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Abstract 
 
This article offers a detailed exploration of MQTT (Message Queuing Telemetry Transport) and its 
latest version, MQTTv5. It delves into MQTT's components, protocol layers, and the pivotal role 
of brokers in MQTT networks. We differentiate between public and private brokers, outlining their 
use cases. The article focuses on MQTT's flow control mechanisms, emphasizing MQTTv5's 
enhancements with sending quotas and the Receive Maximum attribute. It discusses limitations 
related to message Quality of Service (QoS) levels. We also address MQTT's challenges, 
including TCP reliance, scalability issues, single points of failure, implementation complexity, and 
TCP/IP support requirements. This information equips readers with insights to make informed 
decisions for IoT projects.  
 
Keywords: The Internet of Things (IoT), Message Queuing Telemetry Transfer (MQTT), 
Messaging Protocols (MP). 

 
 
1. INTRODUCTION 

The Internet of Things (IoT) ecosystem serves as a dynamic platform enabling uniquely 
identifiable devices to connect to the Internet. This connectivity empowers these devices to 
seamlessly share information with humans. This ecosystem continues to expand rapidly, 
facilitating global intercommunication among an extensive array of devices(Radwan 2020). The 
driving force behind this remarkable growth is the ever-increasing demand for convenient access 
to data to enhance services. This surge has resulted in ubiquitous connectivity, uniting various 
devices within smart grids, health monitoring systems, home networks, building automation, 
vehicular communication, and telecommunication networks. As a result, a diverse range of 
devices, including health monitors, sensors, industrial automation tools, vehicles, and home 
appliances, now boast internet connectivity. This proliferation has ushered in a new era of IoT (Al-
Hawawreh and Sitnikova 2020). 
 
The primary objective of the IoT is to establish a connected ecosystem where devices can 
seamlessly communicate with each other over the Internet. Achieving this objective necessitates 
efficient inter-operation among the numerous Device-to-Device (D2D) communication 
technologies that compose the IoT ecosystem. Currently, these technologies operate within 
vertical silos, each using distinct protocols. To tackle this challenge, this study delves into the 
complexities associated with integrating and achieving interoperability among D2D technologies, 
with a specific emphasis on network layer functions such as addressing, routing, mobility, 
security, and resource optimization(Al-Hawawreh and Sitnikova 2020, Radwan 2020). 
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As IoT devices proliferate at an unprecedented rate, experts estimate that by 2025, there will be 
over 20 billion connected devices. With IoT devices increasingly becoming an integral part of our 
daily lives, security has become a paramount concern within the IoT ecosystem. The IoT has 
evolved into a next-generation IT platform, fostering connectivity between physical devices and a 
diverse spectrum of services via the Internet. This transformation has been made possible 
through a set of protocols designed for data collection and transfers over the internet, harnessing 
wireless communication technologies like Wi-Fi and ZigBee. The growing number of smart 
devices has led to the creation of a distributed database within a network of interconnected 
devices(Ray 2017). 
 
The characteristics of IoT encompass connectivity, smart sensing, intelligence, energy efficiency, 
and safety, all aimed at enhancing various aspects of human life. These characteristics give rise 
to an array of applications, including intelligent analytics, improved security, enhanced 
productivity, efficient inventory management, secure travel, and real-time data processing(Ray 
2017). 

 
As the number of smart devices, wireless technologies, and sensors continues to proliferate, 
there is an escalating need to comprehensively study the infrastructure of the Internet of Things. 
The structural elements of the Internet of Things are classified based on various indicators, 
applications, technologies, works, objectives, architectural requirements, network topologies, and 
the inherent diversity of the IoT platform's architecture(Vongsingthong and Smanchat 2014). Key 
applications of the Internet of Things include smart transportation, smart homes, smart 
healthcare, smart grids, intelligent lighting, and automated buildings, all of which significantly 
enrich people's daily lives. 

 
IoT is often categorized into three paradigms: internet-oriented, sensors, and knowledge. The 
implementation of Internet of Things technology is typically near modern society, as wireless 
sensor systems inherently bridge the gap between people and things(Radwan 2020). 
 
In the distributed environment known as the Fog, situated in an intermediate architectural layer 
adjacent to the network edge and user devices(Rahmani, Gia et al. 2018), the Internet of Things 
offers myriad opportunities for the connected healthcare industry. Fog computing is expected to 
deliver various advantages, including reduced latency, local control, enhanced security, increased 
reliability, fault tolerance, lower data transfer and storage costs, extensibility, distributed 
computing, effective heterogeneity management, and support for hardware and software 
maintenance(Kumari, Tanwar et al. 2018). 
 
The emergence of the Internet of Things has enabled the integration of physical objects, sensors, 
and computational elements into a seamlessly connected environment. This integration gives rise 
to smart environments that continually interact with their inhabitants, to enhance and support 
human abilities. For example, these environments can assist the elderly in navigating unfamiliar 
spaces or in tasks such as moving heavy objects. Researchers have made numerous attempts to 
harness the potential of the Internet of Things to simplify our daily lives and explore the impact of 
IoT-based smart environments on human life(Kumari, Tanwar et al. 2018, Rahmani, Gia et al. 
2018). 
 
Emerging technologies such as IoT and Software-Defined Networks (SDN) aim to connect 
objects over the Internet and provide orchestration for network management, respectively. With 
billions of connected objects, effectively managing and controlling them over large distribution 
networks presents a complex challenge. Although various solutions have been explored to 
address the challenges within the Internet of Things paradigm, traditional networks are ill-
equipped to handle the enormous number of connected devices and the associated data 
manipulation(Kumari, Tanwar et al. 2018, Wang, Ji et al. 2021). 

 
According to Ray(2017), Software-Defined Networking (SDN) stands as a revolutionary 
technology that supports heterogeneous networking through programmable planes, offering rapid 
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evolution and dynamism. The integration of SDN and the Internet of Things holds the potential to 
meet control and management expectations in a variety of scenarios. However, as highlighted in, 
the current Internet of Things faces a slew of security issues, including vulnerabilities in IoT 
systems, malware detection, data security concerns, personal and public safety risks, privacy 
issues, and the management of data storage following the exponential growth of IoT devices(Ray 
2017, Al-Hawawreh and Sitnikova 2020). 
 
Today, many home devices are connected to the internet through messaging protocols (MP), 
offering customers increased convenience and accessibility. Nevertheless, most MPs within 
Internet of Things platforms remain fragmented and lack the necessary security measures(Wang, 
Ji et al. 2021). In response to this challenge, MP-Inspector has been developed as an automatic 
and systematic solution to verify the security of MP implementations. MP-Inspector leverages 
model learning and formal analysis across three stages: (a) automatic inference of the state 
machine of an MP implementation through parameter semantics extraction and interaction logic 
extraction, (b) generation of security properties based on meta properties and the state machine, 
and (c) the application of automatic property-based formal verification to identify property 
violations (Wang, Ji et al. 2021). By utilizing MP-Inspector, it becomes possible to ensure that 
both convenience and security are upheld when utilizing messaging protocols on Internet of 
Things devices(Vongsingthong and Smanchat 2014, Kumari, Tanwar et al. 2018, Rahmani, Gia 
et al. 2018). 
 
However, as indicated by Wang et al(2021), there remains a lack of a comprehensive and 
automated approach to verify the security of messaging protocols (MP) due to the diversity and 
customization of MP implementations, as well as the closed-source nature of many MP 
workflows. To tackle these challenges, the proposed solution, MP-Inspector, stands as the first 
systematic and automatic approach for detecting security vulnerabilities in MP implementations. 
This framework adopts a property-driven and model-based testing approach, involving the 
modeling of an MP implementation into a state machine, the extraction of security properties from 
the standard MP specification, and the refinement of these properties based on the learned state 
machine. Finally, the state machine is analyzed through formal verification to detect any property 
violations (Obaidat, Obeidat et al. 2020). 
 
The IoT is structured around three essential layers: the perception layer, the network layer, and 
the application layer. While the fundamental security objectives of Confidentiality, Integrity, and 
Availability (CIA) apply to the Internet of Things, there are additional security concerns. These 
include general security features and specific security issues. These security principles are 
paramount in establishing a secure communication framework among people, programs, 
processes, and things. Among these principles are confidentiality, integrity, availability, and 
authentication, as well as the implementation of encryption and authentication protocols for data 
and devices within IoT(Obaidat, Obeidat et al. 2020). Additional principles encompass 
heterogeneity between devices, policies for data management and protection, and key 
management systems for the encryption process, ultimately ensuring the confidentiality of 
data(Lara, Aguilar et al. 2020). 
 
2. MQTT PROTOCOL 
Message Queuing Telemetry Transfer (MQTT) is a widely used publish/subscribe protocol in the 
realm of the Internet of Things (IoT). It was developed in 1999 by IBM as a lightweight messaging 
protocol designed for devices operating in high-disconnection environments. MQTT is based on 
the TCP protocol(Ray 2017, Kumari, Tanwar et al. 2018, Obaidat, Obeidat et al. 2020, Radwan 
2020). 
 
MQTT is a widely used communication protocol on the Internet of Things. According to Liu et 
al.(2020), it excels at exchanging information over long distances, especially for transmitting small 
data between devices and software/SCADA systems. SCADA stands for Supervisory Control and 
Data Acquisition, which manages machinery and processes through computer networks. MQTT's 
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back-filling capability simplifies network configuration, making it apt for low-frequency, low-
bandwidth networks. There have been efforts to enhance MQTT security, including a proprietary 
learning-based obfuscation method evaluated in research (Liu, Zhang et al. 2020). 

 
2.1 Work of the MQTT Protocol 
MQTT operates on a publish/subscribe model. Clients can either subscribe to specific topics to 
receive messages or publish messages on topics. The central component of MQTT is the MQTT 
broker, which handles client requests. When a client publishes a message on a topic, the broker 
forwards this message to all other clients subscribed to that topic. MQTT's reliability is highly 
dependent on the broker's functionality, which makes it a target for improving network 
security(Bender, Kirdan et al. 2021). 

 
2.2 MQTT Benefits 
There are several reasons to use MQTT: 
• It's open-source, simple, and lightweight. 
• Ideal for transferring small amounts of data between devices, as well as between devices and 

software/SCADA systems(Liu, Zhang et al. 2020). 
• Suitable for wireless networks with low power consumption. 
• Fast data transfer, allowing for high reliability when needed. 
• It's resource-efficient, requiring minimal CPU and memory usage, making it well-suited for 

physical computing(Froiz-Míguez, Fernández-Caramés et al. 2018). 
 

2.3 How the Protocol Works (Principle of Use) 
MQTT differs from traditional internet communication methods like HTTP. It functions on a system 
where all users are connected to a medium for information exchange. There are two main 
categories of users: publishers and subscribers. Information is published on specific channels 
called "topics," and users subscribe to these topics to receive the data they require. Topics are 
hierarchical, enabling users to select specific information (Hunkeler, Truong and Stanford-Clark 
2008, Bhawiyuga, Data and Warda 2017). 
 

 
 

FIGURE 1: MQTT Broker. 

For example, if you have sensors in a house, each sensor publishes data to the broker based on 
its location, e.g., "home/sensor/living-room." A sensor doesn't send data directly to the device 
requesting it; instead, the broker locates the requesting device and delivers the data (Froiz-
Míguez, Fernández-Caramés et al. 2018). MQTT allows securing communication through various 
methods such as SSL/TLS, certificate-based authentication, or username and password 
authentication (Hunkeler, Truong and Stanford-Clark 2008). 
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FIGURE 2: MQTT Work: schematic data flow from the sensor (machine) to devise (machine). 

2.4 Protocol Publisher/Subscriber Logic 
Publishers own the information and initiate communication with the broker via a unique ID. They 
send information at specified intervals and log their actions. Subscribers, on the other hand, 
initiate communication, listen for incoming information, and respond to it if it's what they need. 
They also log their actions for troubleshooting purposes. 
 
2.5 Data Integrity in the MQTT Protocol (Quality of Service) 
According to Gupta, data integrity in MQTT is upheld through its Quality of Service (QoS) levels. 
There are three QoS levels: 
 
1. Level 0- "at most once." Messages are sent with no guarantee of arrival. This is like a "fire 

and forget" approach, where the sender doesn't require confirmation of message delivery 
(Bender, Kirdan et al. 2021). 

2. Level 1- "at least once." Messages are sent multiple times, if necessary, until the broker 
confirms delivery. The sender retains the message until it receives a Publish-Back (packet 
ID) from the recipient, ensuring at least one successful delivery (Froiz-Míguez, Fernández-
Caramés et al. 2018). 

3. Level 2- "exactly once." Messages are saved until the subscriber acknowledges receipt. This 
level ensures the highest quality but is slower and more resource intensive. It employs a four-
part handshake to guarantee exclusive message delivery (Hunkeler, Truong and Stanford-
Clark 2008). 
 

Here's how it works in more detail: 
 
• LEVEL 0: Level 0 doesn't guarantee message delivery. (Bender, Kirdan et al. 2021), as in 

Figure 3. 

 
 

FIGURE 3: Quality of Service level 0: delivery at most once. 

• LEVEL 1: Ensure messages are delivered at least once, with retransmission if necessary. 
(Froiz-Míguez, Fernández-Caramés et al. 2018), as in Figure 4. 
 

 
 

FIGURE 4: Quality of Service level 1: delivery at least once. 
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• LEVEL 2: guarantees that each message is delivered exactly once but is the slowest option 
and involves a detailed confirmation process. 

 
To achieve Level 2, a sender and recipient go through a series of acknowledgments. The sender 
initially sends a Publish packet, and the recipient responds with a Publish-Received packet. If the 
sender doesn't receive this acknowledgment, it resends the Publish packet. Once acknowledged, 
the sender sends a Publish-Release packet, and the recipient replies with a Publish-Complete 
packet. This process ensures that the message is delivered and received with confirmation. If a 
packet is lost, the sender is responsible for retransmitting it. Both MQTT clients and brokers 
follow this protocol to ensure message integrity(Andy, Rahardjo and Hanindhito 2017, 
Bhawiyuga, Data and Warda 2017, Gupta, Khera and Turk 2021, Kumar, Sharma et al. 2021), as 
in Figure 5. 

 

 
 

FIGURE 5: Quality of Service level 2: delivery exactly once. 

2.6 MQTT Architecture 
MQTT architecture consists of two primary components: 
 
a) Client: Establishes network connections to the MQTT broker and can function as both a 

publisher and subscriber. It can publish messages, subscribe to topics, unsubscribe from 
topics, and disconnect from the broker (Soni and Makwana 2017, Yassein, Shatnawi et al. 
2017). 
 

 
 

FIGURE 6: MQTT Architecture. 

b) Broker: Controls the distribution of information, receiving messages from publishers, filtering 
them, determining recipients, and forwarding messages to subscribers. The broker also 
handles client requests, including subscriptions and unsubscriptions. This architecture 
enables efficient communication between devices and is integral to the operation of MQTT in 
IoT scenarios. These detailed points provide a comprehensive understanding of MQTT and 
its role in IoT applications (Soni and Makwana 2017, Yassein, Shatnawi et al. 2017). 
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FIGURE 7: Working of MQTT. 

3. BROKERS 
In MQTT, the central element is the broker, a crucial component for establishing MQTT networks. 
Brokers can be hosted online in the cloud or locally on a private device (Dinculeană and Cheng 
2019). Many brokers are open source, allowing users to obtain credentials, install, and set them 
up on their devices. This sets up a broker with a specific IP, making it part of the private local 
network, akin to a SCADA server, where clients interact with the server(Grgić, Špeh and Heđi 
2016, Atmoko, Riantini and Hasin 2017). 
 
3.1 Types of Brokers 
Every broker focuses on essential components, with the main ones being the broker's address 
(IP Broker), the TCP Port, and the TLS Port, ensuring secure communication between clients and 
the server or between clients. The MQTT protocol typically uses Port 1883 by default, with other 
ports considered custom and can be set as needed(Hiromoto, Haney and Vakanski 2017). 
 
For TCP communication, the critical factors are the IP and port. A specific port is essential for 
TCP communication to occur. This approach organizes services within defined ports, enhancing 
communication efficiency. For instance, the HTTP protocol relies on Port 80 for TCP-based 
communication, although other ports can be used for similar communication types(Hiromoto, 
Haney and Vakanski 2017). 
 
This design choice ensures that data shared between clients and the broker remains encrypted 
and secure. Users on the same network cannot decrypt the data, and only the intended recipients 
can access it. TLS connections use assigned specific ports, while TCP connections also require 
specific ports. Just like HTTP and HTTPS have distinct ports, a TLS connection is encrypted, 
securing data transmission, and protecting sensitive information like usernames and passwords 
(Hiromoto, Haney and Vakanski 2017). 
 
Another method to view the connection on the broker is through a web socket, although it doesn't 
employ the MQTT protocol. Instead, it uses a different protocol called Web-socket. This method 
provides insights into the server's functioning, monitoring messages sent and received, and 
tracking delivery attempts(Karagiannis, Chatzimisios et al. 2015). 
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3.2 Brokers (Public/Private) 
MQTT brokers come in two types: public and private. Public brokers allow any device to publish 
and subscribe to topics without privacy restrictions(Ferrari, Flammini et al. 2018). However, they 
are not recommended for production use and are better suited for learning or experimentation. In 
contrast, private brokers are more secure. Only devices authorized by the user can publish and 
subscribe to the broker's topics. Private brokers are suitable for both production and prototyping 
purposes(Atmoko, Riantini and Hasin 2017). 
 
In summary, brokers are central to MQTT networks, enabling communication between devices. 
Understanding broker types and their associated security measures is crucial for configuring 
effective MQTT networks. (See Appendix 1). 
 
4. MQTT PROBLEMS 
According to Ferrari, to attain a deeper understanding of MQTT's security, it is essential to 
consider security from the network layer to the application layer. Notably, selecting an MQTT 
broker designed for security is crucial. While open-source brokers may suffice for home 
automation, professional deployments demand heightened security considerations (Swamy, 
Jadhav and Kulkarni 2017, Ferrari, Flammini et al. 2018). 
 
4.1 Problem Statement 
MQTT plays a pivotal role in critical global deployments for device connectivity. Security is a 
paramount concern for such deployments. MQTT, being a layer 7 protocol, relies on underlying 
layers, and it is typically used in conjunction with TLS to establish encrypted communication 
channels between devices and brokers (Swamy, Jadhav and Kulkarni 2017, Ferrari, Flammini et 
al. 2018).  
 
Despite these security measures, MQTT deployments invariably emphasize user authentication 
and authorization mechanisms. These mechanisms ensure that only authorized devices can 
connect to the broker. Devices must present valid credentials, certificates, and authorization to 
publish and subscribe to specific topics and perform designated actions. Nevertheless, MQTT's 
security is not without its vulnerabilities, and there is evidence to support this claim (Upadhyay, 
Borole and Dileepan 2016). 

 
4.2 Problem Analysis 
Despite MQTT's numerous advantages, it may not be suitable for all scenarios, as observed in 
(Upadhyay, Borole and Dileepan 2016, Swamy, Jadhav and Kulkarni 2017, Ferrari, Flammini et 
al. 2018). Some of the protocol's drawbacks include: 
1. Slower transmit cycles when compared to the Constrained Application Protocol (CoAP), 

which can be critical for systems with a substantial number of devices (Ferrari, Flammini et al. 
2018). 

2. Challenges in resource discovery, given that MQTT employs a flexible topic subscription 
system, whereas CoAP employs a stable resource discovery system (Ferrari, Flammini et al. 
2018). 

3. Limited security encryption. MQTT primarily lacks encryption, despite TLS/SSL usage 
(Swamy, Jadhav and Kulkarni 2017). 

4. Scalability concerns, particularly in establishing globally scalable networks when compared to 
alternative protocols (Upadhyay, Borole and Dileepan 2016). 
 

While MQTT remains a fitting solution for many applications, addressing its security and 
interoperability challenges necessitates consultation with Internet of Things development experts 
(Swamy, Jadhav and Kulkarni 2017). 

 
4.3 Problem Explanation 
MQTT communication may become unreliable, and a publisher might disconnect without warning. 
In anticipation of such situations, a publisher can set up a "last will and testament." This message 
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is stored on the broker and is dispatched to subscribers in the event of an unanticipated 
disconnection. The message typically contains information to identify the disconnected publisher 
and guide appropriate actions (Upadhyay, Borole and Dileepan 2016). 
 
MQTT was initially designed to facilitate efficient data transmission over unreliable and costly 
communication lines. As a result, security received limited attention during its design and 
implementation. Nevertheless, some security options exist, albeit with increased data 
transmission and storage requirements. Network security can be an effective measure, where the 
network itself is secured, making the transmission of unencrypted MQTT data irrelevant. Notably, 
security breaches must arise from within the network, such as through malicious actors or 
network intrusions (Upadhyay, Borole and Dileepan 2016). 
 
MQTT allows the use of usernames and passwords for establishing connections with brokers. 
Regrettably, in pursuit of lightweight communication, these usernames and passwords are 
transmitted in plain text. This approach was acceptable in 1999 but is insecure in today's context, 
where wireless network communications can be easily intercepted. While usernames and 
passwords can prevent unintentional connections, they offer little protection against malicious 
actors. The commonly employed SSL/TLS, which runs atop TCP/IP, introduces significant 
overhead to the otherwise lightweight MQTT communication (Swamy, Jadhav and Kulkarni 
2017). 
 
MQTT communication between the client and broker involves the generation of TCP/IP packets 
by the client, which are processed to generate specific outputs sent to the broker. The broker, 
upon receiving these packets, responds with TCP/IP packets, and the client deciphers the 
resulting output and forwards it to the mapper for abstraction. However, MQTT brokers may 
exhibit non-deterministic behavior due to factors such as latency or timeouts (Upadhyay, Borole 
and Dileepan 2016, Swamy, Jadhav and Kulkarni 2017). 

 
4.4 Problem Conclusion 
One primary source of security and privacy issues on the Internet of Things is the prevalence of 
insecure default configurations. A default misconfigured MQTT server poses significant risks, as 
anyone with access can intercept all messages transmitted through it due to MQTT's use of 
wildcards. Alarmingly, many MQTT servers are poorly configured and accessible without 
authentication on the public internet. For instance, the world's first Internet of Things search 
engine uncovered almost 67,000 exposed MQTT servers, most of which lack authentication. The 
MQTT protocol allows anyone to subscribe to broadcasted topics without authentication, making 
it highly vulnerable. Fundamental security principles for the Internet of Things include data 
confidentiality, availability, integrity, and privacy (Upadhyay, Borole and Dileepan 2016). 
 
The current implementation of MQTT primarily provides identity, authentication, and authorization 
within its security mechanisms. However, relying on TCP/IP for sending/receiving data is 
insecure, even though TCP/IP packets are generated and sent to the broker. MQTT clients can 
subscribe to topic filters, publish messages to topic names, and receive messages from 
subscribed topics. Notably, the topic filter allows the use of wildcard characters for simultaneous 
subscriptions or subscriptions to multiple topics (Upadhyay, Borole and Dileepan 2016, Swamy, 
Jadhav and Kulkarni 2017). 
 
Despite MQTT's widespread use, it was not originally designed with a strong emphasis on 
security, as evidenced by its standing as the second most popular Internet of Things messaging 
protocol. The substantial growth of MQTT's usage demands the development of a secure version 
that accounts for resource-constrained devices. Therefore, prioritizing MQTT security 
requirements is essential (Andy, Rahardjo and Hanindhito 2017). 
 
This section presents diverse security implementations for MQTT in real-world applications. For 
devices without constraints, TLS/SSL can be used to establish transport-level encryption, as 
proposed by (Soni and Makwana 2017). According to (Dinculeană and Cheng 2019), introduced 
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an alternative approach to end-to-end security and hop-by-hop protection through the link layer, 
successfully implemented in an industrial wind park(Dinculeană and Cheng 2019). Additionally, 
Soni offered a solution for enforcing security policy rules at the MQTT layer, utilizing Model-based 
Security. 
 
5. RELATED WORK 
5.1 Flow Control 
MQTT servers often have fixed and limited resources, while clients' flow can fluctuate 
unpredictably. To ensure system stability, flow control mechanisms are necessary. Common flow 
control algorithms include the sliding window counting method, leaky bucket algorithm, and token 
bucket algorithm.  
 
While MQTT v3 did not standardize flow control behavior, MQTT v5 introduced flow control 
functionality, which will be discussed further (Bashir and Mir 2020, Fauzan, Sukarno and 
Wardana 2020). 

 
5.2 Flow Control in MQTT V5 
In MQTT v5, the sender initially has a sending quota, and this quota decreases by one whenever 
a PUBLISH packet with a QoS greater than 0 is sent. Upon receiving response packets 
(PUBACK, PUBCOMP, or PUBREC), the sending quota is increased by one. 
 
If the receiver does not respond immediately, the sending quota is reduced to 0, and the sender 
must stop sending all PUBLISH packets with QoS greater than 0 until the quota recovers. This 
algorithm resembles a variation of the token bucket algorithm. It effectively utilizes resources by 
not limiting the receiving rate, with the sending rate dependent on the response rate of the 
opposite end and network conditions (Bashir and Mir 2020, Fauzan, Sukarno and Wardana 
2020). 

 
5.3 Get Maximum Attribute 
MQTT v5 introduced the Receive Maximum attribute to facilitate flow control (Fauzan, Sukarno 
and Wardana 2020). It appears in the CONNECT and CONNACK packets and represents the 
maximum number of PUBLISH packets with a QoS of 1 and 2 that the client and server can 
handle simultaneously.  
 
This attribute determines the maximum sending quota the opposite end can utilize (Fauzan, 
Sukarno and Wardana 2020). While MQTT allows messages up to 256 MB in size, it is common 
for messages to be smaller than 10 KB due to network constraints and the inability to retry 
sending large messages (Frustaci, Pace et al. 2017, Qiu, Tian et al. 2020). 

 
5.4 Why Don't You Have QoS 0? 
MQTT v5's flow control mechanism relies on response packets, limiting flow control to QoS 1 and 
2 messages. This is because QoS 0 messages do not generate response packets(Frustaci, Pace 
et al. 2017). However, an alternative proposal suggests that when the sending quota reaches 
zero, the sender may either continue sending PUBLISH packets with QoS 0 or suspend sending 
altogether. Suspending sending can be beneficial when QoS 1 and 2 PUBLISH packets face 
delays in response times, indicating a potential reduction in the receiver's processing capability 
(Frustaci, Pace et al. 2017, Qiu, Tian et al. 2020). 
 
5.5 Summary 
Despite some limitations, it is recommended that users employ MQTT v5's flow control 
mechanism. The sending quota algorithm, based on response packets, optimally utilizes sender 
resources. The Receive Maximum attribute enhances transparency and flexibility, particularly in 
scenarios involving multi-vendor equipment (Bashir and Mir 2020). 
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6. CONCLUSION 
This paper provides an overview of the MQTT protocol, its strengths and weaknesses with 
respect to security. In conclusion, despite some shortcomings in the flow control mechanism of 
MQTT, it is highly recommended its utilization for users seeking efficient and flexible IoT 
communication. MQTT's innovative sending quota algorithm, reliant on response packets, 
optimizes resource utilization for senders. The introduction of the Receive Maximum attribute 
eliminates the need for preemptive sending quota negotiations, fostering transparency and 
adaptability, particularly in diverse equipment scenarios. 
 
To recap the key points discussed in this article, it's crucial to recognize the drawbacks 
associated with the MQTT protocol, which include: 

 
1. Protocol Choice: MQTT relies on the TCP protocol, which can increase processing 

power and memory usage. The frequent wake-up and communication intervals in the 
TCP handshake can lead to higher battery consumption. 

2. Scalability: The use of a centralized broker can sometimes limit scalability due to the 
overhead it imposes on each client device. Utilizing a local broker hub can be an effective 
way to overcome this challenge. 

3. Single Point of Failure: A centralized broker can introduce a single point of failure, as 
client connections with the broker remain open. It's essential to consider redundancy and 
fault tolerance in your MQTT deployment. 

4. Implementation Complexity: Compared to HTTP, MQTT implementation can be more 
challenging, especially for those new to the protocol. 

5. Advanced Features: MQTT may lack support for advanced features like built-in flow 
control, which is an essential consideration for specific use cases. 

6. TCP/IP Requirement: Clients using MQTT must support TCP/IP, which may limit 
compatibility in some scenarios. 
 

In light of these considerations, MQTT remains a powerful protocol for IoT communication, but 
careful planning and evaluation of its features and drawbacks are necessary to make the most of 
this technology. By addressing these challenges effectively, users can harness MQTT's strengths 
to build robust and efficient IoT systems. 
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8. Appendix 1 
 

TABLE 1: Public MQTT Brokers. 

Name Broker Address TCP 

Port 

TLS 

Port 

Web-

Socket 

Port 

Message 

Retention 

Persistent 

Session 

Sign Up 

Requred 

Eclipse mqtt.eclipse.org 1883 N/A 80, 443 Yes Yes No 

Mosquitto test.mosquitto.org 1883 8883, 

8884 

80 Yes Yes No 

HiveMQ broker.hivemq.com 1883 N/A 8000 Yes Yes No 
Flespi mqtt.flespi.io 1883 8883 80, 443 Yes Yes Yes 
D(Internet 
of 

Things)y 

mqqt.d(Internet of 
Things)y.co 

1883 8883 8080, 
8880 

Yes Yes Yes 

Fluux mqtt.fluux.io 1883 8883 N/A N/A N/A No 
Emqx Broker.emqx.io 1883 8883 8083 Yes Yes No 

 
 

TABLE 2: Private Brokers. 

Name Link TCP 

Port 

TLS 

Port 

Web-

Socket 

Port 

Message 

Retention 

Persistent 

Session 

QoS 

Levels 

Free Limits Link 

Azure Link No 8883 443 No Limited 0, 1 8000 

messages/da

y 

Link 

AWS Link No 8883 443 No Limited 0, 1 250,000/mo

nth 

Link 

CloudMQTT Link Custom 

Port 

Custom 

Port 

Custom 

Port 

Not Sure Yes 0, 1, 2 5Connection

s & 10 
Kbit/s 

Link 

 


