
Nael M. Radwan & Jim Alves-Foss

International Journal of Computer Science&Security (IJCSS), Volume (18) : Issue (1) : 2024 1
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

MQTT in Focus: Understanding the Protocol and Its Recent
Advancements

Nael M. Radwan nradwan@uidaho.edu
Computer Science Department
Center for Secure & Dependable Systems (CSDS)
University of Idaho
Moscow, Idaho,83843, USA

Jim Alves-Foss jimaf@uidaho.edu
Computer Science Department
Director of Center for Secure & Dependable Systems (CSDS)
University of Idaho
Moscow, Idaho,83843, USA

Abstract

This article offers a detailed exploration of MQTT (Message Queuing Telemetry Transport) and its
latest version, MQTTv5. It delves into MQTT's components, protocol layers, and the pivotal role
of brokers in MQTT networks. We differentiate between public and private brokers, outlining their
use cases. The article focuses on MQTT's flow control mechanisms, emphasizing MQTTv5's
enhancements with sending quotas and the Receive Maximum attribute. It discusses limitations
related to message Quality of Service (QoS) levels. We also address MQTT's challenges,
including TCP reliance, scalability issues, single points of failure, implementation complexity, and
TCP/IP support requirements. This information equips readers with insights to make informed
decisions for IoT projects.

Keywords: The Internet of Things (IoT), Message Queuing Telemetry Transfer (MQTT),
Messaging Protocols (MP).

1. INTRODUCTION

The Internet of Things (IoT) ecosystem serves as a dynamic platform enabling uniquely
identifiable devices to connect to the Internet. This connectivity empowers these devices to
seamlessly share information with humans. This ecosystem continues to expand rapidly,
facilitating global intercommunication among an extensive array of devices(Radwan 2020). The
driving force behind this remarkable growth is the ever-increasing demand for convenient access
to data to enhance services. This surge has resulted in ubiquitous connectivity, uniting various
devices within smart grids, health monitoring systems, home networks, building automation,
vehicular communication, and telecommunication networks. As a result, a diverse range of
devices, including health monitors, sensors, industrial automation tools, vehicles, and home
appliances, now boast internet connectivity. This proliferation has ushered in a new era of IoT (Al-
Hawawreh and Sitnikova 2020).

The primary objective of the IoT is to establish a connected ecosystem where devices can
seamlessly communicate with each other over the Internet. Achieving this objective necessitates
efficient inter-operation among the numerous Device-to-Device (D2D) communication
technologies that compose the IoT ecosystem. Currently, these technologies operate within
vertical silos, each using distinct protocols. To tackle this challenge, this study delves into the
complexities associated with integrating and achieving interoperability among D2D technologies,
with a specific emphasis on network layer functions such as addressing, routing, mobility,
security, and resource optimization(Al-Hawawreh and Sitnikova 2020, Radwan 2020).

Nael M. Radwan & Jim Alves-Foss

International Journal of Computer Science&Security (IJCSS), Volume (18) : Issue (1) : 2024 2
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

As IoT devices proliferate at an unprecedented rate, experts estimate that by 2025, there will be
over 20 billion connected devices. With IoT devices increasingly becoming an integral part of our
daily lives, security has become a paramount concern within the IoT ecosystem. The IoT has
evolved into a next-generation IT platform, fostering connectivity between physical devices and a
diverse spectrum of services via the Internet. This transformation has been made possible
through a set of protocols designed for data collection and transfers over the internet, harnessing
wireless communication technologies like Wi-Fi and ZigBee. The growing number of smart
devices has led to the creation of a distributed database within a network of interconnected
devices(Ray 2017).

The characteristics of IoT encompass connectivity, smart sensing, intelligence, energy efficiency,
and safety, all aimed at enhancing various aspects of human life. These characteristics give rise
to an array of applications, including intelligent analytics, improved security, enhanced
productivity, efficient inventory management, secure travel, and real-time data processing(Ray
2017).

As the number of smart devices, wireless technologies, and sensors continues to proliferate,
there is an escalating need to comprehensively study the infrastructure of the Internet of Things.
The structural elements of the Internet of Things are classified based on various indicators,
applications, technologies, works, objectives, architectural requirements, network topologies, and
the inherent diversity of the IoT platform's architecture(Vongsingthong and Smanchat 2014). Key
applications of the Internet of Things include smart transportation, smart homes, smart
healthcare, smart grids, intelligent lighting, and automated buildings, all of which significantly
enrich people's daily lives.

IoT is often categorized into three paradigms: internet-oriented, sensors, and knowledge. The
implementation of Internet of Things technology is typically near modern society, as wireless
sensor systems inherently bridge the gap between people and things(Radwan 2020).

In the distributed environment known as the Fog, situated in an intermediate architectural layer
adjacent to the network edge and user devices(Rahmani, Gia et al. 2018), the Internet of Things
offers myriad opportunities for the connected healthcare industry. Fog computing is expected to
deliver various advantages, including reduced latency, local control, enhanced security, increased
reliability, fault tolerance, lower data transfer and storage costs, extensibility, distributed
computing, effective heterogeneity management, and support for hardware and software
maintenance(Kumari, Tanwar et al. 2018).

The emergence of the Internet of Things has enabled the integration of physical objects, sensors,
and computational elements into a seamlessly connected environment. This integration gives rise
to smart environments that continually interact with their inhabitants, to enhance and support
human abilities. For example, these environments can assist the elderly in navigating unfamiliar
spaces or in tasks such as moving heavy objects. Researchers have made numerous attempts to
harness the potential of the Internet of Things to simplify our daily lives and explore the impact of
IoT-based smart environments on human life(Kumari, Tanwar et al. 2018, Rahmani, Gia et al.
2018).

Emerging technologies such as IoT and Software-Defined Networks (SDN) aim to connect
objects over the Internet and provide orchestration for network management, respectively. With
billions of connected objects, effectively managing and controlling them over large distribution
networks presents a complex challenge. Although various solutions have been explored to
address the challenges within the Internet of Things paradigm, traditional networks are ill-
equipped to handle the enormous number of connected devices and the associated data
manipulation(Kumari, Tanwar et al. 2018, Wang, Ji et al. 2021).

According to Ray(2017), Software-Defined Networking (SDN) stands as a revolutionary
technology that supports heterogeneous networking through programmable planes, offering rapid

Nael M. Radwan & Jim Alves-Foss

International Journal of Computer Science&Security (IJCSS), Volume (18) : Issue (1) : 2024 3
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

evolution and dynamism. The integration of SDN and the Internet of Things holds the potential to
meet control and management expectations in a variety of scenarios. However, as highlighted in,
the current Internet of Things faces a slew of security issues, including vulnerabilities in IoT
systems, malware detection, data security concerns, personal and public safety risks, privacy
issues, and the management of data storage following the exponential growth of IoT devices(Ray
2017, Al-Hawawreh and Sitnikova 2020).

Today, many home devices are connected to the internet through messaging protocols (MP),
offering customers increased convenience and accessibility. Nevertheless, most MPs within
Internet of Things platforms remain fragmented and lack the necessary security measures(Wang,
Ji et al. 2021). In response to this challenge, MP-Inspector has been developed as an automatic
and systematic solution to verify the security of MP implementations. MP-Inspector leverages
model learning and formal analysis across three stages: (a) automatic inference of the state
machine of an MP implementation through parameter semantics extraction and interaction logic
extraction, (b) generation of security properties based on meta properties and the state machine,
and (c) the application of automatic property-based formal verification to identify property
violations (Wang, Ji et al. 2021). By utilizing MP-Inspector, it becomes possible to ensure that
both convenience and security are upheld when utilizing messaging protocols on Internet of
Things devices(Vongsingthong and Smanchat 2014, Kumari, Tanwar et al. 2018, Rahmani, Gia
et al. 2018).

However, as indicated by Wang et al(2021), there remains a lack of a comprehensive and
automated approach to verify the security of messaging protocols (MP) due to the diversity and
customization of MP implementations, as well as the closed-source nature of many MP
workflows. To tackle these challenges, the proposed solution, MP-Inspector, stands as the first
systematic and automatic approach for detecting security vulnerabilities in MP implementations.
This framework adopts a property-driven and model-based testing approach, involving the
modeling of an MP implementation into a state machine, the extraction of security properties from
the standard MP specification, and the refinement of these properties based on the learned state
machine. Finally, the state machine is analyzed through formal verification to detect any property
violations (Obaidat, Obeidat et al. 2020).

The IoT is structured around three essential layers: the perception layer, the network layer, and
the application layer. While the fundamental security objectives of Confidentiality, Integrity, and
Availability (CIA) apply to the Internet of Things, there are additional security concerns. These
include general security features and specific security issues. These security principles are
paramount in establishing a secure communication framework among people, programs,
processes, and things. Among these principles are confidentiality, integrity, availability, and
authentication, as well as the implementation of encryption and authentication protocols for data
and devices within IoT(Obaidat, Obeidat et al. 2020). Additional principles encompass
heterogeneity between devices, policies for data management and protection, and key
management systems for the encryption process, ultimately ensuring the confidentiality of
data(Lara, Aguilar et al. 2020).

2. MQTT PROTOCOL
Message Queuing Telemetry Transfer (MQTT) is a widely used publish/subscribe protocol in the
realm of the Internet of Things (IoT). It was developed in 1999 by IBM as a lightweight messaging
protocol designed for devices operating in high-disconnection environments. MQTT is based on
the TCP protocol(Ray 2017, Kumari, Tanwar et al. 2018, Obaidat, Obeidat et al. 2020, Radwan
2020).

MQTT is a widely used communication protocol on the Internet of Things. According to Liu et
al.(2020), it excels at exchanging information over long distances, especially for transmitting small
data between devices and software/SCADA systems. SCADA stands for Supervisory Control and
Data Acquisition, which manages machinery and processes through computer networks. MQTT's

Nael M. Radwan & Jim Alves-Foss

International Journal of Computer Science&Security (IJCSS), Volume (18) : Issue (1) : 2024 4
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

back-filling capability simplifies network configuration, making it apt for low-frequency, low-
bandwidth networks. There have been efforts to enhance MQTT security, including a proprietary
learning-based obfuscation method evaluated in research (Liu, Zhang et al. 2020).

2.1 Work of the MQTT Protocol
MQTT operates on a publish/subscribe model. Clients can either subscribe to specific topics to
receive messages or publish messages on topics. The central component of MQTT is the MQTT
broker, which handles client requests. When a client publishes a message on a topic, the broker
forwards this message to all other clients subscribed to that topic. MQTT's reliability is highly
dependent on the broker's functionality, which makes it a target for improving network
security(Bender, Kirdan et al. 2021).

2.2 MQTT Benefits
There are several reasons to use MQTT:
• It's open-source, simple, and lightweight.
• Ideal for transferring small amounts of data between devices, as well as between devices and

software/SCADA systems(Liu, Zhang et al. 2020).
• Suitable for wireless networks with low power consumption.
• Fast data transfer, allowing for high reliability when needed.
• It's resource-efficient, requiring minimal CPU and memory usage, making it well-suited for

physical computing(Froiz-Míguez, Fernández-Caramés et al. 2018).

2.3 How the Protocol Works (Principle of Use)
MQTT differs from traditional internet communication methods like HTTP. It functions on a system
where all users are connected to a medium for information exchange. There are two main
categories of users: publishers and subscribers. Information is published on specific channels
called "topics," and users subscribe to these topics to receive the data they require. Topics are
hierarchical, enabling users to select specific information (Hunkeler, Truong and Stanford-Clark
2008, Bhawiyuga, Data and Warda 2017).

FIGURE 1: MQTT Broker.

For example, if you have sensors in a house, each sensor publishes data to the broker based on
its location, e.g., "home/sensor/living-room." A sensor doesn't send data directly to the device
requesting it; instead, the broker locates the requesting device and delivers the data (Froiz-
Míguez, Fernández-Caramés et al. 2018). MQTT allows securing communication through various
methods such as SSL/TLS, certificate-based authentication, or username and password
authentication (Hunkeler, Truong and Stanford-Clark 2008).

Nael M. Radwan & Jim Alves-Foss

International Journal of Computer Science&Security (IJCSS), Volume (18) : Issue (1) : 2024 5
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

FIGURE 2: MQTT Work: schematic data flow from the sensor (machine) to devise (machine).

2.4 Protocol Publisher/Subscriber Logic
Publishers own the information and initiate communication with the broker via a unique ID. They
send information at specified intervals and log their actions. Subscribers, on the other hand,
initiate communication, listen for incoming information, and respond to it if it's what they need.
They also log their actions for troubleshooting purposes.

2.5 Data Integrity in the MQTT Protocol (Quality of Service)
According to Gupta, data integrity in MQTT is upheld through its Quality of Service (QoS) levels.
There are three QoS levels:

1. Level 0- "at most once." Messages are sent with no guarantee of arrival. This is like a "fire

and forget" approach, where the sender doesn't require confirmation of message delivery
(Bender, Kirdan et al. 2021).

2. Level 1- "at least once." Messages are sent multiple times, if necessary, until the broker
confirms delivery. The sender retains the message until it receives a Publish-Back (packet
ID) from the recipient, ensuring at least one successful delivery (Froiz-Míguez, Fernández-
Caramés et al. 2018).

3. Level 2- "exactly once." Messages are saved until the subscriber acknowledges receipt. This
level ensures the highest quality but is slower and more resource intensive. It employs a four-
part handshake to guarantee exclusive message delivery (Hunkeler, Truong and Stanford-
Clark 2008).

Here's how it works in more detail:

• LEVEL 0: Level 0 doesn't guarantee message delivery. (Bender, Kirdan et al. 2021), as in

Figure 3.

FIGURE 3: Quality of Service level 0: delivery at most once.

• LEVEL 1: Ensure messages are delivered at least once, with retransmission if necessary.
(Froiz-Míguez, Fernández-Caramés et al. 2018), as in Figure 4.

FIGURE 4: Quality of Service level 1: delivery at least once.

Nael M. Radwan & Jim Alves-Foss

International Journal of Computer Science&Security (IJCSS), Volume (18) : Issue (1) : 2024 6
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

• LEVEL 2: guarantees that each message is delivered exactly once but is the slowest option
and involves a detailed confirmation process.

To achieve Level 2, a sender and recipient go through a series of acknowledgments. The sender
initially sends a Publish packet, and the recipient responds with a Publish-Received packet. If the
sender doesn't receive this acknowledgment, it resends the Publish packet. Once acknowledged,
the sender sends a Publish-Release packet, and the recipient replies with a Publish-Complete
packet. This process ensures that the message is delivered and received with confirmation. If a
packet is lost, the sender is responsible for retransmitting it. Both MQTT clients and brokers
follow this protocol to ensure message integrity(Andy, Rahardjo and Hanindhito 2017,
Bhawiyuga, Data and Warda 2017, Gupta, Khera and Turk 2021, Kumar, Sharma et al. 2021), as
in Figure 5.

FIGURE 5: Quality of Service level 2: delivery exactly once.

2.6 MQTT Architecture
MQTT architecture consists of two primary components:

a) Client: Establishes network connections to the MQTT broker and can function as both a

publisher and subscriber. It can publish messages, subscribe to topics, unsubscribe from
topics, and disconnect from the broker (Soni and Makwana 2017, Yassein, Shatnawi et al.
2017).

FIGURE 6: MQTT Architecture.

b) Broker: Controls the distribution of information, receiving messages from publishers, filtering
them, determining recipients, and forwarding messages to subscribers. The broker also
handles client requests, including subscriptions and unsubscriptions. This architecture
enables efficient communication between devices and is integral to the operation of MQTT in
IoT scenarios. These detailed points provide a comprehensive understanding of MQTT and
its role in IoT applications (Soni and Makwana 2017, Yassein, Shatnawi et al. 2017).

Nael M. Radwan & Jim Alves-Foss

International Journal of Computer Science&Security (IJCSS), Volume (18) : Issue (1) : 2024 7
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

FIGURE 7: Working of MQTT.

3. BROKERS
In MQTT, the central element is the broker, a crucial component for establishing MQTT networks.
Brokers can be hosted online in the cloud or locally on a private device (Dinculeană and Cheng
2019). Many brokers are open source, allowing users to obtain credentials, install, and set them
up on their devices. This sets up a broker with a specific IP, making it part of the private local
network, akin to a SCADA server, where clients interact with the server(Grgić, Špeh and Heđi
2016, Atmoko, Riantini and Hasin 2017).

3.1 Types of Brokers
Every broker focuses on essential components, with the main ones being the broker's address
(IP Broker), the TCP Port, and the TLS Port, ensuring secure communication between clients and
the server or between clients. The MQTT protocol typically uses Port 1883 by default, with other
ports considered custom and can be set as needed(Hiromoto, Haney and Vakanski 2017).

For TCP communication, the critical factors are the IP and port. A specific port is essential for
TCP communication to occur. This approach organizes services within defined ports, enhancing
communication efficiency. For instance, the HTTP protocol relies on Port 80 for TCP-based
communication, although other ports can be used for similar communication types(Hiromoto,
Haney and Vakanski 2017).

This design choice ensures that data shared between clients and the broker remains encrypted
and secure. Users on the same network cannot decrypt the data, and only the intended recipients
can access it. TLS connections use assigned specific ports, while TCP connections also require
specific ports. Just like HTTP and HTTPS have distinct ports, a TLS connection is encrypted,
securing data transmission, and protecting sensitive information like usernames and passwords
(Hiromoto, Haney and Vakanski 2017).

Another method to view the connection on the broker is through a web socket, although it doesn't
employ the MQTT protocol. Instead, it uses a different protocol called Web-socket. This method
provides insights into the server's functioning, monitoring messages sent and received, and
tracking delivery attempts(Karagiannis, Chatzimisios et al. 2015).

Nael M. Radwan & Jim Alves-Foss

International Journal of Computer Science&Security (IJCSS), Volume (18) : Issue (1) : 2024 8
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

3.2 Brokers (Public/Private)
MQTT brokers come in two types: public and private. Public brokers allow any device to publish
and subscribe to topics without privacy restrictions(Ferrari, Flammini et al. 2018). However, they
are not recommended for production use and are better suited for learning or experimentation. In
contrast, private brokers are more secure. Only devices authorized by the user can publish and
subscribe to the broker's topics. Private brokers are suitable for both production and prototyping
purposes(Atmoko, Riantini and Hasin 2017).

In summary, brokers are central to MQTT networks, enabling communication between devices.
Understanding broker types and their associated security measures is crucial for configuring
effective MQTT networks. (See Appendix 1).

4. MQTT PROBLEMS
According to Ferrari, to attain a deeper understanding of MQTT's security, it is essential to
consider security from the network layer to the application layer. Notably, selecting an MQTT
broker designed for security is crucial. While open-source brokers may suffice for home
automation, professional deployments demand heightened security considerations (Swamy,
Jadhav and Kulkarni 2017, Ferrari, Flammini et al. 2018).

4.1 Problem Statement
MQTT plays a pivotal role in critical global deployments for device connectivity. Security is a
paramount concern for such deployments. MQTT, being a layer 7 protocol, relies on underlying
layers, and it is typically used in conjunction with TLS to establish encrypted communication
channels between devices and brokers (Swamy, Jadhav and Kulkarni 2017, Ferrari, Flammini et
al. 2018).

Despite these security measures, MQTT deployments invariably emphasize user authentication
and authorization mechanisms. These mechanisms ensure that only authorized devices can
connect to the broker. Devices must present valid credentials, certificates, and authorization to
publish and subscribe to specific topics and perform designated actions. Nevertheless, MQTT's
security is not without its vulnerabilities, and there is evidence to support this claim (Upadhyay,
Borole and Dileepan 2016).

4.2 Problem Analysis
Despite MQTT's numerous advantages, it may not be suitable for all scenarios, as observed in
(Upadhyay, Borole and Dileepan 2016, Swamy, Jadhav and Kulkarni 2017, Ferrari, Flammini et
al. 2018). Some of the protocol's drawbacks include:
1. Slower transmit cycles when compared to the Constrained Application Protocol (CoAP),

which can be critical for systems with a substantial number of devices (Ferrari, Flammini et al.
2018).

2. Challenges in resource discovery, given that MQTT employs a flexible topic subscription
system, whereas CoAP employs a stable resource discovery system (Ferrari, Flammini et al.
2018).

3. Limited security encryption. MQTT primarily lacks encryption, despite TLS/SSL usage
(Swamy, Jadhav and Kulkarni 2017).

4. Scalability concerns, particularly in establishing globally scalable networks when compared to
alternative protocols (Upadhyay, Borole and Dileepan 2016).

While MQTT remains a fitting solution for many applications, addressing its security and
interoperability challenges necessitates consultation with Internet of Things development experts
(Swamy, Jadhav and Kulkarni 2017).

4.3 Problem Explanation
MQTT communication may become unreliable, and a publisher might disconnect without warning.
In anticipation of such situations, a publisher can set up a "last will and testament." This message

Nael M. Radwan & Jim Alves-Foss

International Journal of Computer Science&Security (IJCSS), Volume (18) : Issue (1) : 2024 9
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

is stored on the broker and is dispatched to subscribers in the event of an unanticipated
disconnection. The message typically contains information to identify the disconnected publisher
and guide appropriate actions (Upadhyay, Borole and Dileepan 2016).

MQTT was initially designed to facilitate efficient data transmission over unreliable and costly
communication lines. As a result, security received limited attention during its design and
implementation. Nevertheless, some security options exist, albeit with increased data
transmission and storage requirements. Network security can be an effective measure, where the
network itself is secured, making the transmission of unencrypted MQTT data irrelevant. Notably,
security breaches must arise from within the network, such as through malicious actors or
network intrusions (Upadhyay, Borole and Dileepan 2016).

MQTT allows the use of usernames and passwords for establishing connections with brokers.
Regrettably, in pursuit of lightweight communication, these usernames and passwords are
transmitted in plain text. This approach was acceptable in 1999 but is insecure in today's context,
where wireless network communications can be easily intercepted. While usernames and
passwords can prevent unintentional connections, they offer little protection against malicious
actors. The commonly employed SSL/TLS, which runs atop TCP/IP, introduces significant
overhead to the otherwise lightweight MQTT communication (Swamy, Jadhav and Kulkarni
2017).

MQTT communication between the client and broker involves the generation of TCP/IP packets
by the client, which are processed to generate specific outputs sent to the broker. The broker,
upon receiving these packets, responds with TCP/IP packets, and the client deciphers the
resulting output and forwards it to the mapper for abstraction. However, MQTT brokers may
exhibit non-deterministic behavior due to factors such as latency or timeouts (Upadhyay, Borole
and Dileepan 2016, Swamy, Jadhav and Kulkarni 2017).

4.4 Problem Conclusion
One primary source of security and privacy issues on the Internet of Things is the prevalence of
insecure default configurations. A default misconfigured MQTT server poses significant risks, as
anyone with access can intercept all messages transmitted through it due to MQTT's use of
wildcards. Alarmingly, many MQTT servers are poorly configured and accessible without
authentication on the public internet. For instance, the world's first Internet of Things search
engine uncovered almost 67,000 exposed MQTT servers, most of which lack authentication. The
MQTT protocol allows anyone to subscribe to broadcasted topics without authentication, making
it highly vulnerable. Fundamental security principles for the Internet of Things include data
confidentiality, availability, integrity, and privacy (Upadhyay, Borole and Dileepan 2016).

The current implementation of MQTT primarily provides identity, authentication, and authorization
within its security mechanisms. However, relying on TCP/IP for sending/receiving data is
insecure, even though TCP/IP packets are generated and sent to the broker. MQTT clients can
subscribe to topic filters, publish messages to topic names, and receive messages from
subscribed topics. Notably, the topic filter allows the use of wildcard characters for simultaneous
subscriptions or subscriptions to multiple topics (Upadhyay, Borole and Dileepan 2016, Swamy,
Jadhav and Kulkarni 2017).

Despite MQTT's widespread use, it was not originally designed with a strong emphasis on
security, as evidenced by its standing as the second most popular Internet of Things messaging
protocol. The substantial growth of MQTT's usage demands the development of a secure version
that accounts for resource-constrained devices. Therefore, prioritizing MQTT security
requirements is essential (Andy, Rahardjo and Hanindhito 2017).

This section presents diverse security implementations for MQTT in real-world applications. For
devices without constraints, TLS/SSL can be used to establish transport-level encryption, as
proposed by (Soni and Makwana 2017). According to (Dinculeană and Cheng 2019), introduced

Nael M. Radwan & Jim Alves-Foss

International Journal of Computer Science&Security (IJCSS), Volume (18) : Issue (1) : 2024 10
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

an alternative approach to end-to-end security and hop-by-hop protection through the link layer,
successfully implemented in an industrial wind park(Dinculeană and Cheng 2019). Additionally,
Soni offered a solution for enforcing security policy rules at the MQTT layer, utilizing Model-based
Security.

5. RELATED WORK
5.1 Flow Control
MQTT servers often have fixed and limited resources, while clients' flow can fluctuate
unpredictably. To ensure system stability, flow control mechanisms are necessary. Common flow
control algorithms include the sliding window counting method, leaky bucket algorithm, and token
bucket algorithm.

While MQTT v3 did not standardize flow control behavior, MQTT v5 introduced flow control
functionality, which will be discussed further (Bashir and Mir 2020, Fauzan, Sukarno and
Wardana 2020).

5.2 Flow Control in MQTT V5
In MQTT v5, the sender initially has a sending quota, and this quota decreases by one whenever
a PUBLISH packet with a QoS greater than 0 is sent. Upon receiving response packets
(PUBACK, PUBCOMP, or PUBREC), the sending quota is increased by one.

If the receiver does not respond immediately, the sending quota is reduced to 0, and the sender
must stop sending all PUBLISH packets with QoS greater than 0 until the quota recovers. This
algorithm resembles a variation of the token bucket algorithm. It effectively utilizes resources by
not limiting the receiving rate, with the sending rate dependent on the response rate of the
opposite end and network conditions (Bashir and Mir 2020, Fauzan, Sukarno and Wardana
2020).

5.3 Get Maximum Attribute
MQTT v5 introduced the Receive Maximum attribute to facilitate flow control (Fauzan, Sukarno
and Wardana 2020). It appears in the CONNECT and CONNACK packets and represents the
maximum number of PUBLISH packets with a QoS of 1 and 2 that the client and server can
handle simultaneously.

This attribute determines the maximum sending quota the opposite end can utilize (Fauzan,
Sukarno and Wardana 2020). While MQTT allows messages up to 256 MB in size, it is common
for messages to be smaller than 10 KB due to network constraints and the inability to retry
sending large messages (Frustaci, Pace et al. 2017, Qiu, Tian et al. 2020).

5.4 Why Don't You Have QoS 0?
MQTT v5's flow control mechanism relies on response packets, limiting flow control to QoS 1 and
2 messages. This is because QoS 0 messages do not generate response packets(Frustaci, Pace
et al. 2017). However, an alternative proposal suggests that when the sending quota reaches
zero, the sender may either continue sending PUBLISH packets with QoS 0 or suspend sending
altogether. Suspending sending can be beneficial when QoS 1 and 2 PUBLISH packets face
delays in response times, indicating a potential reduction in the receiver's processing capability
(Frustaci, Pace et al. 2017, Qiu, Tian et al. 2020).

5.5 Summary
Despite some limitations, it is recommended that users employ MQTT v5's flow control
mechanism. The sending quota algorithm, based on response packets, optimally utilizes sender
resources. The Receive Maximum attribute enhances transparency and flexibility, particularly in
scenarios involving multi-vendor equipment (Bashir and Mir 2020).

Nael M. Radwan & Jim Alves-Foss

International Journal of Computer Science&Security (IJCSS), Volume (18) : Issue (1) : 2024 11
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

6. CONCLUSION
This paper provides an overview of the MQTT protocol, its strengths and weaknesses with
respect to security. In conclusion, despite some shortcomings in the flow control mechanism of
MQTT, it is highly recommended its utilization for users seeking efficient and flexible IoT
communication. MQTT's innovative sending quota algorithm, reliant on response packets,
optimizes resource utilization for senders. The introduction of the Receive Maximum attribute
eliminates the need for preemptive sending quota negotiations, fostering transparency and
adaptability, particularly in diverse equipment scenarios.

To recap the key points discussed in this article, it's crucial to recognize the drawbacks
associated with the MQTT protocol, which include:

1. Protocol Choice: MQTT relies on the TCP protocol, which can increase processing

power and memory usage. The frequent wake-up and communication intervals in the
TCP handshake can lead to higher battery consumption.

2. Scalability: The use of a centralized broker can sometimes limit scalability due to the
overhead it imposes on each client device. Utilizing a local broker hub can be an effective
way to overcome this challenge.

3. Single Point of Failure: A centralized broker can introduce a single point of failure, as
client connections with the broker remain open. It's essential to consider redundancy and
fault tolerance in your MQTT deployment.

4. Implementation Complexity: Compared to HTTP, MQTT implementation can be more
challenging, especially for those new to the protocol.

5. Advanced Features: MQTT may lack support for advanced features like built-in flow
control, which is an essential consideration for specific use cases.

6. TCP/IP Requirement: Clients using MQTT must support TCP/IP, which may limit
compatibility in some scenarios.

In light of these considerations, MQTT remains a powerful protocol for IoT communication, but
careful planning and evaluation of its features and drawbacks are necessary to make the most of
this technology. By addressing these challenges effectively, users can harness MQTT's strengths
to build robust and efficient IoT systems.

7. REFERENCES

Al-Hawawreh, M. and E. Sitnikova (2020). Developing a security testbed for industrial internet of
things. IEEE Internet of Things Journal 8(7): 5558-5573.

Andy, S., Rahardjo, B., &Hanindhito, B. (2017, September). Attack scenarios and security
analysis of MQTT communication protocol in IoT system. In 2017 4th international conference on
electrical engineering, computer science and informatics (EECSI) (pp. 1-6). IEEE.

Atmoko, R. A., Riantini, R., & Hasin, M. K. (2017, May). IoT real time data acquisition using
MQTT protocol. In Journal of Physics: Conference Series (Vol. 853, No. 1, p. 012003). IOP
Publishing.

Bashir, A., & Mir, A. H. (2020). Lightweight Secure-MQTT for Internet of Things. In Optical and
Wireless Technologies: Proceedings of OWT 2019 (pp. 57-66). Springer Singapore.

Bender, M., Kirdan, E., Pahl, M. O., & Carle, G. (2021, January). Open-source MQTT evaluation.
In 2021 IEEE 18th Annual Consumer Communications & Networking Conference (CCNC) (pp. 1-
4). IEEE.

Bhawiyuga, A., Data, M., & Warda, A. (2017, October). Architectural design of token based
authentication of MQTT protocol in constrained IoT device. In 2017 11th International Conference
on Telecommunication Systems Services and Applications (TSSA) (pp. 1-4). IEEE.

Nael M. Radwan & Jim Alves-Foss

International Journal of Computer Science&Security (IJCSS), Volume (18) : Issue (1) : 2024 12
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

Dinculeană, D., & Cheng, X. (2019). Vulnerabilities and limitations of MQTT protocol used
between IoT devices. Applied Sciences, 9(5), 848.

Fauzan, A., Sukarno, P., & Wardana, A. A. (2020, September). Overhead Analysis of the Use of
Digital Signature in MQTT Protocol for Constrained Device in the Internet of Things System.
In 2020 3rd International Conference on Computer and Informatics Engineering (IC2IE) (pp. 415-
420). IEEE.

Ferrari, P., Flammini, A., Sisinni, E., Rinaldi, S., Brandão, D., & Rocha, M. S. (2018). Delay
estimation of industrial IoT applications based on messaging protocols. IEEE Transactions on
Instrumentation and Measurement, 67(9), 2188-2199.

Froiz-Míguez, I., Fernández-Caramés, T. M., Fraga-Lamas, P., & Castedo, L. (2018). Design,
implementation and practical evaluation of an IoT home automation system for fog computing
applications based on MQTT and ZigBee-WiFi sensor nodes. Sensors, 18(8), 2660.

Frustaci, M., Pace, P., Aloi, G., & Fortino, G. (2017). Evaluating critical security issues of the IoT
world: Present and future challenges. IEEE Internet of things journal, 5(4), 2483-2495.

Grgić, K., Špeh, I., &Heđi, I. (2016, October). A web-based IoT solution for monitoring data using
MQTT protocol. In 2016 international conference on smart systems and technologies (SST) (pp.
249-253). IEEE.

Gupta, V., Khera, S., & Turk, N. (2021). MQTT protocol employing IOT based home safety
system with ABE encryption. Multimedia Tools and Applications, 80(2), 2931-2949.

Hiromoto, R. E., Haney, M., &Vakanski, A. (2017, September). A secure architecture for IoT with
supply chain risk management. In 2017 9th IEEE International Conference on Intelligent Data
Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS) (Vol. 1,
pp. 431-435). IEEE.

Hunkeler, U., Truong, H. L., & Stanford-Clark, A. (2008, January). MQTT-S—A publish/subscribe
protocol for Wireless Sensor Networks. In 2008 3rd International Conference on Communication
Systems Software and Middleware and Workshops (COMSWARE'08) (pp. 791-798). IEEE.

Karagiannis, V., Chatzimisios, P., Vazquez-Gallego, F., & Alonso-Zarate, J. (2015). A survey on
application layer protocols for the internet of things. Transaction on IoT and Cloud
computing, 3(1), 11-17.

Kumar, A., Sharma, S., Goyal, N., Singh, A., Cheng, X., & Singh, P. (2021). Secure and energy-
efficient smart building architecture with emerging technology IoT. Computer
Communications, 176, 207-217.

Kumari, A., Tanwar, S., Tyagi, S., & Kumar, N. (2018). Fog computing for Healthcare 4.0
environment: Opportunities and challenges. Computers & Electrical Engineering, 72, 1-13.

Lara, E., Aguilar, L., Sanchez, M. A., & García, J. A. (2020). Lightweight authentication protocol
for M2M communications of resource-constrained devices in industrial Internet of
Things. Sensors, 20(2), 501.

Liu, X., Zhang, T., Hu, N., Zhang, P., & Zhang, Y. (2020). The method of Internet of Things
access and network communication based on MQTT. Computer Communications, 153, 169-176.

Obaidat, M. A., Obeidat, S., Holst, J., Al Hayajneh, A., & Brown, J. (2020). A comprehensive and
systematic survey on the internet of things: Security and privacy challenges, security frameworks,
enabling technologies, threats, vulnerabilities and countermeasures. Computers, 9(2), 44.

Nael M. Radwan & Jim Alves-Foss

International Journal of Computer Science&Security (IJCSS), Volume (18) : Issue (1) : 2024 13
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

Qiu, J., Tian, Z., Du, C., Zuo, Q., Su, S., & Fang, B. (2020). A survey on access control in the age
of internet of things. IEEE Internet of Things Journal, 7(6), 4682-4696.

Radwan, N. M. (2020). A study: The future of the internet of things and its home
applications. International Journal of Computer Science and Information Security (IJCSIS), 18(1).

Rahmani, A. M., Gia, T. N., Negash, B., Anzanpour, A., Azimi, I., Jiang, M., & Liljeberg, P. (2018).
Exploiting smart e-Health gateways at the edge of healthcare Internet-of-Things: A fog computing
approach. Future Generation Computer Systems, 78, 641-658.

Ray, P. P. (2017). Internet of things for smart agriculture: Technologies, practices and future
direction. Journal of Ambient Intelligence and Smart Environments, 9(4), 395-420.

Soni, D., & Makwana, A. (2017, April). A survey on MQTT: a protocol of internet of things (IOT).
In International conference on telecommunication, power analysis and computing techniques
(ICTPACT-2017) (Vol. 20, pp. 173-177).

Swamy, S. N., Jadhav, D., & Kulkarni, N. (2017, February). Security threats in the application
layer in IOT applications. In 2017 International conference on i-SMAC (iot in social, mobile,
analytics and cloud)(i-SMAC) (pp. 477-480). IEEE.

Upadhyay, Y., Borole, A., &Dileepan, D. (2016, March). MQTT based secured home automation
system. In 2016 Symposium on Colossal Data Analysis and Networking (CDAN) (pp. 1-4). IEEE.

Vongsingthong, S., &Smanchat, S. (2014). Internet of things: a review of applications and
technologies. Suranaree Journal of Science and Technology, 21(4), 359-374.

Wang, Q., Ji, S., Tian, Y., Zhang, X., Zhao, B., Kan, Y., Lin, Z., Lin, C., Deng, S., Liu, A.X. &
Beyah, R. (2021). MPInspector: A systematic and automatic approach for evaluating the security
of IoT messaging protocols. In 30th USENIX Security Symposium (USENIX Security 21) (pp.
4205-4222).

Yassein, M. B., Shatnawi, M. Q., Aljwarneh, S., & Al-Hatmi, R. (2017, May). Internet of Things:
Survey and open issues of MQTT protocol. In 2017 international conference on engineering &
MIS (ICEMIS) (pp. 1-6). IEEE.

Nael M. Radwan & Jim Alves-Foss

International Journal of Computer Science&Security (IJCSS), Volume (18) : Issue (1) : 2024 14
ISSN: 1985-1553, https://www.cscjournals.org/journals/IJCSS/description.php

8. Appendix 1

TABLE 1: Public MQTT Brokers.

Name Broker Address TCP

Port

TLS

Port

Web-

Socket

Port

Message

Retention

Persistent

Session

Sign Up

Requred

Eclipse mqtt.eclipse.org 1883 N/A 80, 443 Yes Yes No

Mosquitto test.mosquitto.org 1883 8883,

8884

80 Yes Yes No

HiveMQ broker.hivemq.com 1883 N/A 8000 Yes Yes No
Flespi mqtt.flespi.io 1883 8883 80, 443 Yes Yes Yes
D(Internet
of

Things)y

mqqt.d(Internet of
Things)y.co

1883 8883 8080,
8880

Yes Yes Yes

Fluux mqtt.fluux.io 1883 8883 N/A N/A N/A No
Emqx Broker.emqx.io 1883 8883 8083 Yes Yes No

TABLE 2: Private Brokers.

Name Link TCP

Port

TLS

Port

Web-

Socket

Port

Message

Retention

Persistent

Session

QoS

Levels

Free Limits Link

Azure Link No 8883 443 No Limited 0, 1 8000

messages/da

y

Link

AWS Link No 8883 443 No Limited 0, 1 250,000/mo

nth

Link

CloudMQTT Link Custom

Port

Custom

Port

Custom

Port

Not Sure Yes 0, 1, 2 5Connection

s & 10
Kbit/s

Link

