
Muhammad Usman Ashraf & Fathy Elbouraey Eassa

International Journal of Computer Science and Security (IJCSS), Volume (9) : Issue (5) 238

OpenGL Based Testing Tool Architecture for Exascale
Computing

Muhammad Usman Ashraf m.usmanashraf@yahoo.com
Faculty of Information and Computer Technology
Department of Computer Science
King Abdulaziz University

Jeddah, 21577, Saudi Arabia

Fathy Elbouraey Eassa fathy55@yahoo.com
Faculty of Information and Computer Technology
Department of Computer Science
King Abdulaziz University

Jeddah, 21577, Saudi Arabia

Abstract

In next decade, for exascale high computing power and speed, new high performance computing
(HPC) architectures, algorithms and corrections in existing technologies are expected. In order to
achieve HPC parallelism is becoming a core emphasizing point. Keeping in view the advantages
of parallelism, GPU is a unit that provides the better performance to achieve HPC in exascale
computing system. So far, many programming models have been introduced to program GPU like
CUDA, OpenGL, and OpenCL etc. and still there are number of limitations for these models that
are required a deep glance to fix them. In order to enhance the performance in GPU
programming in OpenGL, we have proposed an OpenGL based testing tool architecture for
exascale computing system. This testing architecture detects the errors from OpenGL code and
enforce to write the code in accurate way.

Keywords: Exascale Computing, OpenGL, OpenGL Shading Language, GPU, CUDA,
Parallelism, Exaflops.

1. INTRODUCTION

This guideline is used for all journals. These are the manuscript preparation guidelines used as a
In computing system, Exascale brings up to a computing technology that has ability to achieve
the performance in excess to one exaflop [6]. The current technology has capability of
performance in petaflops range. The object to enhance the computing performance presents a
number challenges at both software and hardware levels. To make possible to targeted flops,
many computer companies are working on both software and hardware level to increase the
computing performance by implementing on-chip parallelism.

Since last decade, Graphics Processing Unit (GPU) based parallel computing technologies have
brought up an extensive popularity for high performance (HPC). These technologies including
Compute Unified Device Architecture (CUDA), OpenGL, and OpenMP etc. have opened many
new research directions and visions for future Exascale computing system. However, at the
programming level there are still a number of major challenges that should be fixed by introducing
the new algorithms and architectures [4].

In this paper, we have emphasized on OpenGL software interface to program a GPU. Basically,
before GPU processing, there is a pipeline having number of stages. Some of those are
programmable and some are non-programmable or configurable stage in pipeline [3]. Our focus
is on programmable steps using OpenGL Shading Language that are discussed in section II.

Muhammad Usman Ashraf & Fathy Elbouraey Eassa

International Journal of Computer Science and Security (IJCSS), Volume (9) : Issue (5) 239

Further, writing program in GLSL we found number of common error those occurred at
programming level and on the bases of these found errors we proposed a testing tool architecture
to increase the performance and accuracy in program. This proposed architecture provides
guarantee that there will be no error in the code once a developer follow this specific technique.

Further, rest of the paper is organized in such a way that, section II consist of briefly description
of basic architecture of a system with GPU presence. Section III describes the classification of
programmable and non-programmable stages through pipeline in OpenGL. In section IV we have
explained the number of errors found during writing program in GLSL with help of code. In section
V, we have presented a testing tool architecture and its behavior. Section VI consist the tool
architecture evaluation description and then conclusion and future directions is presented in last
section VII.

2. GPU WITHIN MACHINE

This guideline is used for all journals. These are the manuscript preparation guidelines used as a
In modern computers, GPU acts as a second computer. Similar to CPU It also has its own
memory and processors. The CPU get input from user and classified either it’s related to GPU or
CPU itself for processing. In case of GPU processing, it forward the information to GPU for
processing through a programming language like OpenGL, OpenCL or CUDA. GPU process the
task using its own RAM and send the processed information back to CPU for further utilizing [2].

However a GPU is designed to perform multiple kinds of tasks including graphics rendering,
geometric calculations, complex mathematical calculations etc. Moreover, GPU is a basic unit for
parallel processing to accomplish high performance computing. A basic architecture is presented
in figure1.1 showing how GPU is resided in a computer system.

FIGURE 1: Computer system with GPU.

Figure 1 clearly showing that in a computer system CPU and GPU are almost similar but having
different kind of operation processing.

3. GRAPHICS RENDERING PIPELINE

A pipeline consists of number of steps that are processed in series in such a way that one stage
gets an input and provides output to next stage. Similar to this computing terminology, graphics
rendering pipeline also behaves in same way as shown in figure2. This rendering pipeline gets
the raw vertices and primitives as an input in 3D form. Vertex processing is the first step that gets
this raw data, processes it and sends transformed vertices & primitive’s data as input to
rasterizer. Rasterizer further process data and convert each primitive into set of fragments.
Further, fragment processor process each fragment by adding colors, positions, normal values

Muhammad Usman Ashraf & Fathy Elbouraey Eassa

International Journal of Computer Science and Security (IJCSS), Volume (9) : Issue (5) 240

etc. and generate as input data for output merging step. Continuing, the pipeline steps, output
merging aggregates the fragments of all primitives from 3D to 2D shapes for the display. Finally,
the output object is usable for GPU as input data. In modern GPU, the pipeline stages are
categorized into two types as follows:

• Programmable

• Non-Programmable.

FIGURE 2: Graphics Rendering Pipeline [5].

 Vertex processing and fragment processing are programmable stages from the graphics
rendering pipeline and rasterization and output-merging are the stages that are non-
programmable or configurable by using the GPU commands. In programmable stages, we need
to write the program for vertices and fragments know as vertex shader and fragment shader
respectively. Different programming models (C for graphics, high level shading language (HLSL),
OpenGL Shading language (GLSL) etc.) have been introduced to write these shader programs
[8]. In section IV, we have discussed how to program these shaders using GLSL and their
perspective type of errors during writing code [5].

4. GLSL PROGRAM AND TYPES OF ERRORS
4.1 OpenGL Shading Language
The OpenGL Shading Language (GLSL) is the principle shading language for OpenGL. OpenGL
provides many shading languages but GLSL is the one which is closer and the part of OpenGL
core. GLSL is very popular programming model to write the shaders for GPU but it is very
important to understand the graphics pipeline and the sequence of shader creating before writing
in any language [1]. There are some particular steps to write a shader as follows:

• Create Shaders (creating new shader object)

• Specify Shaders (load shader source)

• Compiling Shaders (Actually compile source)

• Program setup (creating shaders object)

• Attach Shaders to Programs

• Pre-linking (setting some parameters)

• Link Shaders to Programs

• Cleanup (detach and delete all shader objects)

• Attach program to its stage

• Finally, let GPU know Shaders are ready.

4.2 Types of Error
During writing the vertex and fragment shaders by following above steps in GLSL there are
variety of errors that occurs in a normal program. So, it is very important to have a deep look at
those kind errors including how these errors occurs and reason of occurrence. These errors are
as follows:

Muhammad Usman Ashraf & Fathy Elbouraey Eassa

International Journal of Computer Science and Security (IJCSS), Volume (9) : Issue (5) 241

4.2.1. Error in Vertex Stream data
Error in vertex stream data is the type of error that normally occurs at very initial stage of writing
the program when we try to get vertex buffer array (VBA). From GLSL side, a file name is passed
that’s buffer array is required. Before return the buffer array data of file there might be possibility
of errors as follows:

• File doesn’t exist at given path

• Accessed file is corrupted file

• Forgot to write method for reading the file

4.2.2. Compilation Error
On shader compilation, it must be checked that the compilation process of shader is successfully
completed or not. Once compilation is completed, it returns the compilation status weather it is
successfully compiled or not. In case of false there will be a compilation that should be handled
from before moving to next stage.

4.2.3. Missing vertex and fragment necessary parameters
There are some necessary parameters for fragment and vertex that must be passed by accurate
values in calling specific methods from GLSL:

glBindAttribLocation(vertexProgram , 0, "Position");
glBindFragDataLocation(geomFragProgram, 0, "FragColor");

Once these parameters are missed or wrong values are entered, there will be error occurred on
compilation of these methods.

4.2.4. Linking Error
Similar to compilation, linking process can also be failed due to passing faulty programming for
linking or some internal linking processing. There should be validation of linking process by
returned value either its false or true mean linking process is successfully completed or not.

4.2.5. Missing Program Attachment with Perspective Stage
Another step during shader programming is attaching program with its perspective stage. In case,
attachment process is skipped; there will be an error occurred in the program. Normally below
methods is used for attachment.

glUseProgramStages(pipeline, VERTEX_BIT, vertxprogrm);

4.2.6. Uniform Count Error
In GLSL, a uniform is global variable that is declared with the keyword as “uniform” storage
qualifier. These act as parameters that the user of a shader program can pass to that program.
To pass the parameters following methods is used in GLSL:

glUniform2fv(lightposHandle, amount, lightpositions);

Here, vertex array length which should always be same as value as per array length. Dissimilar
value will be cause of error in the program.

4.2.7. Final Program Validation
Finally, before using the program in GPU, the program validation is necessary. Program
validation will tell us, the program is acceptable for GPU or not. Normally, this happen, a program
is used for GPU without validation and due to error in program whole application crashed. Below
method is used to validate the program:

glGetProgramiv(programme,GL_VALID_STATUS, ¶ms);

Muhammad Usman Ashraf & Fathy Elbouraey Eassa

International Journal of Computer Science and Security (IJCSS), Volume (9) : Issue (5) 242

Valid_Status parameter returns the status of program in true/false either the program is valid or
not.

5. PROPOSED TESTING TOOL ARCHITECTURE
In last section we have discussed the number of challenges that might be occurred during writing
the shader program using OpenGL Shading Language (GLSL). These errors in program will
affect the system performance and efficiency. In order to avoid from these specific error, we have
proposed testing tool architecture. By following this architecture, we can write an error free code
for shading program to use in GPU. As in GLSL, there are number of steps to program a shader.
We divided all the steps in four major categories as shown in figure3.

FIGURE 3: Testing Tool Architecture.

5.1. File Reading
The very first step is to read the file which’s buffer array is required. In this section, our
architecture validates some operations on that particular file to make sure that does the file exist
at given path, does the file is valid and does the file read before passing to shader as a buffer
array. If the file doesn’t exist at give path or the accessing file is corrupted, the architecture
imposes to terminate the program by writing the else cases and avoid to crash the program.

5.2. Compilation
In next section, after compilation it imposes to check the compilation results weather the
compilation is completed successfully or not. In case of any error in compilation, the architecture
enforces to terminate the program to avoid further crash in application.

Muhammad Usman Ashraf & Fathy Elbouraey Eassa

International Journal of Computer Science and Security (IJCSS), Volume (9) : Issue (5) 243

5.3. Pre-Linking and Linking
After successful compilation, next step is validation of before and after linking the program.
Before linking, some necessary correct parameters which are required for both vertex and
fragment as well. The proposed architecture insists to pass the accurate required parameters
such as position is required for vertex shader and colors for fragment. After linking, similar to
compilation, it imposes to check that linking process is successfully completed or not and take
action accordingly.

5.4. Rendering
Rendering step consist of many validations such as program attachment with its perspective
stage in pipeline. According to our architecture, the programmer must write the GLSL statement
which is used to attach the program with a specific stage. Conversely if this attachment is
skipped, the program will unable to find its stage and application will be crashed.

Another type of error is related to uniform global variable as parameter value that passed for
vertex specifically. glUniform2fv is method used that get three parameters in it. One of those is
the length of vertex array which is created with uniform keyword. If the passing length value is
dissimilar, error will be occurred in program and crashed. The last validation step in rendering
section is validation of final program. Final program must be validated before using in GPU to
make sure there is no error in the created program.

6. TESTING TOOL ARCHITECTURE EVALUATION
This testing tool architecture for OpenGL is proposed basically to improve exascale computing
system. GPU is the basic unit that is being used to enhance the power of a system to achieve
exascale computing. However, In order to achieve this certain level performance OpenGL play a
major role to program graphical processing unit. This architecture helps us to detect the possible
number of errors from the code written in OpenGL and improve the processing power of code as
well. Keeping in view the program structure of an OpenGL Shading language, we have proposed
the testing architecture to evaluation the number errors in our code that could be cause to
decrease the performance of a system. Using this proposed testing tool architecture, we can
evaluate our code written in GLSL and make error free by following it.

7. CONCLUSION

High performance computing architecture is the vision of next decade for exascale system. Many
new technologies, algorithms and techniques are required to achieve exaflop computing power.
In modern computers, GPU is basic unit that can provide the required performance for exascale
system. So far, there are still many limitations for existing technologies as CUDA, OpenGL, and
OpenCL etc. to program such a GPU unit. In order to enhance the performance of OpenGL code,
we have presented a testing tool architecture in this paper. This proposed architecture insists the
developers to write an accurate code by following the structure of proposed architecture. By
future perspective, this proposed architecture will help to achieve high performance computing
using OpenGL for exascale computing system. Still there are many open challenges for GPU in
different technologies to develop an exascale computing system.

8. REFERENCES
[1]. J. Kessenich and D. Baldwin, “The OpenGL Shading Language”, Sep 2006 .

[2]. D. Luebke and G. Humphreys, “How GPU works”. Feb 2007.

[3]. M. J. Kilgard and J. Bolz, “GPU-accelerated Path Rendering”, Computer Graphics
Proceedings, Annual Conference Series. 2012.

[4]. “Exascale computing research.” Internet: http://www.exascale-computing.eu/presentation-2/,
[May. 3, 2015].

Muhammad Usman Ashraf & Fathy Elbouraey Eassa

International Journal of Computer Science and Security (IJCSS), Volume (9) : Issue (5) 244

[5]. “3D Graphics with OpenGL Basic Theory”
http://www.ntu.edu.sg/home/ehchua/programming/opengl/ cg_basicstheory.html, July. 2012
[April, 14. 2015].

[6]. “GLSL Tutorial Core” http://www.lighthouse3d.com/opengl/glsl/, June, 23. 2014 [May. 10,
2015].

[7]. D. Shreiner, “Performance OpenGL: Platform Independent Techniques”, SIGGRAPH. 2001.

[8]. S.F. Hsiao, P. Wu, C.W. Sheng, and L.Y. Chen, “Design of a Programmable Vertex
Processor in OpenGL ES 2.0 Mobile Graphics Processing Units”. IEEE. 2013.

