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Abstract 

 
Risky asset bid and ask prices “tailored”  to the risk-aversion and the gain-propension of the 
traders are set up. They are calculated  through the principle of the Extended Gini premium, a 
standard method used in  non-life insurance. Explicit formulae for the most common stochastic 
distributions of risky returns, are calculated. Sufficient and necessary conditions for successful 
trading are also discussed. 
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1. INTRODUCTION 

An evergreen debate in risk management concerns  the pricing of risky assets. Clearly, the 
perception of the asset return variability not only depends on the individual risk-aversion 
and/gain-propension of the trader but also if she is acting on the market as a buyer or as a seller 
of the asset. Specifically, we define the bid-price as the highest price at which a buyer will buy a 
risky position, whereas the ask-price (or short-selling price) as the lowest one at which she will 
sell it short.  
 
The aim of the paper is to propose a normative approach to calculate personalized bid and ask 
prices as Extended Gini (EG) premia.  The definition of EG is seminally due to Yitzhaki ([1]) as an 
extension of the Gini index, the most popular measure of income inequality (see [2]). Although its 
originally use was confined to the social welfare context, recently it has become  familiar in non-
life insurance to  determine  the  safety  loading in insurance premia (see [3]),  in Quantitative 
Finance to calculate risk measures through the Lorenz curve (see Shalit and Yitzhaki [4], [5] 
and[6] ), and in portfolio risk management to select  the best tradeoffs between risk and returns 
(see [7] and [8]). Technically speaking, these prices can be represented as Choquet integrals with 
power-type distortion functions of order given by the agent index of pessimism and optimism, 
respectively (see [9] and [10]).  
 
After having set up closed-end formulae for the most common stochastic distributions used in risk 
management, we discuss sufficient and necessary conditions for successful trading. 
 
To quantify the chance of successful in trading we suggest to use the so-called probability of 
trading. We show that the willingness to trade is driven by three factors (1) the buyer risk-
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aversion, (2) the seller gain-propension and (3) the return distribution and specifically, its 
asymmetry. We get a confirmation of what intuition suggests: (1) the higher the buyer risk-
aversion and the seller gain-propension, the higher the probability of no-trading; (2) if the density 
function of the asset return is decreasing (then the distribution is right-skewed) the probability of 
buying is higher than that of selling; and vice versa if the density function is increasing; if the 
asset is symmetrically distributed, the probability of buying and selling are equal. Among the 
distributions studied, the uniform distribution has the smallest probability of no-trade and the 
normal distribution has the largest one. However, for some distributions, one can have probability 
one or arbitrarily close to zero of successful trading. 
 
The remainder of this paper is organized as follows. Section 2 introduces the bid and ask prices 
definition. In Section 3 closed-formulae and tables for the most common distributions are given. In 
Section 4 we discuss sufficient and necessary conditions for trading. Then we define the 
probability of trading and we discuss the impact of the asset skewness on the successful trading. 
Section 5 concludes the paper. An Appendix collects the proofs. 

 
2. BID AND ASK PRICES AS RISK-ADJUSTED MEAN RETURN 
In social welfare studies, a celebrated measure for income inequality is the Gini index that is well 
suited for long-tailed distributions such as those of incomes. In finance  context, Yitzhaki (1982) 
seminally developed an extension, called the Extended Gini (EG) and subsequently thoroughly 
studied by Shalit and Yitzhaki S. ([4], [5] and [6]), Shalit [7] and Cardin et al. [8] among others. 
 
The definition of EG in the literature is not unique, but they all coincide in the continuous case. To 
avoid technical adjustments, we assume all variables are continuous (see [11] for details for 
adjusting discrete variables vs continuous ones). 
 
Definition 2.1 Let X be a continuous random variable with cumulative distribution function F . 
The Extended Gini of X  of order k is defined as: 

 

( ) ( ) ( ){ }1min ,...,k kEG X E X E X X= − , with k a positive integer number, 

 
where 

1, ,..., kX X X  are identical independent distributed (i.i.d.) random variables.  

 
The parameter k  captures the trader perception of the variability of X .  The higher k, the more 

weight  ( )kEG X   attaches to the left tail
1
 of X  and, since the right tail of X coincides with the left 

tail of X− , the more weight ( )kEG X−   attaches to the right tail of X .  As expected, if the 

distribution of  X  is symmetric and/or 2k = , the dispersion on the left and right tail is equal and  

( ) ( )k kEG X EG X= − .  Extended Gini of X−   is 

 

( ) ( ) ( ){ } ( ){ } ( )1 1min ,..., max ,...,k k kEG X E X E X X E X X E X− = − − − − = −  

 

It easy to check that  ( )kEG X   and  ( )kEG X−  assume non-negative values and, in general, 

( ) ( )k kEG X EG X≠ − . 

 

Definition 2.2  ( )kEG X  is called the risk-premium and ( )kEG X−   the gain-premium of  X  of order 

k  . 

We now introduce the notion of bid-price and ask-price as the certainty equivalent of X . The bid-

                                                 
1
Note that the definition of ask and bid prices of a firm has been recently introduced by Modesti in [12]. 
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price coincides with the standard definition of certainty equivalent (see [11]); vice versa, that of 
the ask-price needs to be formulated. 
 
Definition 2.3 Let the bid-price and the ask-price (or short-selling price) according to the 
Extended Gini of order k  given by 

 
( ) ( ) ( ) ( ) ( ){ }1min ,...,       
k

bid k kCEG X E X EG X E X X= − =  

( ) ( ) ( ) ( ) ( ){ }1max ,...,
k

ask k kCEG X E X EG X E X X= + − =  

 
where k   is a positive integer and 

1, ,..., kX X X are i.i.d. random variables. 

 
By definition, the higher k , the higher the risk-premium and the gain-premium, so the lower the 

bid-price and the higher the ask-price. 

Since X is non-negative variable, then ( ) ( ) ( )( )
0

1E X E X F t dt

∞

= = −∫  and we get 

( ) ( ) ( )( )
0

1
kk

bidCEG X F t dt

∞

= −∫  and ( ) ( ) ( )
0

1
k k

askCEG X F t dt

∞

= −∫ . 

Then, ( ) ( )k

bidCEG X coincides with the Choquet integral with power distortion function  ( ) kg t t=  and  

( ) ( )k

askCEG X  with its dual-power distortion function ( ) ( )1 1
k

g t t= − −
(

. Following the terminology used 

by Chateauneuf et al. ([9], Example 4), the parameter k   (with 1k ≥  ) is the buyer index of 

pessimism in ( ) ( )k

bidCEG X  and the seller index of greediness in ( ) ( )k

askCEG X . Clearly, these indices 

may differ from each other, so it would be necessary to substitute k  with buyerk  and  
sellerk . 

 
 

3. CLOSED-END FORMULAE FOR BID AND ASK PRICES FOR COMMON 
STOCHASTIC DISTRIBUTIONS 

The bid and ask prices admit closed-end formulae for many familiar distributions used in financial 
and managerial modelling. They appear in the literature as special cases of more complicated 
expressions for moments of order statistics. For completeness some derivations are given in the 
Appendix. In the following, for simplicity of notation, we skip the under-symbol of buyerk and 

sellerk  

and we write k . To compute the proper ( ) ( )buyerk

bidCEG X  and  ( ) ( )sellerk

askCEG X  it is sufficient to substitute 

the proper values of buyerk  and  
sellerk  in the formulae. 

 
3.1 Uniform distribution 

Let  ( ) /F x xθ θ=  for 0 x θ≤ ≤ , i.e., the uniform distribution on  [0, ]θ , with mean 
2

θ
µ = . Due to 

symmetry,  ( ) ( )
( )
( )

1

2 1
k k

k
EG X EG X

k

θ −
= − =

+
 and 

( ) ( )
1

k

bidCEG X
k

θ
=

+
 and  ( ) ( )

1

k

ask

k
CEG X

k

θ
=

+
. 

 

3.2 Normal distribution 

Although 
1(min( ,..., ))kE X X  and 

1(max( ,..., ))kE X X for i.i.d. ( )2

1,..., ,kX X N µ σ∼ do exist and recursion 

formulae can be set up (see [13]), but no closed-form formulae exist even if for small k . For 

2k = , ( ) ( )2 2
EG X EG X

σ

π
= − =  so we get 
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( ) ( )2

bid
CEG X

σ
µ

π
= −  and ( ) ( )2

ask
CEG X

σ
µ

π
= + . 

 

It is also known that  ( ) ( )3 3
1.5EG X EG X

σ

π
= − =   and  ( ) ( )4 4 1.03EG X EG X σ= − ≈ . 

 
3.3 Skew-Normal distribution 
In recent years the skew normal distribution has been successfully used in financial modelling 
(see Eling et al. [14] for applications) Since no closed-formulae exist for normals, we realistically 
think that achieve them for skew-normals would be a very hard task. So, again we study the case 

2k = . Let ( )2
, ,X SN ξ ω α∼ . Since ( ) ( )k

bidCEG X  and ( ) ( )k

askCEG X  are the minimal and maximal order 

statistics of k copies of i.i.d. random variables X , for  2k = : 
( ) ( ) ( )( )2

1 2 1 : 2min ,bidCEG X E X X X= =  and  ( ) ( ) ( )( )2

1 2 2 : 2max ,askCEG X E X X X= =  

  
Rearranging a result of Jamalizadeh and Balakrishnan ([15], page 46) and imposing the 
independence between 

1X  and 
2X   and we get

2
 

 

( ) ( )
( )

2

2

2 1

21
bidCEG X ξ ω α

π α

 
= + −  +  

.and  ( ) ( )
( )

2

2

2 1

21
askCEG X ξ ω α

π α

 
= + +  +  

. 

As expected,  ( ) ( )2 2EG X EG X= −
( )2
1

ω

π α
=

+
 achieves its maximum value  

ω

π
 for 0α =  when 

the distribution is Gaussian; whereas the minimum 
2

ω

π
 occurs for 1α = ±  when it is Half-

Gaussian. 
 

3.4 Pareto distribution 
Pareto distributions are characterized by long and heavy tails modulated by a parameter 0α >  

(and  1α >   for finite mean). For this property they are commonly used in Finance for modeling 

extreme events (see Embrechts and Schmidli [16]). Let ( ) 1 ( / )F t c t α= −  for t c>  and 1α > ; and 

( ) 1S t =  for t c<  and  ( ) ( / )S t c t
α=   for t c> . A random variable with a Pareto distribution can be 

written as cX , where X  has a Pareto distribution with  1c = . So we consider the special case 

1c =  . 

Let  ( ) 1S t =  for  0 1t≤ ≤  and  ( )S t t
α−=   for 1t > . Thus  

 

( ) ( ) ( ) ( )
!

     and      
1 ( 1) ( 1)

k
k k

bid ask

k k
CEG X CEG X

k k

α α

α α α
= =

− − −L
. 

 
Just to check, for  1k =  , i.e. risk and gain neutrality, we get the mean  / ( 1)µ α α= − . 

For 2k =  we have ( )2
2 / (2 1)

bid
CEG α α= −   and ( )2 22 / [(2 1)( 1)]

ask
CEG α α α= − − . This implies 

2 2( ) ( ) / [(2 1)( 1)]EG X EG X α α α= − = − −  . 

 

                                                 

2
The skew-normal variable X  has mean  

( )2

2

1
ξ ω α

π α
+

+
 and standard deviation 

( )

2

2

2
1

1

α
σ ω

π α
= −

+
 . If 

0α = , the skew-normal shrinks to the normal with mean µ ξ=  and σ ω= . 
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3.5 Weibull distribution   

Let  ( ) ( )m
x

S x e
λ−

= . Then X  has a Weibull distribution with scale parameter  0λ >   and 0m > . The 

mean 
1

1
m

µ λ
 

= Γ + 
 

.  If 2m = ,  ( )3 / 2 / 2πΓ = . It follows that in the case 2m = ,  we have 

/ 2µ λ π= .  For simplicity of the formulae, let  2 /λ π=   and  1µ = .  This is of no practical 

importance since multiplying  λ   by the same constant and all of the results generalize to 

arbitrary λ  very easily. Let 
2 /4

( )
x

S x e
π−= , then  ( ) ( )

1k

bid
CEG X

k
=  and ( ) ( ) 1

1

1
( 1)

kk j

ask j

k
CEG X

j j

+

=

 
= −  

 
∑ . 

For the proof see the Appendix. It follows that 

( ) ( ) 1
1

k

k bid
EG X CEG

k
µ= − = − and ( ) ( ) 1

1

1
( 1) 1

kk j

k ask j

k
EG X CEG

j j
µ +

=

 
− = − = − − 

 
∑ . 

In the case  2k = , the formulae reduce to: 

( ) ( )2 1

2
bid

CEG X =  and  ( ) ( )2 1
2

2
ask

CEG X = − ; and ( ) ( )2 2

1
1

2
EG X EG X= − = − . 

 
3.6 Exponential distribution 

If 1m =  the Weibull distribution collapses into the exponential distribution. Let  ( ) 1 tF t e λ−= −   and  

( ) tS t e λ−=  with the rate parameter  0λ >  and mean  
1

µ
λ

=   then ( ) ( )
1k

bidCEG X
kλ

=  and  

( ) ( )
1

1 1kk

ask j
CEG X

jλ =
= ∑ , whereas  ( )

1 1
k

k
EG X

kλ

− 
=  

 
 and  ( )

2

1 1k

k j
EG X

jλ =
− = ∑ . In the special case 

2k = ,  ( )2 1

2
bidCEG

λ
=   and  ( )2 3

2
askCEG

λ
=  , and ( ) ( )2 2

1

2
EG X EG X

λ
= − = . 

The results are summarized in Table 1. 

 
 

( )
( ) ( )

( ) ( )

( ) ( )

2

2

2 2

1
1

Uniform ( )
1 1

Normal ( , ) 2

2 1 2 1
Skew-Normal SN 0, , 2

2 21 1

!
Pareto ( , 1)

1 1 1

1
Weibull ( 2, 2 / ) ( 1)

k k

bid ask

k

jk
j

CEG CEG

k

k k

k

k

k k
c

k k

k
m

jk

θ θ
θ

σ σ
µ σ µ µ

π π

ω α ξ ω α ξ ω α
π α π α

α α
α

α α α

λ π +
=

+ +

= − +

   
= + − + +      + +   

=
− − ⋅ ⋅ ⋅ −


= = −∑ 



1

1

1 1 1
Exponential ( ) k

j

j

k j
λ

λ λ
=





∑

 

 
TABLE 1. The bid-price ( )k

bid
CEG   and the ask-price ( )k

ask
CEG  . 

 
From a practical point of view, the elicitation of the bid and ask prices needs the knowledge of the 
personalized orders k  capturing the decision maker aversion to risk and propension to gain. A 

way to achieve these values is to submit to the decision maker some simple tests, see Cardin et 
al. [8].  
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4. THE TRADING: SUFFICIENT AND NECESSARY CONDITIONS 
In the same path of Dow and Da Costa Werlang [17], Chateauneuf  and Ventura [10] and 
Dominiak et al. [18], we set up conditions for successful trading. An example will set a stage of 
our argument. 
  
Example Consider an asset with random return X . Three actors are in the market: (1) a buy-side 
investor who declares her bid-price 

bidπ  , i.e. the highest price she will pay for X ; (2) a sell-side 

investor declaring her ask-price 
askπ , i.e. the lowest price she will sell X short; (3) the market-

maker. Let the three actors assume the same distribution for X  . Successful trading depends on 
the market price p  exogenously given. If p  is greater than 

askπ  the sell-side investor feels the 

market reports a better-than-expected price, and is induced to go short the asset; vice versa, if p   

is lower than 
bidπ   the buy-side investor evaluates the asset to be priced lower-than-expected and 

tends to go long. 
 

Let  ( ) ( )buyerk

bid bidCEG Xπ =   and  ( ) ( )sellerk

ask askCEG Xπ = , then the investor 

1) buys the asset X   iff  
bidp π≤ ; 

2) sells the asset  X  iff  
askp π≥ ; 

3) but trade inertia occurs if  
bid askpπ π< < . 

 

4.1 Probability of trading 
A spontaneous question may arise: given a risky asset X how to evaluate the chances of 
trading? Generally speaking one would think that the bigger the bid ask price spread the greater 
the chance of trading, but that is not necessarily so. Indeed, the spread is expressed in absolute 
terms, so it could depend on currency. The smaller the currency unit, the greater the asset value 
and the greater the spread. Then the spread that does not take into account the distribution of the 
price itself. We suggest to use as a measure of successful trading just the probability of trading. 
One can easily check that the probability of no-trade given below does not depend on scaling 
parameters or translation parameters of the probability distributions involved.  
To achieve simple formulae we assume that the both traders assume the same distribution for 
X and  buyer sellerk k k= = . Clearly, if  buyerk  differs from  

sellerk  it is sufficient to substitute k  with the 

proper value. 
  
Definition 4.2 If the three actors on the market assume the same continuous distribution function 
F for X  . Then 
 

( ) ( ) ( )bid bidP buy X P p Fπ π= < =  

( ) ( ) 1 ( )ask askP sell X P p Fπ π= > = −  

( ) ( ) ( ) ( )bid ask ask bidP trade inertia P p F Fπ π π π= ≤ ≤ = −  

 
These probabilities could be computed in many cases using the formulas for 

bidCEG  and 
askCEG  

given in Section 3. Just to grasp a quantitative evaluation on the impact of the distribution 
asymmetry and k  on the probability of buying, selling, and no-trading we compute these 

quantities and collect them in  Table 3-5. 
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( )

2

2

( ) 2 3 4

Normal( , ) .2877 .1969 .1539

Skew-Normal SN 0, , .3199

Weibull(m=2, ) .3248 .2303 .1783

Uniform( ) .3333 .2500 .2000

Exponential ( ) .3935 .2834 .2212

Pareto ( 2, 1) .4375 .3056 .2344

bidP p k k k

c

π

µ σ

ω α

λ

θ

λ

α

< = = =

= =

 

 
TABLE 2. Probability of buying 

 

( )

2

2

( ) 2 3 4

Pareto ( 2, 1) .1406 .0976 .0747

Exponential ( ) .2231 .1599 .1245

Weibull (m=2, ) .2690 .1893 .1454

Normal ( , ) .2877 .1969 .1539

Skew-Normal SN 0, ,1 .3073

Uniform ( ) .3333 .2500 .2000

askP p k k k

c

π

α

λ

λ

µ σ

ω

θ

> = = =

= =

 

 
TABLE 3. Probability of selling 

 

( )2

2

( ) 2 3 4

Uniform ( ) .3333 .5000 .6000

Skew-Normal SN 0, ,1 .3728

Exponential ( ) .3834 .5567 .6543

Weibull (m=2, ) .4062 .5804 .6763

Pareto ( 2, 1 ) .4219 .5968 .6909

Normal ( , ) .4246 .6062 .6922

bid askP p k k k

c

π π

θ

ω

λ

λ

α

µ σ

≤ ≤ = = =

= =

 

 
TABLE 4. Probability of trade-inertia. 

 

The analysis of data in Tables 2-4 confirms what intuition suggests: 
 

1) The more the probability mass is on the left-tail of X  (such as the right-skewed exponential 
and Pareto distributions), the higher the probability that the market-price is lower than the 
buyer's bid-price, and consequently the higher the probability of buying. For a negatively-
skewed asset the result is reversed. 

2) For symmetrical distributions (such as the normal and uniform ones) the probability that the 
asset being sold or bought is the same. 

3) Among the distributions studied, the uniform distribution has the smallest probability of no-
trade and the normal distribution has the largest one. This might seem like a reasonable 
conjecture for all fixed k  and all distributions, but the following two examples show that it is 
false. 

 

Example 4.3 One up/down jump asset: ( ) 0P no trade− =  for all k . 

Consider the classical two states asset with one up/down jump in price. Let the asset be 
represented by the discrete variable X where ( 0) (1 )P X θ= = −  and  ( )P X a θ= =   with  0a >   and 

0 1θ< < .  Then since 
1 10 (min( ,..., )) (max( ,..., ))k kE X X E X X a< ≤ <  for all k ,  we have  

1( (min( ,..., ))) ( ) 1k bidP p E X X P p π θ< = < = −   for all k . If  θ   is close to 0, this probability is close to 1 

and investors tend to buy. Similarly, we have  ( )askP p π θ> = , so if θ   is close to 1, asset-holders 
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tend to sell. We have ( ) 0bid askP pπ π≤ ≤ =  for all  k  and all θ . Therefore the probability that this 

asset is traded is 1. 
 
In conclusion, the one jump asset has probability 1 of being traded for every level of risk-
aversion/gain-propension k  of the investors. 

 
That perfectly matches with intuition, when we deal with very skewed distributions. If the 
probability mass is highly concentrated around 0, the left-tail is short, but the right-tail may be 
very long if  0a >   is large. So the buyers tend to buy, since the bargaining seems not too risky, 

whereas the asset-holders tend not to sell hoping in a high stake. So, a bullish trend is expected. 
Vice versa, if the probability mass is highly concentrated around a , the left-tail may be very long 

and the right-one short. So, the risk-averse buyers tend to refuse the bargaining, whereas the 
asset-holders tend to get rid of the asset. So, the market is prone to undergo a bearish trend. 
 
Of course, this is a discrete distribution. However, it can be approximated to any degree by a 
continuous distribution

3
  which gets highly concentrated around 0 and a  and the results would be 

similar. The probability of trade-inertia might not be exactly 0, but it could be arbitrarily close to 0. 
There would be other distributions that give 0 probability of no trade for  2k =  , but no other 

distribution would have this property for all k  since for a distribution on  [ , ]a b  , we would have  

bid aπ →   and  
ask bπ →   so  ( )bid askP Xπ π< <   could not be 0 for all k . 

  
Example 4.4 A distribution concentrated around the mean:  P(no-trade)  close to 1 for all k . 

Consider the discrete case, where  ( 0) ( 2) .05P X P X= = = =  and ( 1) .90P X = = . Then  

1 2 1 2(max( , ) 0) .0025,  (max( , ) 1) .9000P X X P X X= = = =   and  
1 2(max( , ) 2) .0975P X X = = .  Thus  

1(max( ,..., )) .9000 2(.0975) 1.095kE X X = + =   and by symmetry  
1(min( ,..., )) .905kE X X = .  It follows  

1 1( (min( ,..., )) (max( ,..., ))) ( 1) .9k kP E X X p E X X P X< < = = =   which is greater than the value for the 

normal distribution as given in the Table 1. Clearly, one could make it arbitrarily close to one by 
making  ( 1)P X =  arbitrarily close to one, making such an asset illiquid. 

 
Again, that perfectly matches with intuition. The difference with the above Example 4.3 is that 
now the distribution is symmetric and as we will see in Theorem 4.6 in the following Section, the 
probability to buy and that to sell is equal. If the probability mass is concentrated about the mean, 
the both risk-premium and the gain-premium shrink to zero. So, 

bidπ  and  
askπ  are both close to 

the mean value, making the asset be similar to a safe asset. That induces investors to have no-
interest in bargaining. And, the probability of investor inertia becomes close to one. 
 
Once again, such a distribution could be approximated arbitrarily closely by a continuous 
distribution, if desired. The continuous distribution would have a large probability of being very 
close to the expected value 1 and have very small probability of being close to 0 or 2. 
 

4.2 Influence of the skewness 
The above discrete examples have highlighted how skewness may influence the probability of 
trading. We formally prove that the willingness of trading is driven by the monotonicity of the 
density function and the index k . 

Let X  and Y  be independent random variables with densities ( )f x   and  ( )g y , respectively. 

Denote the cumulative distribution function of X  by  ( )F x  . Then we have 

 

                                                 
3
The approximating distribution can be symmetrical if the probability mass lying on the extremes  0  and  a  

is equal, otherwise it is asymmetrical. 
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Lemma:  ( ) ( ( ))P X Y E F Y≤ = . 

 
Then we can state the main Theorem of the Section. A sufficient condition such  that the 
probability of buying is higher than the probability of selling or vice versa. Let assume that the 
price p  is i.i.d. distributed as X . 

 
 Theorem 4.5 Assume that X has density ( )f x with 0f ′ ≤ over the support of the distribution and  

1, , ,..., kX p X X   are i.i.d. random variables. Then, for all integer k  

( ) ( ) ( ) ( )
1

  
1

bid askP buy X P p P p P sell X
k

π π= < ≥ ≥ < =
+

. 

The reversed inequalities hold if 0f ′ ≥  . 

 
The above has a clear-cut financial interpretation. If the density is decreasing, then the 
distribution has a short left-tail. Since the risk of losses is small, the buyer is willing to pay more, 
and that increases the probability of buying. 
The uniform, exponential, and Pareto distributions all satisfy the assumptions of the Theorem, 
since 0f ′ ≤ .  Thus 

For  2k = :  
1

P( ) P( )
3

bid askp pπ π< ≥ ≥ > . 

For  3k = :   
1

P( ) P( )
4

bid askp pπ π< ≥ ≥ > . 

For  4k = :   
1

P( ) P( )
5

bid askp pπ π< ≥ ≥ > . 

All of these inequalities are verified by direct calculations collected in Tables 1-3. 
 
Theorem 4.6  Assume that  X  has a symmetric distribution about its mean µ .  Then for all 

integer k  

 

( ) ( )P buy P sell=  

 
In the special case of the uniform distribution the probability to sell, buy, or not trade has a clear-
cut formula. 
 
Theorem 4.7 Let for  ( ) /F x xθ θ=   for  0 x θ≤ ≤ , i.e., the uniform distribution on [0, ]θ  probabilities. 

Then 
 

( ) ( )
1

1
P buy P sell

k
= =

+
 and ( )

1

1

k
P no trade

k

−
− =

+
. 

 
It follows that as the parameter k  increases, the probability of trading decreases and that of no-

trading increases. That is quite intuitive, since as the buyer risk-aversion increases and the seller 
gain-propension increases the bid-ask spread increases and the probability of successful trading 
flaws down. 
 
Above formulas have another fascinating interpretation. Consider the probability that p  lies 

between the min/max of k  i.i.d. distributed draws of X (note we do no longer consider their 

expectation, so we do no longer deal with the bid and ask prices): 

1 1(min( ,..., ) max( ,..., ))k kP X X p X X< < . 

 
The following lemma provides its value. Note that is valid for every distribution. 
 
 Lemma 4.8 Let the market price p and  

1,..., kX X   is i.d.d. continuous copies of X . Then 
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1 1

1
(min( ,..., ) max( ,..., ))

1
k k

k
P X X p X X

k

−
< < =

+
. 

 
Above has an immediate interpretation. Suppose k  independent experts be asked to express 

their evaluation on X . They deal in a complete market, so their evaluations 
iX , 1,..,i k=   and p  

are i.i.d. variables. The probability that the market price p  be bound by the minimum and the 

maximum variables expressed by the experts is given by  
1

1

k

k

−

+
 . So, if  2k = , the probability is 

0.33  and it increases till 1  if the number k  of experts increases to infinity. 
 
 

5. CONCLUSION 
Bid and ask prices tailored to individual trader's attitudes are defined through the Extended Gini 
premium principle. The buyer risk-aversion and the seller gain-propension are captured by 
personalized parameters. On the path of Chateauneuf and Ventura [10], we state sufficient and 
necessary conditions for successful trading. We use the probability of trading for measuring the 
chances of successful trading. Closed-end formulae and tables for these measures for the most 
common distributions used in risk management (uniform, normal, skew-normal, Pareto, Weibull, 
exponential distribution) are given. A set of guidelines is set up: (1) if the asset probability mass is 
decreasing from the left-tail of X to the right-one, the probability of buying exceeds that of selling 
and vice versa (see Theorem 4.5 ); (2) if the asset distribution is symmetrical then the probability 
of buying is equal of that of selling (see Theorem 4.6); (3) among the distributions studied, the 
uniform distribution has the smallest probability of no-trade although it increases as k   increases 

and the normal distribution has the largest one. However, there exist distributions where the 
probability of the investor inertia is arbitrarily close to 0 or 1 for all k .  

 
A further interesting aspect to investigate is whether the above normative pricing method matches 
real market exchange data, but that question is left to future research. 

 
6. APPENDIX 
Sec. 3.4 (Pareto) 

Let  ( ) 1

1 0 1

1
(min( ,.., )) 1 1

1 1

k k

bid n

k
CEG E X X dt t dt

k k

α α

α α
∞ −= = + = + =∫ ∫

− −
 

 

Vice versa, the density of 
1max( ,..., )kX X   is 1 1

(1 )
k

k t t
α αα − − − −− .  Thus 

 

( ) ( )
( ) ( )
( )

1
1 1 1 1/

1
1 0

1 1 !
(max( ,.., )) (1 ) (1 )

1 11 1
1

k k k

ask k

k k k
CEG X E X X k t t t dt k u u du

k
k

α α α α
α

α

α α

∞
− − − − − − Γ Γ −

= = − = − = =
Γ + −    

− ⋅ ⋅ ⋅ −   
   

∫ ∫

. 
  
Sec. 3.5 (Weibull) 

Since  
2

/ 4

1
(min( ,..., ) ) kx

k
P X X x e π−> = , it follows that 

1

1
(min( ,..., ))

k
E X X

k
= . Then, since 

2 2/ 4 1 / 4 1
1 11

0 0

1
(max( ,..., )) 1 (1 ) ( 1) ( 1)

x k j jx jk k
j jk

k k
E X X e dx e dx

j j j

π π
∞ ∞

− + − +
= =

   
= − − = − = −∑ ∑   

   
∫ ∫  

 and it proves our thesis.  
 
Sec. 3.6 (Exponential) 

Let  ( )

0

1k kx

bidCEG e dx
k

λ

λ

∞
−= =∫   so  ( )

1
k

k
EG X

kλ

−
= . Then ( )

1
0

1 1
1 (1 )

k x k k
jaskCEG e dx

j

λ

λ

∞
−

== − − = ∑∫ . 
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Proof of Lemma in Sec. 4.2  

( ) ( ) ( ) ( ) ( ) E( ( ))
y

P X Y f x g y dxdy F y g y dy F Y
∞ ∞

−∞ −∞ −∞
≤ = = =∫ ∫ ∫ . 

 
Proof of Theorem 4.5 
It follows from the assumption that  0F ′′ ≤  so F  is a concave function. Thus from Jensen's 

inequality (for concave, not convex functions), we have 

( )( )( ) ( )( )( )1 1min ,.., min ,..,k kF E X X E F X X≥ , 

 where the left side is just 
1( E(max( ,..., ))kP p X X≥  and by the Lemma, the right side is 

1( E(min( ,..., ))kP p X X≤ .  Since
1, ,..., kp X X  are i.i.d.  continuous random variables, this last probability 

is just  1 / ( 1)k +  by symmetry. We thus have proved the inequality. 

To prove the second inequality we note that  ( ) 1 ( )S x F x= −   is a convex function. Thus from 

Jensen's inequality, we have 

( )( )( ) ( )( )( )1 1max ,.., max ,..,k kS E X X E S X X≤ , 

where the left side is just  
1P( (max( ,..., ))kp X X≥ and the right side is  ( )1E P( (max( ,..., ))kp X X≥ .  Since  

1, ,..., kp X X   are i.i.d. continuous random variables, this last probability is just  ( )1 1k + by symmetry. 

We thus have thus proved the second inequality. 
Vice versa, if  0f ′ ≥   F will be convex and S  will be concave and the reversed inequalities hold.   

 
Proof of Theorem 4.6   
For simplicity assume first that X is symmetric about 0. Then X  has the same distribution as X− . 
Thus  

1max( ,..., )kX X   has the same distribution as  
1 1max( ,..., ) min( ,..., )k kX X X X− − = − . Hence  

1 1E(max( ,..., ) E(min( ,.., ))k kX X X X= − .  Since  p  is symmetric,  ( ) ( )P p a P p a< − = >   for all  α  . In 

particular, 

( )( )( ) ( )( )( ) ( )( )( )1 1 1min ,.., max ,.., max ,..,k k kP p E X X P p E X X p E X X< = < − = > . 

If  symmetric about  µ , then  X µ−   is symmetric about 0, so 

 

1 1( E(min( ,..., )) ( E(max( ,..., ))k kP p X X P p X Xµ µ µ µ µ µ− < − − = − > − − . 

Thus 

( ) ( )1 1( E(min( ,..., )) ( E(max ,..., )).k kP p X X P p X Xµ µ µ µ− < − = − > −  

Adding µ , it follows that 

1 1( E(min( ,..., )) ( E(max( ,..., ))k kP p X X P p X X< = > . 

 
Proof of Lemma 4.8   
By continuity of the random variables, we may assume that exactly one random variable takes 
the maximum value and one random variable takes the minimum value. The complement of the 
event  

1 1(min( ,..., ) max( ,..., ))k kA P X X p X X= < <  is thus the union of the events 

1{ min( ,..., , )}kB p X X p= =   and  { }1max( ,..., , )kC p X X p= = . By symmetry, each random variable has 

an equal probability of being the maximum or minimum of 
1{ ,..., , }kX X p .  Thus  ( ) ( )

1

1
P B P C

k
= =

+
  

and  ( )
2 1

1
1 1

k
P A

k k

−
= − =

+ +
. 

 
Proof of Theorem 4.7   

Since  1 1(min( ,..., )) ,  (max( ,..., ))
1 1

k k

k
E X X E X X

k k

θ θ
= =

+ +
 , it follows 

( )
1

1
bid ask

k
P p

k
π π

−
< < =

+
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That is the probability given in the Lemma 4.8. Since the distribution is symmetric 

( ) ( )
1 1 1

1
2 1 1

bid ask

k
P p P p

k k
π π

− 
< = > = − = 

+ + 
. 

 
 

Acknowledgments 
The Authors are very grateful to Paola Modesti and Haim Shalit for stimulating and fruitful 
discussions. 
 

7.  REFERENCES 
[1] S. Yitzhaki. “Stochastic dominance, mean variance and Gini's mean difference”, American 

Econonic Review, 72, pp. 78-85, 1982. 
 
[2] C. Gini. “Variabilita'  e  mutabilita': contributo  allo  studio  delle  distribuzioni  e delle  relazioni  

statistiche”,  in  Studi  Economico-giuridici  della  Regia  Facolta' Giurisprudenza, anno III, parte II, 
Cuppini, Bologna, 1921. 

 
[3] D. Denneberg.  “Premium  Calculation: Why  Standard  Deviation  Should  Be  Replaced By  

Absolute  Deviation”,  Astin  Bulletin,  20( 2), pp. 181-190, 1990. 
 
[4] H. Shalit, S.Yitzhaki. “Mean-Gini, Portfolio Theory, and the Pricing of Risky Assets”, Journal of 

Finance, 39,  pp. 1449-1468, 1984. 
 
[5] H. Shalit, S. Yitzhaki. “Capital Market Equilibrium with Heterogeneous Investors”, Quantitative 

Finance, 9(6), pp. 757-766, 2009. 
 
[6] H. Shalit, S. Yitzhaki. “How does beta explain stochastic dominance efficiency?”, Review of 

Quantitative Finance and Accounting, 35, pp. 431-444, 2010. 
 
[7] H. Shalit. “Finding Better Securities while Holding Portfolios”, Journal of Portfolio Management,  

37(1), pp.31-44, 2010. 
 
[8] M. Cardin, B. Eisenberg, L. Tibiletti.  “Mean-Extended Gini portfolios personalized to investor's 

profile”, Journal of Modelling in Management, 8(1), 2013 forthcoming. 
 
[9] A. Chateauneuf, M. Cohen, I. Meilijson. “More pessimism than greediness: A characterization of 

monotone risk aversion in the rank dependent expected utility model”, Economic Theory, 25, pp. 
649-667, 2005. 

 
[10] A. Chateauneuf, C. Ventura. “The no-trade interval of Dow and Werlang: some clarifications”, 

Mathematical Social Sciences, 59(1), pp. 1-14, 2010. 
 
[11] S. Yitzhaki,  E. Schechtman. “The properties of the extended Gini measures of variability and 

inequality”, METRON - International Journal of Statistics, vol. LXIII (3), pp. 401-433, 2005. 
 
[12] P. Modesti, "Measures for firms value in random scenarios", Preferences and decisions: models 

and applications, Studies in Fuzziness and Soft Computing, 257, 2010, 305-319. 
 
[13] H.A. David, N.H. Nagaraja.  Order Statistics, Wiles Series in Probability and Statistics, John Wiles 

& Sons, Hoboken, New Jersey, 2003. 
 
[14] M. Eling, S. Farinelli, D. Rossello, L. Tibiletti. “Tail Risk in Hedge Funds: Classical Skewness 

Coefficients vs Azzalini's Skewness Parameter”, International Journal of Managerial Finance, 6(4), 
pp. 290-304, 2010. 

 
[15] A. Jamalizadeh, N. Balakrishnan. “On order statistics from bivariate skew-normal and skew-t 

distributions”, Journal of Statistical Planning and Inference, 138, pp.4187-4197, 2008. 
 
[16] P. Embrechts , H. Schmidli. “Modelling of extreme events in insurance and finance”, Mathematical 

Methods of Operations Research, 39(1), pp. 1-34, 1994. 



Marta Cardin, Bennett Eisenberg & Luisa Tibiletti 
 

International Journal of Business Research and Management  (IJBRM), Volume (3): Issue (6): 2012 306 

 
[17] J. Dow , S. Ribeiro da Costa Werlang. “Uncertainty aversion, risk aversion, and the optimal choice 

of portfolio”, Econometrica, 60(1), pp. 197-204, 1992. 
 
[18] A. Dominiak, J. Eichberger, J.P.Lefort. “Agreable trade with optimism and pessimism”, 

Mathematical Social Sciences, 64(2), pp. 119-126, 2012. 
 
[19] S. Heilpern. “Using Choquet integral in economics”, Statistical Papers, 43, pp. 53-73, 2001. 
 
[20] C. Kleiber, S. Kotz. “A characterization of income distributions in terms of generalized Gini 

coefficients”, Social Choice and Welfare, 19, pp. 789-794, 2002. 


