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Abstract 
 
Very few papers in information security fields discuss repeated measurement designs and 
analysis. Balanced repeated measurement designs for first order residual effects are used to 
estimate both treatment and residual effects more precisely.The treatments for these effects can 
be types of security controls. In this paper we address the need of repeated measurement 
designs and proposea method of constructingthem using both complete and incomplete block 
designs.This paperattempts to clear up the definition of Balanced repeated measurement designs 
for first order residual effects designs (called BRM1) first given by Williams and the definition 
(called BRMP) given by Patterson. Some properties are also discussed how to use them in 
practice. Further research will be conducted for minimal and optimal repeated measurement 
designs in the information security field. 
 
Keywords: Balanced Repeated Measurement Design, Changeover Design, Carryover Design, 
Information Security, Balanced Incomplete Block Design. 

 
 
1. INTRODUCTION 

A repeated measurement design, also referred to as crossover, changeover, carryover, 
switchover, with n subjects, t treatments and p periods, or RM (t, n, p) design, is an experimental 
design in which n subjects (experimental units) can be used repeatedly by exposing them to a 
sequence of t different or identical treatments in p periods. The effect of the treatment being 
applied is called the direct effect, and the effect of the previous treatment is called the residual 
effect (or carryover effect). If a residual effect is incurred after i periods, then we call it the i

th
 order 

residual effect. 
 
The simplest such design is that of two subjects and two treatments, A and B, in two periods. We 
can apply treatment A to subject 1 in period 1 and treatment B in period 2. For subject 2, we 
reverse the order of application, that is, we apply treatment B to subject 2 in period 1 and 
treatment A in period 2. In this case, we say that we apply sequence 1 (treatment A first, then 
treatment B) to subject 1 and apply sequence 2 (treatment B first, then treatment A) to subject 2. 
Since there are two treatments applied to each subject, this is a RM (t=2, n=2, p=2) design. 
 
Repeated measurement designs are often used in pharmacology (Manrai et al., 2020), animal 
science (Zhao et al., 2020), agriculture (Gaitán-Rossi et al., 2019) and technology(Fisher, 2019). 
The variation between the subjects can be assumed to be much larger than the variation within 
the individual subjects in the case where there are budget limitations such as subjects are 
expensive or limited that we need to apply more than one treatment to each subject, limited time 
to conduct the experiment or need to train subject over a long period of time and no serious 
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damaging effect on the subjects, finding out the effect of different treatment sequences, or 
residual effects. For example, repeated measurement designs were used in assessing COVID-19 
vaccine efficacy (Follmann et al., 2020 and Ren et al., 2021).  
 
However, repeated measurement designs are not used in technology correctly. An existing paper 
to assess different online games’ user accessibility in data miningdoes not provide uniform 
network environments as periods to control the network environment variability(Godzinski et al., 
2022).  

 
Since each observation consists of cumulative effects, involving both direct and residual effects, 
the analysis of the repeated measurement design will be more complicated than that of the 
design without residual effects. There are three ways to make the analysis simple: (1) by inserting 
a washout period (called a rest period) between the treatment periods to obtain the estimates of 
the direct and/or the residual effects more precisely than those of any other repeated 
measurement designs (Tippey et al., 2015); (2) by adding a pre-period with t=p (Lucas, 1957) and 
with t>p (Patterson, 1950) to remove the non-orthogonality between direct and residual effects; 
(3) by using known balanced repeated measurement designs which will be discussed in the 
Section 2. In Section 3 we propose a new inductive method and construct balanced repeated 
measurement designs using all treatments in each subject and then in Section 4 we will construct 
balanced repeated measurement designs using the method proposed in Section 3. In Section 5 
we will examine some properties of our designs proposed in Section 3. In Section 6 and 7 we will 
discuss how to use our designs in practice. And an algorithm of generating balancedrepeated 
measurement designs is given in the Appendix. 

 
2. LITERATURE REVIEW 
In this section we will discuss the development of the balanced repeated measurement designs 
under the existence of the first order residual effects. We will also review the definitions of the 
balanced repeated measurement designs as used by different authors. 

 
2.1 BRM1 Designs for First Order Residual Effects 
The most commonly usedRM (t, n, p) designs are balanced designs for first order residual effects 
given by Williams (1949, 1950) and Hedayatet al. (1975). The definition is given in the Definition 
2.1.1. 
 
Definition 2.1.1. A RM (t, n, p) design is said to be balanced, or a BRM1(t, n, p) design, with 
respect to sets of direct and first order residual effects, if (1) each treatment occurs m1 times in 
each period each treatment is preceded by every other treatment m2 times. 
 
Williams called these designs balanced residual effects designs. BRM1(t, n, p) designs are 
constructed using Latin Squares which are defined in the Definition 2.1.2 (Kempthorne, 1952). 
 
Definition 2.1.2. A Latin Square is an n × n array filled with n different symbols, each occurring 
exactly once in each row and exactly once in each column (Hinkelmann et al., 2014). 
 
Special Latin Squares called cyclic Latin Squares and reduced Latin Squares are given in 
Definition 2.1.3 and Definition 2.1.4 respectively by McKay et al. (2005, 2006). 
 
Definition 2.1.3. A cyclic Latin Square is a Latin Square where all entries in each row are 
generated cyclically. 
 
Definition 2.1.4. A reduced Latin Square (normalized or in standard form) is a Latin Square where 
both its first row and its first column are in their natural order. 
 
We will define a semi-reduced Latin Square in Definition 2.1.5. 
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Definition 2.1.5. A semi-reduced Latin Square is a Latin Square where its first row is in its natural 
order. 
 
For example, the design in Table 1 is a cyclic, semi-reduced Latin Square. 
 
There are two types of balanced repeated measurement designs. The first type is using complete 
block designs proposed by Williams, where all treatments are applied on each subject (or blocks). 
The others are using incomplete block designs proposed by Peterson, where not all treatments 
are applied on each subject. Williams constructed a BRM1(n, n, n) design using one Latin Square 
when the number of treatments t is even as follows: 
 
For t treatments we construct the first subject with t periods by entering successive number from 
integer 1 in every other period from period 1 to period t and reversing the direction once period t 
has been reached. The remaining p-1 subjects can be constructed cyclically from the first subject. 
 
For example, when n=t=p=6, the first subject can be applied to treatments (1,6,2,5,3,4), the 
second subject has treatments (2,1,3,6,4,5), …, etc. The BRM1(6,6,6) design with m1=1, and 
m2=1 can be shown in Table 1. 

 
Period Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 

1 1 2 3 4 5 6 
2 6 1 2 3 4 5 
3 2 3 4 5 6 1 

4 5 6 1 2 3 4 
5 3 4 5 6 1 2 
6 4 5 6 1 2 3 

 

TABLE 1: BRM1(6, 6, 6) design. 

 
When t is odd, he constructed a BRM1(r,n=2t,p=t) design with m1=2, and m2=2 using two Latin 
Squares. For example, when n=3, a BRM1(3,6,3) can be shown in Table 2. 

 
Period Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 

1 1 2 3 3 1 2 
2 3 1 2 1 2 3 
3 2 3 1 2 3 1 

 

TABLE 2: BRM1(3, 6, 3) design. 

 
The properties of Williams’ BRM1 designs are: (1) all direct effects are estimated with equal 
precision; (2) all residual effects are estimated with equal precision. The advantages of Williams’ 
BRM1 designs over unbalanced RM designs are: (1) the efficiency is increased (i.e., we can get 
more precise estimates of direct and residual effects than any unbalanced RM designs); (2) the 
design and analysis are simpler than those for other designs. 
 
However, when p<t, we cannot use Williams’ designs. Patterson used incomplete Latin Squares 
(called Generalized Youden Squares) to construct BRM1 designs, which are defined here as 
BRMP designs for such situations by Patterson (1950, 1951, 1952) as described in Section 2.2. 
 
2.2 BRMP(t,n,p) Designs 
Before defining BRMP designs, we need to define BIB (Balanced Incomplete Block) designs first. 
An incomplete block means not all treatments appear in any block. 
 
Definition 2.2.1.A BIB design is an incomplete block design where all pairs of treatments appear 
in the same block the same number of times. 
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For example, the design in Table 3 using subjects S1-S12 as blocks is a BIB design where every 
pair of treatments appears together in 4 blocks. After deleting the last period, the resulting design 
is still a BIB design where every pair of treatments appear together in 2 blocks. 

 
Period S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

1 1 2 3 4 1 2 3 4 1 2 3 4 

2 2 1 4 3 3 4 1 2 4 3 2 1 
3 3 4 1 2 4 3 2 1 2 1 4 3 

 

TABLE 3: BIB design. 

 
Definition 2.2.2. A BRMP(t,n,p) design is a BRM1(t,n,p) design which satisfies the following 
conditions: (1) the design is a BIB with subjects used as blocks; (2) deleting the last period, the 
design is still a BIB; (3) for every pair of treatments (A, B), the number of subjects in which B 
occurs when A is in the last period is the same as the number of subjects in which A occurs when 
B is in the last period. 
 
For example, the design in Table 3 is a BRMP(4, 12, 3) design. It is also a BRM1(4, 12, 3) design 
with m1=3, and m2=2. However, the designs in Table 1 and 2 are not BIB designs, so they are not 
BRMP designs. On the other hand, a BRM1 design may not be a BRMP design. For example, the 
design in Table 4 is a BRM1 (5, 10, 3) design with m1=2 and m2=1 using subjects S1-S10 as 
blocks. However, it is not a BIB design where treatments 1 and 2 appear twice in the same block, 
whereas treatments 1 and 3 appear four times in the same block. Therefore, it is not a BRMP 
design. 
 

Period S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 
1 1 3 5 4 2 4 3 2 5 1 
2 2 4 1 5 3 3 2 1 4 5 
3 4 1 4 2 5 1 5 3 2 3 

 

TABLE 4: BRM1(5, 10, 3) design. 

 
From the examples above, the set of BRM1 designs and the set of BRMP designs are not the 
same. The set of BRMP designs is a proper subset of the set of BRM1 designs (Rosen, 2019). 
Both sets are not equal, in which the design in Table 4 is an example. 
 
In Section 3 a new way of constructing BRM1(t,n,p) designs is proposed. 

 
3. CONSTRUCTING BRM1 DESIGNS 
In this section we will generate BRM1(t,t,t) designs when t is even. If t is odd, we can generate 
BRM1(t,2t,t) designs. In all designs, rows represent periods, and all columns represent subjects. 
 
Case 1. When t is even, generate BRM1(t, t, t) designs: 
 
Firstly, we generate the first column using the following algorithm:Starting with 1 in the first row, 
we generate the first element in each even row by adding the number 1 toanother integer (called 
difference) from 1to t/2, respectively. And the sum is the number in each row.Secondly, if there 
are empty rows, we can generate the skipped rows from the bottom to the top by adding 1 to the 
difference from t/2+1 to t-1. And the sum is the element in each row. After creating the first 
column, we cangenerate the rest of columns cyclically. 
 
For example, when t=2, t/2=1. So we have 1 in row 1 and 2 in row 2. The number of rows=t=2. 
Since we have no skipped row, the first column is 1 2. Then generate the rest of column 
cyclically. The design can be shown below: 
 
For t=2, a cyclic Latin Square, BRM1 (2, 2, 2) design: 
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1 2 
2 1 
 
For t=4, a cyclic Latin Square, BRM1 (4, 4, 4) design: 
Starting with 1 in row 1, t/2=2. The elements are in the first column is 
Row 2: 1+1=2 
Row 4: 1+2=3 
Row 3: 1+3=4 
 
The resulting cyclic RM (4, 4, 4) design is 
1 2 3 4 
2 3 4 1 
4 1 2 3 
3 4 1 2 
 
For t=6: 
Starting with 1 in row 1, the first elements in the first column are 
Row 2: 1+1=2 
Row 4: 1+2=3 
Row 6: 1+3=4 
Row 5: 1+4=5 
Row 3: 1+5=6 
 
The resulting cyclic RM (4, 4, 4) design is 
1 2 3 4 5 6 
2 3 4 5 6 1  
6 1 2 3 4 5 
3 4 5 6 1 2 
5 6 1 2 3 4 
4 5 6 1 2 3 
 
For t=8: 
Starting with 1 in row 1, we generate the first column: 
Row 2: 1+1=2 
Row 4: 1+2=3 
Row 6: 1+3=4 
Row 8: 1+4=5 
Row 7: 1+5=6 
Row 5: 1+6=7 
Row 3: 1+7=8 
 
The resulting design is 
1 2 3 4 5 6 7 8 
2 3 4 5 6 7 8 1  
8 1 2 3 4 5 6 7 
3 4 5 6 7 8 1 2 
7 8 1 2 3 4 5 6  
4 5 6 7 8 1 2 3 
6 7 8 1 2 3 4 5 
5 6 7 8 1 2 3 4 
 
t=10, a BRM1(10, 10, 10) design is 
1 2 3 4 5 6 7 8 9 10  
2 3 4 5 6 7 8 9 10 1  
10 1 2 3 4 5 6 7 8 9 
3 4 5 6 7 8 9 10 1 2 
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9 10 1 2 3 4 5 6 7 8 
4 5 6 7 8 9 10 1 2 3 
8 9 10 1 2 3 4 5 6 7 
5 6 7 8 9 10 1 2 3 4 
7 8 9 10 1 2 3 4 5 6 
6 7 8 9 10 1 2 3 4 5 
 
Case 2. When t is odd, generate BRM1(t, 2t, t) designs: 
 
Firstly, we generate the first column using the following algorithm: Starting with 1 in the first row, 
we generate the first element in each even row by adding the number 1 to another integer (called 
difference) from 1 to floor(t/2), respectively. And the sum is the number in each row. If difference 
reach to floor(t/2), then use difference floor(t/2) +1 for the t th row. If there are missing rows, then 
reverse the direction, use difference floor(t/2)+2 to t-1 row from bottom up to fill in the rest of 
rows. After the first column has been generated, then we generate the rest of the Latin Square 
cyclically. Finally, we generate the first row of another Latin Square by using last row first and 
reverse the previous Latin Square row-wise. The resulting design is by combining those two Latin 
Square side by side. 
 
For example, if t=3: floor(t/2)=1 
 
Firstly, we generate the first column in the following: 
Starting with 1 in row 1, 
Row 2: 1+1=2 
Row 3: 1+2=3 
 
The first cyclic Latin Square is 
1 2 3 
2 3 1 
3 1 2 
 
Secondly, we create the first row of another Latin Square starting from the bottom row of the first 
Latin Square resulting 3 1 2. Then the rest of rows coming from reversing the rest rows of the first 
Latin Square, the resulting Latin Square is 
3 1 2 
2 3 1 
1 2 3 
 
Put the second Latin Square along with the second one side by side resulting: 
1 2 3 3 1 2 
2 3 1 2 3 1 
3 1 2 1 2 3 
 
For t=5: floor(t/2)=2 
 
First, create a Latin Square using the method as described above: 
 
Starting with 1 in row 1 
The first column is generated below: 
Row 2: 1+1=2 
Row 4: 1+2=3 
Row 5: 1+3=4 
Row 3: 1+4=5 
 
The first cyclic Latin Square is 
1 2 3 4 5 
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2 3 4 5 1 
5 1 2 3 4 
3 4 5 1 2 
4 5 1 2 3 
 
Secondly, create another Latin Square from starting from the bottom row of the first Latin Square 
resulting: 
4 5 1 2 3 
3 4 5 1 2 
5 1 2 3 4 
2 3 4 5 1 
1 2 3 4 5 
 
Put the second Latin Square along with the second one side by side resulting: 
1 2 3 4 5 4 5 1 2 3 
2 3 4 5 1 3 4 5 1 2 
5 1 2 3 4 5 1 2 3 4 
3 4 5 1 2 2 3 4 5 1 
4 5 1 2 3 1 2 3 4 5 
 
In Section 4 we will construct BRM1(t,n,p) designs when p<t. The resulting designs are also 
BRMP designs. 

 
4. CONSTRUCTING BRMP DESIGNS 
In this section if p<t, using the techniques in Section 3 we will generate BRM1(t,n,p) designs 
when p is even, where n=p*C (t,p). Note thatC (t,p)=t! /{p! (t-p)!} is the number of p-combinations 
(Rosen, 2019). If p is odd, we can generate BRM1(t,n,p) designs where n=2*p*C(t,p). In all 
designs, rows represent periods, and all columns represent subjects. 
 
Case 1. When p is even, 
There are C (t, p) numbers of different subjects in which p treatments are applied. For each of 
these different subjects each can create a BRM1(p,p,p) design by relabeling each treatment in 
order and using the method in Section 3. Therefore, we have total n=p*C(t,p) subjects. 
 
Example: 
t=5, p=4 
 
There are C (5,4)=5 initial subjects of possible different treatments shown below:  
1 1 1 1 2 
2 2 2 3 3 
3 3 4 4 4 
4 5 5 5 5 
 
Label treatments in order in each subject as a, b, c, and d, generate initial BRM1(4,4,4) (Latin 
Square) for each initial subject, and create five BRM1(4,4,4) designs side by side using the 
method in Section 3. The result is shown below: 
 
1 2 3 4 1 2 3 5 1 2 4 5 1 3 4 5 2 3 4 5 
2 3 4 1 2 3 5 1 2 4 5 1 3 4 5 1 3 4 5 2 
4 1 2 3 5 1 2 3 5 1 2 4 5 1 3 4 5 2 3 4 
3 4 1 2 3 5 1 2 4 5 1 2 4 5 1 3 4 5 2 3 
 
This is a BRM1(5,20,4) design with m1=4, m2=3. It is also a BRMP design. 
 
Case 2. When t is odd: 
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There are C (t, p) numbers of different subjects in which p treatments are applied. For each of 
these different subjects each can create a BRM1(p,2p,p) design by relabeling each treatment in 
order and using method in Section 3. Therefore, we have total n=2*p*C(t,p) subjects. 
 
Example: 
t =5, p=3 
 
There are C (5,3)=10 initial subjects of possible different treatments shown below:  
1 1 1 1 1 1 2 2 2 3 
2 2 2 3 3 4 3 3 4 4 
3 4 5 4 5 5 4 5 5 5 
 
Label treatments in order in each subject as a, b, and c, generate initial BRM1(3,3,3) (Latin 
Square) for each initial subject, and create ten BRM1(3,3,3) designs side by side using the 
method in Section 3. The result is shown below: 
1 2 3 2 3 1 1 2 4 2 4 1 1 2 5 2 5 1 1 3 4 3 4 1 1 3 5 3 5 1 1 4 5 4 5 1 2 3 4 3 4 2 2 3 5 3 5 2 
2 3 1 1 2 3 2 4 1 1 2 4 2 5 1 1 2 5 3 4 1 1 3 4 3 5 1 1 3 5 4 5 1 1 4 5 3 4 2 2 3 4 3 5 2 2 3 5 
3 1 2 3 1 2 4 1 2 4 1 2 5 1 2 5 1 2 4 1 3 4 1 3 5 1 3 5 1 3 5 1 4 5 1 4 4 2 3 4 2 3 5 2 3 5 2 3 
 
2 4 5 4 5 2 3 4 5 4 5 3 
4 5 2 2 4 5 4 5 3 3 4 5 
5 2 4 5 2 4 5 3 4 5 3 4 
 
This is a BRM1(5,60,3) design with m1=12, m2=6. It is also a BRMP design. 
 
Note that any balanced RM (t, n, p) designs satisfies that (1) n=m1t (2) n(p-1)=m2 t(t-1).  The 
designs are minimal RM designs since m1=1 is the smallest integer that satisfies m1(p-1) is 
congruent to 0 (mod t-1) (Hedayat et al., 1973). 
 
In section 5 we will describe some of the properties of the designs generated in Section 3. 

 
5. PROPERTIES OF CYCLIC BRM1 (T, T, T) DESIGNS WHEN T IS EVEN 
The BRM1(t,t,t) designs generated in Section 3 when t is even have properties shown in Table 5: 

 
t Number of 

different Cyclic 
Latin Squares= t! 

Number of BRM1 
cyclic designs 

2 2 2 
4 24 8 
6 720 24 
8 40320 192 
10 3628800 2880 

 

TABLE 5: Number of BRM1(t,t,t) designs. 

 
The BRM1(t,n,p) designs generated in Section 4 when t>p have properties stated in Theorem 
5.1.1 and 5.1.2. 
 
Theorem 5.1.1. If t>p and p>1, BRM1(t,n,p) designs generated in Section 4 when p is even have 
properties that n=p*C(t,p) with m1=C(t-1,p-1) and m2=C(t-2,t-p). 
 
Proof: It is obvious that the number of times that every treatment appears in each period are the 
same. Therefore, m1= number of any treatment that appear in all initial subjects = C (t-1, p-1). 
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In addition, since every pair of treatments in the Latin Square generated by each initial subject 
appears exactly once, m2=number of any pair of treatments in the same initial subjects=C (t-2, t-
p). 
 
Theorem 5.1.2. If t>p and p>1, BRM1(t,n,p) designs generated in Section 4 when p is odd have 
properties that n=p*C(t,p) with m1=2*C (t-1, p-1) and  m2= 2*C(t-2,t-p). 
 
Proof: The proof is like that of Theorem 5.1.1. Since when p is odd, we generate two Latin 
Squares for each initial subject. Therefore, both m1 and m2 are double of the results in Theorem 
5.1.1, respectively. 
 
Example. For the designs in Section 4, using Theorem 5.1.1 when t=5 and p=4, m1 =4!/(3!1!)=4, 
m2 =3!/(1!2!)=3. When t=5 and p=3, using Theorem 5.1.2, m1 = 2*4!/(2!2!)=12 and m2 
=2*3!/(2!1!)=6. 
 
Theorem 5.1.3. The BRM1 (t,n,p) designs generated in Section 4 are also BRMP (t,n,p) designs. 
 
Proof: Since all pairs of treatments appear in the same subject the same number of times in each 
initial Latin Square(s) and each subject is an incomplete block, the design is BIB. After deleting 
the last period for each initial Latin Square, they are also BIBs. Therefore, after deleting the last 
period for the entire design, it is still BIB. Since each initial Latin Square has the property that for 
every pair of treatments (A, B), the number of subjects in which B occurs when A is in the last 
period is the same as the number of subjects in which A occurs when B is in the last period. 
Therefore, The BRM1 (t,n,p) designs generated in Section 4 are also BRMP (t,n,p) designs. 
 
In Section 6 we show how BRM1 designs help managers to manage the limited situations in 
practice. 

 
6. MANAGERIAL IMPLICATIONS 
The proposed design requires some management planning in practice. Under the situation that 
we want to apply all treatments in each subject, and if t=p, then we can use BRM1(t,t,t) designs if 
t is even. And if t is odd, we can use BRM1(t,2t,t) designs. If we have a limited number of subjects 
n that are even, then t can be set to n and we can use a BRM1(n,n,n) design. On the other hand, 
if n is even and n/2 is odd, then t can be set to n/2, and we use a BRM1(n/2,n,n/2) design. 
Otherwise, we may not use all subjects in the experiment. 
 
If we choose not to apply all treatments in each subject, i.e.t>p, and if p is even, we can use 
BRM1(t,p*C(t,p),p) designs. On the other hand, if p is odd, then we can use BRM1(t,2p*C(t,p),p) 

designs. Since (t-p)!. ≥  (p-p)!=1, if p is even, n=p*C(t,p) ≤ p*t!/p!=t!/(p-1)!.In addition, n=p*C(t,p).

≥  p*p!/{p!(t-p)!} =p/ (t-p)!. In other words, if p is even, t! /(p-1)! ≥  n ≥  p/(t-p)!. And if p is odd, 2*t! 

/(p-1)! ≥  n ≥  2*p/ (t-p)!. For example, if t=5 and p=3, then 120 ≥ n ≥ 3. If t=5 and p=4, then 20≥  

n ≥  4. These restrictions for n can give a rough estimate of how many subjects needed to be 
used in BRM1 designs. We will summarize the results in Section 7. 

 
7. RESEARCH RESULTS AND CONCLUSION 
In practice, we can apply the RM designs to measure the direct and residual effects on different 
security defense measures. In an information field, when we want to collect data for analysis, RM 
designs can be used for many models such as in papers (Shing et al., 2012) (Ismail et al., 2013) 
(Yasin et al., 2016). For example, we can compare the effects of applying firewalls on a network 
during a fixed period, and then subnetting network in the other period within an organization. And 
then vice versa. The subjects of the BRM1 design are the two networksin an organization. The 
treatments are firewallsagainst outsidersand subnetting. And the observations are the number of 
successful hackings into the mentioned network from outside. Not only can we find out what each 
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security defense’s effect, but we can see whether we should apply firewalls first or subnetting first 
to a network. 
 
In this paper we have clarified the definition BRM1 designs first given by Williams and the 
definition BRMP designs given by Patterson; they are deductive. We propose an inductive 
method of constructing RM designs. We can get more precise estimates for both treatments and 
first order residual effects. However, if the number of treatments is larger than the number of 
periods, we prefer to use BRMP designs. When we use BRMP designs that are not BRM1 
designs, we cannot estimate first order residual effects as precisely as treatment effects, which 
may be our main concern in practice. This is the reason why we want to construct BRMP designs 
which are also BRM1 designs. Unfortunately, the number of subjects required for the construction 
proposed grows fast as the number of treatments grow. A minimal balanced RM (t, 2t, p) design 
with p < t exists whenever t is a prime power (Hedayat et al., 1973). The optimal RM designs 
were investigated by Hedayat et al (1978) and Stufken(1991). 

 
8. APPENDIX 
Algorithm of Generating BRM1(t,t,t) designs: 

Create original index string str[] to be permuted 
Find all permutations of str[] and store them as a string called resultStr 
Create one Latin Square 
Find the precedence relation of each column in all possible Latin Squares 
Create other Latin based on permutation of rows 
Count precedence of all columns in each Latin square 
Sort precedence 
Find unique precedence pair size and determine balanced Latin square 
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