedication to process improvement.

8- Potential for Over-Standardization: While standardization can improve consistency, over-
reliance on CMMI’s prescribed processes might lead to a lack of flexibility and creativity in
the development process, which can hinder the ability to adapt to changing market or
customer needs.

9- Limited Focus on Team Culture: CMMI focuses on process improvement but does not
directly address the culture of collaboration, communication, or employee engagement,
which are critical for successful software engineering practices.

10- Overemphasis on Compliance: The model’s focus on process compliance can sometimes
create a "checklist" mentality, where organizations focus on meeting the minimum
requirements for certification rather than fostering genuine improvement or innovation in their
software development practices.

4.2 Testing Maturity Model – TMM
TMM offers valuable guidance for enhancing testing practices, there are several limitations to its
application:

1. Focus on Process, Not Product Quality: TMM emphasizes improving the testing process but

does not directly address the final product’s quality. It may improve testing efficiency, but it
does not guarantee that the software will meet customer requirements or expectations
unless paired with other quality-focused practices.

2. Resource-Intensive: Implementing the TMM often requires significant investments in time,
effort, and resources, particularly for organizations with limited testing expertise or
resources. Achieving higher maturity levels might necessitate hiring specialized personnel,
acquiring new tools, and undergoing extensive training.

3. Long Implementation Time: Advancing through the maturity levels of TMM can be a slow
and incremental process. Organizations may struggle to realize tangible results quickly,
especially if they are starting at a low maturity level and need to make substantial changes to
their testing processes.

4. Rigidity and Over-Standardization: TMM can lead to overly standardized testing practices
that may not be flexible enough to meet the unique needs of different projects or industries.
This can stifle innovation and may not accommodate more dynamic, agile development
environments.

5. Limited Alignment with Agile Practices: TMM was originally designed with traditional,
waterfall-based development in mind and may not align well with agile methodologies. Agile

Rafa E. Al-Qutaish

International Journal of Data Engineering (IJDE), Volume (10): Issue (1): 2025 14
ISSN: 2180-1274, https://www.cscjournals.org/journals/IJDE/description.php

teams value adaptability, fast feedback loops, and minimal documentation, which can
conflict with TMM’s more structured and process-oriented approach.

6. Heavy Emphasis on Documentation: Achieving higher maturity levels in TMM often requires
extensive documentation to demonstrate compliance with the model’s requirements. This
can be burdensome, particularly for teams or organizations that prefer lean, agile
approaches with less documentation overhead.

7. Not Universally Applicable: The model may not fit well with all organizations or industries.
Organizations with specific, niche needs may find TMM's general framework too rigid or
overly focused on areas that are not critical to their success.

8. Measurement Challenges: Tracking progress and measuring maturity levels within TMM can
be challenging. The model relies on subjective assessments, and the criteria for evaluating
improvements may not always be clear, making it difficult to gauge progress consistently.

9. Risk of Becoming Focused on Certification: Organizations may become overly focused on
achieving high maturity levels for the sake of certification, rather than genuinely improving
their testing processes. This could lead to a “tick-box” mentality where the focus shifts from
meaningful improvements to simply meeting the model’s requirements.

10. Limited Focus on Team Collaboration: TMM focuses on improving the testing process but
doesn’t address the collaborative and cultural aspects of testing. Effective testing often
depends on teamwork, communication, and the involvement of various stakeholders, which
may not be sufficiently emphasized in the model.

11. Inability to Address Fast-Paced Technological Changes: The rapid evolution of testing tools
and methodologies, such as automated testing, continuous integration, and AI-driven testing,
may outpace the TMM framework, making it harder for organizations to keep the model up-
to-date with current trends in testing.

4.3 ISO Process Assessment Model – ISO 15504
The ISO Process Assessment Model (ISO 15504), provides a framework for assessing and
improving software processes. While it is widely used and respected, there are several limitations
associated with its implementation:

1. Complexity and Resource Intensity: Implementing ISO 15504 can be resource-intensive,

requiring significant time, effort, and financial investment. The process assessment,
documentation, and certification can be burdensome, particularly for smaller organizations
with limited resources. Achieving high capability levels often requires dedicated teams,
specialized tools, and extensive training.

2. Long Time to Achieve Results: Progressing through the levels of ISO 15504 can be a slow
process. Moving from one capability level to the next involves continuous improvement and
may take months or years, which can be discouraging for organizations looking for quicker
results.

1. For organizations starting at a low maturity level, the improvement process can be lengthy
and require significant cultural and structural changes.

2. Focus on Process, Not Product Quality: Like other maturity models (e.g., CMMI), ISO 15504
focuses heavily on process improvement rather than directly on product quality. While
improved processes can lead to better quality, the model does not directly guarantee that the
end product will meet customer expectations or requirements.

3. Limited Flexibility for Agile or Rapid Development: ISO 15504 is based on traditional,
structured approaches to software development, which may not align well with agile or
iterative methodologies. Agile organizations that value flexibility, rapid iterations, and minimal
documentation may find the framework too rigid for their needs. While ISO 15504 can be
adapted to agile environments, the model is inherently more suited for structured, waterfall-
based projects, which can cause challenges for organizations adopting agile practices.

4. Heavy Emphasis on Documentation and Formality: ISO 15504 requires a significant amount
of documentation and formal assessments to demonstrate compliance with the process
maturity levels. This can create administrative overhead, especially for organizations that
prefer lighter, more agile approaches with less emphasis on documentation. The focus on

Rafa E. Al-Qutaish

International Journal of Data Engineering (IJDE), Volume (10): Issue (1): 2025 15
ISSN: 2180-1274, https://www.cscjournals.org/journals/IJDE/description.php

documentation can lead to a "checklist" mentality, where organizations focus on meeting
formal requirements rather than addressing more practical process improvements.

5. Difficulty in Adapting to Specific Organizational Needs: While ISO 15504 is a general
framework for process assessment, it may not fully account for the unique needs,
constraints, or objectives of individual organizations. It can be too generic and may require
significant customization to align with the specific goals of an organization or the nature of its
projects.

6. Overemphasis on Compliance: Organizations may focus too heavily on achieving higher
capability levels for the sake of certification, rather than focusing on continuous process
improvement. This can lead to a superficial or compliance-driven approach, where the goal
becomes ticking boxes to meet the standard rather than genuinely improving processes.

7. Resource Constraints for Small Organizations: For small to medium-sized organizations, the
resources required to implement ISO 15504 effectively (such as dedicated personnel, tools,
and training) may not be available. The framework is often more suited to larger
organizations with established process improvement teams, making it harder for smaller
companies to adopt without significant investment.

8. Lack of Focus on Team Collaboration and Culture: While ISO 15504 focuses on process
improvement, it places limited emphasis on the cultural and collaborative aspects of process
improvement. Successful implementation of software processes often relies on team
dynamics, communication, and buy-in from stakeholders, but these factors are not directly
addressed in the framework.

9. Limited Guidance on Technological Advancements: ISO 15504 primarily focuses on
traditional software engineering processes and may not be fully applicable to organizations
adopting cutting-edge technologies, such as AI, machine learning, or advanced automation.
The framework may need to be updated to accommodate newer developments in the
software engineering field.

10. Difficulty in Measuring Non-Process Related Factors: ISO 15504 emphasizes process
capability but does not provide direct methods for assessing non-process-related factors like
product innovation, team morale, or customer satisfaction. These factors are crucial to
overall project success but are not part of the model’s direct scope.

11. Challenges in Scaling for Different Industry Types: While ISO 15504 provides a general
model, it may not fully account for the specific needs of different industries, such as
embedded systems, safety-critical applications, or high-performance computing.
Customization is often required for specialized environments.

5. SOFTWARE PRODUCT MATURITY MODELS LIMITATIONS
5.1 Open-Source Maturity Model (OSMM)
While it is useful for assessing the health and progression of open-source projects, there are
several limitations to using an Open-Source Maturity Model:

1. Subjectivity and Ambiguity in Assessment: Open-source projects vary widely in terms of

goals, community engagement, and technical focus. The subjective nature of certain
maturity criteria, such as "community involvement" or "transparency," can lead to
inconsistent evaluations. Different evaluators might interpret the same criteria differently,
which may skew the results or create ambiguity in maturity levels.

2. Lack of Industry Standardization: The Open-Source Maturity Model may not be universally
adopted or standardized across different industries or organizations. This means that while
the model can offer guidance, its application and the interpretation of its results may vary,
reducing its consistency and reliability.

3. Focus on Process Over Results: Many open-source maturity models place a strong
emphasis on the processes, governance structures, and technical standards of a project.
While these are important for long-term sustainability, the focus on process can sometimes
overshadow the actual impact or outcomes of the project, such as the quality of the software
or its adoption in the community.

Rafa E. Al-Qutaish

International Journal of Data Engineering (IJDE), Volume (10): Issue (1): 2025 16
ISSN: 2180-1274, https://www.cscjournals.org/journals/IJDE/description.php

4. Overemphasis on Formality: Some maturity models may encourage projects to adopt formal
processes, policies, and structures that may not be appropriate for every open-source
initiative. Smaller projects or those with fewer resources may struggle with implementing the
more formalized structures suggested by maturity models, which could inhibit their growth or
innovation.

5. Limited Consideration of External Factors: Open-source projects exist in a dynamic and
often volatile environment where factors such as market demand, competition, and changes
in licensing or technology can influence success. Maturity models typically focus on internal
processes and community health, but they may not fully account for these external factors
that can significantly impact a project's sustainability and relevance.

6. Inflexibility for Diverse Open-Source Models: Open-source projects are highly diverse, with
some focused on rapid prototyping and others on long-term stability. The linear or
hierarchical stages often present in maturity models may not suit all types of open-source
projects. The model may assume that every project must follow the same path to maturity,
which doesn't work for projects that take different approaches to governance, code
contribution, or community building.

7. Difficulty in Quantitative Measurement: Many of the factors assessed in Open-Source
Maturity Models - such as community engagement, code quality, and collaboration - are
difficult to measure quantitatively. Metrics can be subjective, and there may not be a
consistent or reliable way to evaluate progress across different projects. This can lead to
challenges when trying to compare projects or determine objective progress over time.

8. Inadequate Reflection of Innovation: Open-source projects are often at the forefront of
innovation, with rapidly changing ideas and technology. Maturity models, which typically
focus on established practices and processes, might not adequately reflect the innovative
nature of a project. Projects in the early stages of development or those experimenting with
new technologies may not score well on traditional maturity metrics, even though they may
be highly influential or revolutionary in their field.

9. Resource Constraints: Implementing a maturity model, including self-assessment and
continuous improvement based on the model, can be resource-intensive. Smaller open-
source projects may not have the time or financial resources to devote to regular
evaluations, which can limit the model’s usefulness for these projects.

10. Potential for Stagnation: Some projects might become overly focused on achieving higher
maturity levels according to the model, rather than prioritizing meaningful improvements or
innovations. This can lead to a "checklist mentality," where projects focus on ticking off items
to "progress" in the maturity model, rather than addressing real-world needs or staying
responsive to their communities.

11. Misalignment with Project Goals: Open-source projects often have diverse goals, such as
experimentation, community building, or providing software for a niche need. The OSMM
might not account for projects that intentionally choose a less formal or more fluid
development model. In these cases, trying to apply the maturity model's criteria could force
the project into a framework that doesn’t align with its objectives or values.

12. Varying Project Lifecycles: Open-source projects often have different life cycles: some are
long-term, sustained efforts, while others may be short-term, experimental, or only intended
for a specific purpose. The maturity model may not accommodate the natural evolution of
different types of projects, treating all open-source initiatives as if they should progress
through the same stages of maturity.

5.2 Software Product Maturity Model
The second product maturity model – the Nastro software product maturity model – has the
following limitations:

1. It is for an executable software product. Therefore, it can only be used with an incremental

life-cycle which provides multiple releases (versions) of an executable software product.
2. It is not based on any comprehensive quality model, but only on a small number of product

quality characteristics (there are five of them).
3. It is designed for the software product itself, rather than the quality of the software product.

Rafa E. Al-Qutaish

International Journal of Data Engineering (IJDE), Volume (10): Issue (1): 2025 17
ISSN: 2180-1274, https://www.cscjournals.org/journals/IJDE/description.php

4. For each element (core or sub), there is only one measure.
5. It has been built to track and report the software development effort during an incremental

life-cycle.

5.3 SCOPE Maturity Model (SMM)
There are several limitations to the SMM that can affect its effectiveness and the accuracy of its
assessments:

1. Over-Simplification of Complex Processes: Maturity models, including SMM, tend to break

down complex organizational processes into discrete stages or levels. This simplification
may overlook nuanced challenges or unique situations that don't fit neatly into the model's
predefined stages.

2. Lack of Contextual Flexibility: SMM might not account for all the contextual factors that
influence an organization’s practices. For example, different industries or regions may have
unique challenges that the model doesn't adequately address, leading to potentially skewed
assessments.

3. Dependence on Self-Assessment: Often, maturity models rely on self-assessments, which
can be biased. Organizations may rate themselves higher than they deserve, leading to an
inaccurate representation of their actual maturity level. This can result in misguided
improvement initiatives.

4. Rigid Structure: The linear nature of maturity models may lead to a one-size-fits-all
approach. Some organizations may require custom or more flexible frameworks for growth,
especially in fast-moving or innovative sectors where adaptability and agility are key.

5. Focus on Quantitative Metrics: SMM and similar models often emphasize measurable
metrics and structured processes. While this is useful for tracking progress, it may miss
important qualitative factors such as organizational culture, employee engagement, or
innovation, which also contribute significantly to overall maturity.

6. Potential Resistance to Change: The structured stages in SMM can sometimes be seen as a
rigid roadmap for improvement. This may cause organizations to become resistant to
change or overly focused on moving through stages, rather than on continuous
improvement.

7. Resource Intensive: Implementing and tracking improvements based on the maturity model
may require significant resources, time, and commitment, which can be a barrier for smaller
organizations or those with limited capacity for large-scale transformation.

8. Overemphasis on "Best Practices": Maturity models often emphasize "best practices," which
can lead organizations to focus too much on established methods rather than exploring
innovative approaches. This focus might hinder creativity or delay adoption of newer, more
effective practices.

9. Limited Focus on External Factors: External factors like market changes, regulatory shifts,
and competitor behavior might not be sufficiently addressed by the SMM, limiting its ability to
provide a comprehensive view of an organization's position within its broader environment.

10. Lack of Real-Time Feedback: Many maturity models, including SMM, might not provide real-
time feedback or adaptability to ongoing changes. This can make it difficult for organizations
to adjust their strategy based on rapidly evolving business needs.

5.4 Software Product Quality Maturity Model (SPQMM)
The PQMM is limited to the ISO 9126 quality model and its associated measures. Another
limitation is that the results of these models assume equal weight for all measures,
characteristics, and sub-characteristics. To overcome this assumption, organizations can apply
relevant statistical techniques or assign their own weights using methods such as the Analytical
Hierarchy Process (AHP) (KOSCIANSKI & COSTA, 1999). Subsequently, they can use
appropriate techniques to combine these weights into aggregated values at higher levels, similar
to approaches used in the QEST multi-dimensional models for quality and performance
(BUGLIONE & ABRAN, 1999, 2002).

Rafa E. Al-Qutaish

International Journal of Data Engineering (IJDE), Volume (10): Issue (1): 2025 18
ISSN: 2180-1274, https://www.cscjournals.org/journals/IJDE/description.php

6. CONCLUSIONS
In conclusion, maturity models play a pivotal role in the field of software engineering by offering a
structured framework for assessing and enhancing both development processes and software
products. They provide organizations with a clear benchmark for evaluating their current
capabilities, identifying areas for improvement, and guiding them toward higher levels of
efficiency, quality, and innovation. Whether focusing on the optimization of development
processes or the refinement of product quality, maturity models serve as essential tools for
continuous improvement and standardization within the industry. By enabling organizations to
measure their performance against industry best practices, these models foster a culture of
growth, ensuring that software development is not only effective but also adaptive to evolving
technological demands. As this paper explores various maturity models, their application, and
their impact, it becomes evident that these models are invaluable assets for organizations
seeking to achieve long-term success and excellence in software engineering.

In this paper, three software process maturity models and four software product maturity models
have been analysed and discussed. However, a number of limitations for each of the discussed
maturity models has been identified to be used as a guidance for any future research work to
enhance such maturity models.

7. REFERENCES
Al-Qutaish, R. E., & Abran, A. (2011). A Maturity Model of Software Product Quality. Journal of
Research and Practice in Information Technology 43(4), 307-327.

Bruin, T. d., Rosemann, M., Freeze, R., & Kulkarni, U. (2005). Understanding the main phases of
developing a maturity assessment model Australasian Conference on Information Systems
(ACIS'05), Sydney, Australia.

BUGLIONE, L., & ABRAN, A. (1999). Geometrical and statistical foundations of a three-
dimensional model of software performance. Advances in Engineering Software, 30(12), 913–
919.

BUGLIONE, L., & ABRAN, A. (2002). QEST nD: n-dimensional extension and generalisation of a
software performance measurement model. Advances in Engineering Software, 33(1), 1-7.

Burnstein, I., Suwanassart, T., & Carlson, C. R. (1996a). Developing a Testing Maturity Model:
Part I. CrossTalk: the Journal of Defense Software Engineering, 9(8), 21-24.
http://www.stsc.hill.af.mil/crosstalk/frames.asp?uri=1996/08/Developi.asp.

Burnstein, I., Suwanassart, T., & Carlson, C. R. (1996b). Developing a Testing Maturity Model:
Part II. CrossTalk: the Journal of Defense Software Engineering, 9(9), 19-26.
http://www.stsc.hill.af.mil/crosstalk/frames.asp?uri=1996/09/Developi.asp.

Golden, B. (2004). Succeeding with Open Source. Addison-Wesley Professional.

ISO. (2003). Information Technology - Process assessment - Part 2: Performing an Assessment.
International Organization for Standardization.

ISO. (2004a). Information Technology - Process Assessment - Part 1: Concepts and Vocabulary.
International Organization for Standardization.

ISO. (2004b). Information Technology - Process Assessment - Part 3: Guidance on Performing
an Assessment. International Organization for Standardization.

ISO. (2004c). Information Technology - Process Assessment - Part 4: Guidance on Use for
Process Improvement and Process Capability Determination. International Organization for
Standardization.

Rafa E. Al-Qutaish

International Journal of Data Engineering (IJDE), Volume (10): Issue (1): 2025 19
ISSN: 2180-1274, https://www.cscjournals.org/journals/IJDE/description.php

ISO. (2006). Information Technology - Process Assessment - Part 5: An Exemplar Process
Assessment Model, Document Number: N3302 Dated on 14 September 2005. International
Organization for Standardization.

Iversen, J., Nielsen, P. A., & Norbjerg, J. (1999). Situated assessment of problems in software
development. Database for Advances in Information Systems, 30(2), 66-81.

Jakobsen, A., & Punter, T. (1999). Towards a Maturity Model for Software Product Evaluations.
Retrieved Accessed on Nov. 25, 2024 from
https://www.researchgate.net/publication/2504368_Towards_a_Maturity_Model_for_Software_Pr
oduct_Evaluations

KOSCIANSKI, A., & COSTA, J. C. B. (1999). Combining analytical hierarchical analysis with
ISO/IEC 9126 for a complete quality evaluation framework. 4th IEEE International Symposium
and Forum on Software Engineering Standards, Curitiba, Brazil.

Maturity Model: A framework that assesses the level of maturity of an organization’s processes
and practices. Retrieved Visited on Nov. 25, 2024 from
https://www.brightwork.com/glossary/maturity-model.

McBride, T., Henderson-Sellers, B., & Zowghi, D. (2004). Project Management Capability Levels:
An Empirical Study. In Proceedings of the 11th Asia-Pacific Software Engineering Conference -
APSEC’2004 (pp. 56-63). IEEE Computer Society Press.

Nastro, J. (1997). A Software Product Maturity Model. CrossTalk: the Journal of Defense
Software Engineering, 10(8). http://www.stsc.hill.af.mil/crosstalk/1997/08/product.asp.

SEI. (1993). Capability Maturity Model for Software Engineering (Version 1.1).

SEI. (2002a). Capability Maturity Model Integration for Software Engineering (CMMI-SW) -
Staged Representation, Version 1.1.
http://www.sei.cmu.edu/pub/documents/02.reports/pdf/02tr029.pdf.

SEI. (2002b). Capability Maturity Model Integration for Software Engineering (CMMI-SW) -
Staged Representation, Version 1.1.
http://www.sei.cmu.edu/pub/documents/02.reports/pdf/02tr029.pdf.

Torriano, K. (2022, 15-18 May). Maturity Models: Testing Your Way to the Top STC’22 Summit:
Technical Communication Conference & Expo, Chicago (Rosemont), IL, USA.

Weber, M. (2008). The business case for corporate social responsibility: A company-level
measurement approach for CSR. European Management Journal 26(4), 247-261.

Wendler, R. (2012). The maturity of maturity model research: A systematic mapping study.
Information and Software Technology, 54(12), 1317-1339.

