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Abstract 

 
Archimedean copulas are used to construct bivariate Weibull distributions.  Co-movement 
structures of variables are analyzed through the copulas, where the tail dependence between the 
variables is explored with more flexibility. Based on the distance between the copula distribution 
and its empirical version, a copula that may best fit data is selected. With extra computing costs, 
the adequacy of the copula chosen is then assessed. When multiple myeloma data are 
considered, it is found that relationship between survival time of a patient and the hemoglobin 
level is well described by the Clayton copula. The bivariate Weibull distribution constructed by the 
copula is used to estimate value at risk from which we investigate the anticipated longest life 
expectancy of a patient with the disease over the treatment period. 
 
Keywords: Archimedean Copula, Dependence, Weibull Distribution, Value at Risk. 

 
 
1. INTRODUCTION 

Copulas are a useful tool used to model a joint distribution function of variables of interest. In 
particular, copulas have gained their importance as simple functions to describe the dependence 
structure of random variables in the joint distribution. As a model for the dependence structure, 
copulas have several advantages over other dependence measures such as the correlation 
coefficient (Sklar [28], Genest and Rivest [12], Nelson [26]). For example, using copulas, 
modeling both linear and non-linear dependencies of variables is possible, and the degree of 
dependence in the tail of the underlying distribution can be described (Embrechts et al. [7]). Many 
authors have studied the use of copula in applications, including risk management (Freez and 
Valdez [9]) and survival analysis (Zheng and Klein [30], Rivest and Wells [27]). In this work, we 
construct bivariate Weibull distributions using Archimedean copulas that reflect on the 
asymmetric dependence structure. These copulas are the Gumbel, Clayton, Frank and 
Independence copulas, each having different characteristics of tail dependence. 
 
Copulas have varying amounts of tail dependence depending on the choice of copulas. 
Therefore, an important issue in using copulas is the choice of appropriate copulas. Poorly 
chosen copulas may lead to undesired results about the actual relationship between variables. 
The copula selection issue has been studied by many authors, including Melchiori [25], 
Durrelman et al. [6], Kumar and Shoukri [19], Frees and Valdez [9] and Genest and Rivest [12]. 
Similar to the procedures they have developed, we discuss the copula selection procedures 
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based on the distance of the copula distribution and its empirical version. With extra computing 
costs, we further examine the goodness of fit of the copula selected. The procedures are based 
on a process over the domain of the generator for Archimedean copulas. Under the null 
hypothesis of the no model misspecification, the distributions of the process from the distance 
measure can be easily approximated by the simulation technique. As a numerical measure for the 
assessment of the model adequacy, we consider the supremum of the process from which the 
empirical p -values are obtained.   

 
Multiple myeloma is a progressive and invariably fatal disease caused by the accumulation of 
abnormal plasma cells in the bone marrow. The prognosis of the disease is often unpredictable 
and overall survival is ranged from a few months to more than 10 years (Kyle and Rajkumar [20]). 
Traditionally, multiple myeloma has been staged by the method developed by Durie and Salmon 
[5], although a newer staging method has been developed recently (Greipp et al. [13]). In the 
staging method by Durie and Salmon [5], it has been known that the level of hemoglobin (denoted 
by HB hereafter) in the blood of a multiple myeloma patient is strongly associated with the tumor 
mass and thus is a strong indicator of the disease progress (Durie and Salmon [5], Kyle and 
Rajkumar [20]). The objective of this paper is to demonstrate the benefits of using copulas to 
model dependencies in multiple myeloma data with a particular focus on potential survival time of 
a patient over the treatment period. This was carried out at the Medical Centre at the University of 
West Virginia. To simplify our discussion, the complete data points of survival time, in months, of 
male patients with the disease (denote by ST hereafter), i.e., the time from diagnosis until death 
from multiple myeloma, and the corresponding level of HB are considered in this paper, where 
the sample size is 22. See Krall et al. [18] and Collect [2] for details about the data. The effect of 
HB on the survival times of the patients is explored using the bivariate Weibull distribution 
constructed by copulas, where a measure of linear dependence is not so informative, as will be 
seen in Figure 2 and described in Section 4.2. We incorporate the copulas into the calculation of 
value at risk for the survival time. The value at risk is a risk measurement technique often used in 
the area of financial risk management (Jorion [17]). We use this method as a tool to estimate the 
anticipated maximum life span, i.e. maximum extension possible for a life, with reference to the 
level of hemoglobin that influences the survival time. 
 
The layout of this paper is as follows. Section 2 presents Archimedean copula functions used in 
this work. Section 3 discusses the association parameter and the dependence measure of the 
copula functions. Section 4 constructs bivariate Weibull distributions using copula, checks the 
adequacy of the copula selected, and calculates value at risk associated with survival time. 
Concluding remarks are presented in Section 5. 
 

2. COPULA MODEL 
 
2.1  Copula Function 
Estimating a multivariate distribution with correlations is not an easy process. A copula is a useful 
tool that accommodates this problem. It joins a multivariate distribution function to univariate 
marginal distribution functions, so a copula function is a multivariate distribution function. 

Specifically, a copula function, denoted byC , is a multivariate distribution function with uniform 

marginal distribution functions, ,,...,, 21 pFFF  on the interval [0, 1], i.e., if for 

,,...,, 21 pxxx ),...,,( 21 pxxxF  is a multivariate probability distribution with marginals 

),(),...,(),( 2211 pp xFxFxF then ),...,,( 21 pxxxF can be written as  

                                        ),...,,( 21 pxxxF = ))(),...,(),(( 2211 pp xFxFxFC . 

For a bivariate case, the copula form is the easiest way to express and generate the joint 
distribution (Venter [29]). In this work, we primarily look at this bivariate copula. In the bivariate 

case, a copula is a function ]1,0[]1,0[: 2 →C  such that 0),0()0,( == uCuC  for all u  in ]1,0[ , 

vvCvC == ),1()1,(  for all v  in ]1,0[ and 0),(),(),(),(
11122122

≥+−− vuCvuCvuCvuC  
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for all 10
21

≤≤≤ uu  and 10
21

≤≤≤ vv . From this, when uxF =)( 11 and vxF =)( 22 , a 

copula function ))(),((
2211

xFxFC  is a proper bivariate distribution function. Conversely, any 

bivariate distribution function ),(
21

xxF with continuous marginal distribution functions 
1

F  and 

2
F  can be uniquely expressed by a copula function 

                                                  ))(),((),( 1

2

1

1 vFuFFvuC
−−= . 

The following theorem summarizes the above results (Sklar [28]). 

Theorem (Sklar’s Theorem) Let F  be a bivariate joint distribution function of continuous random 

variables X and Y with corresponding marginal distribution functions 1F  and 2F . There exists a 

copula C  (i.e., a bivariate distribution function on 
2]1,0[ with uniform marginal distribution 

functions) such that, for ∞<<−∞∞<<∞− 21 , xx , 

                             ))(),((),(),(
2211221121

xFxFCxXxXPxxF =≤≤= . 
 
                        (1) 

Note that Sklar’s theorem simply implies that ),(),( vVuUPvuC ≤≤=  for uniform random 

variables U and V  over ]1,0[ . We close this section by describing meaningful bounds for 

copula. 

Theorem  (Frechet-Hoeffding Bounds)  For every copula C and every ),( vu  in 
2]1,0[ , 

                                          ),min(),()0,1max( vuvuCvu ≤≤−+ . 

Note that by Sklar’s theorem ))(),((),( 221121 xFxFCxxF = , where =),( vuC  

))(),(( 1

2

1

1 vFuFF −−
 and )(),( 2211 xFvxFu == . Thus, 

                           ))(),(min(),()0,1)()(max( 2211212211 xFxFxxFxFxF ≤≤−+ . 

2.2     Archimedean Copula  

       

                     FIGURE1: Independence, Gumbel, Clayton, Frank copula density plots 
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The Archimedean copula is a convenient method to model a bivariate distribution due to its 
simple form and a variety of dependence structures. The use of Laplace transformations leads to 
the construction of Archimedean copulas. Specifically, let ϕ  be a continuous monotonically 

decreasing function from ]1,0[  to ),0[ ∞  such that 0)1( =ϕ  and 0)('' >xϕ .  Define the pseudo 

inverse of ϕ  as follows: =− )(]1[ xϕ )(1 x−ϕ  for )(0 xx ϕ≤≤  and zero for ∞≤≤ x)0(ϕ . Note 

that if ∞=)0(ϕ , then 
1]1[ −− = ϕϕ . Then, for real numbers, u and v , an Archimedean copula, 

C , of bivariate random variablesU  and V is given by 

                                                   ))()((),( ]1[
vuvuC ϕϕϕ += −

,                                                 (2) 

where ),0[]1,0[: ∞→ϕ , and this ϕ  is often called a generator of copula. 
 
Archimedean copulas involve a tail dependence parameter, also referred as the association 
parameter. This describes the amount of dependence in the upper tail or lower tail of a 
multivariate distribution and can be used to analyze the dependence among extreme values. The 

generator ϕ contains all of the information about the dependence structure of the multivariate 
distribution of random variables in terms of the parameter of association. The association 

parameter is denoted by θ  throughout this paper.  
 
Based on the level of the tail dependence structure, we consider four families of Archimedean 
copulas in this paper. They are the Gumbel copula (Gumbel [14], Hougaard [15]), the Clayton 
copula (Clayton [1]) which is also referred to as Cook and Johnson’s copula (Cook and Johnson 
[3]), the Frank copula (Frank [8]) and Independence (or Product) copula. Each family of the 

copulas is generated by the formula (2) through the generatorϕ  . Specifically, Gumbel’s copula 
is 

                                      }])log()log[(exp{);,( /1 θθθθ vuvuC −+−−=
, 

and the corresponding generator is 
θϕ )log()( tt −=  for 1≥θ . As a special case, the 

parameter 1=θ implies independence between the distributions. With ∞→θ , the Gumbel 
copula attains the Frechet-Hoeffding lower bound, so the distribution is characterized by extreme 
values. This implies higher dependence in the upper tail. Clayton’s copula is  

                                              
θθθθ /1)1();,( −−− −+= vuvuC . 

The Clayton copula generator is 
θ

ϕ
θ 1

)(
−

=
−t

t
 
for 0>θ . With ∞→θ , the Clayton copula 

attains the Frechet-Hoeffding upper bound, so higher dependence in the lower tail. As 0→θ , 

the Clayton copula implies independence between the distributions. The Frank copula is 

                                         ]
1

)1)(1(
1log[

1
);,(

−

−−
+−=

−

−−

θ

θθ

θ
θ

e

ee
vuC

vu

, 

and its generator is ]
1

1
log[)(

−

−
−=

−

−

θ

θ

ϕ
e

e
t

t

, 
0≠θ . With ∞→θ , the Frank copula attains the 

Frechet-Hoeffding upper bound, and with −∞→θ , it attains the Frechet-Hoeffding lower bound. 

When 0>θ ( 0<θ ), it implies positive (negative) dependence between the distributions. When 

0→θ , the copula implies independence between the distributions. Finally, the independence 
copula is 

                                                      
vuvuC ⋅=),( , 

with the  generator tt log)( −=ϕ . Note that there is no association parameter in the 
independence copula.  
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Tail dependence of copulas can be illustrated by their density function. The bivariate distribution 
function is defined in (1), and the corresponding density function is obtained by differentiation, 

                                            )()())(),((),( 2211221121 xfxfxFxFcxxf ⋅⋅=
 

where c  is the density of C , and 1f  and 2f  are the marginals. Written this way, it is also 
possible to define Archimedean copulas in the multivariate case. See McNeil et al. [24] for details. 
Figure 1 displays the copula densities. As depicted from this figure, each copula has varying 

degrees of dependence according to values ofθ . Note in this figure that the independence 
copula has unit everywhere. The estimation of parameters of the copulas is discussed in Section 
3.1. 
 

3. ASSOCIATION AND DEPENDENCE 
 
3.1    Measuring Association 

Two commonly used measures of association would be Spearman’s ρ  and Kendall’sτ . They 
are based on the rank of data, so they have the invariance property under monotonic 
transformations. For Archimedean copulas, Kendall’s τ  has the copula representation, and so it 
captures perfect dependence. On the contrary, there seems to be no simple expression for 
Spearman’s ρ . Kendall’s τ is given by (Nelson [26], Joe [16], Genest and Mackay [10, 11]) 

                                                   ∫ ∫ −=
1

0

1

0
1),(),(4 vudCvuCτ .                                                 (3) 

From the expression in (3), Kendall’s τ  is calculated by a copula that contains the association 

parameter. Conversely, the association parameter can be measured by Kendall’s τ  obtained 

from data. For bivariate Archimedean copulas, where the two random variables are absolutely 

continuous, Kendall’s τ  can be readily calculated via the following identity (Genest and MacKay 
[10, 11]) 

                                                           ∫ ′
+=

1

0 )(

)(
41 dt

t

t

ϕ

ϕ
τ  .                                                        (4) 

The copula generator contains the association parameter, and from (4) the generator can be 

expressed through Kendall’s τ . Therefore, the association parameter, θ , is measured by solving 
the identity in (4). For example, it can be shown that for the Clayton copula, 

                                                   
∫ +

=
′

+
1

0 2)(

)(
41

θ

θ

ϕ

ϕ
dt

t

t

, 

and this yields
2+

=
θ

θ
τ . Similar algebra leads to 

θ

θ
τ

1−
= for the Gumbel copula. Unlike these 

two copulas, the Frank copula doesn’t have a closed form of τ  that can be directly expressed 

byθ . It is necessary to use numerical methods to solve the following identity 

                                               
∫ −

−−=
θ

θθ
τ

0
)

1

1
1(

4
1 dt

e

t
t

. 
In this work, the random search method is utilized to estimate the Frank copula parameter, 
among other numerical methods.    

                                                 
The dependence structure of HB and ST is displayed in the scatter plot (Figure 2), where 

Kendall’s τ  is 0.2208. This and the procedures above result in θ = 1.2834, 0.5667 and 2.07 for 
the Gumbel, Clayton and Frank copulas, respectively. 
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                                               FIGURE 2: Scatter plot of HB vs ST 

3.2    Dependence 
Tail dependence deals with the degree of dependence in the tails of a bivariate distribution, so it 
describes the dependence structure of extreme events. For example, Figure 1 in Section 2.2 
displays that different copulas show different behaviors in their tails. This implies that tail 
dependence may vary depending on the choice of copulas.         

Let 1X  and 2X be random variables with continuous distribution functions )( 11 xF  and )( 22 xF .  
The upper- and lower-tail dependence coefficients are defined as the limit of conditional 
probability, respectively, 

                                           ))(|)((lim 1

1

1

2
1

uFXuFYP
u

U

−−

−→
≥≥=λ , 

                                           ))(|)((lim 1

1

1

2
0

uFXuFYP
u

L

−−

+→
≤≤=λ , 

for u  in (0,1). If the value of the upper (lower) tail dependence coefficient is positive, then 1X and 

2X have structure dependent at the upper (lower) tail. In contrast, zero tail dependence implies 
asymptotic independence. The tail dependences can be also expressed through copula, showing 
the fact that the tail dependence is a copula property, 

                                     
u

uuCu

u
U

−

+−
=

−→ 1

),(21
lim

1
λ ,     

u

uuC

u
L

),(
lim

0+→
=λ

.
 

From this, the Gumbel, Clayton, Frank and independence copulas have ]22,0[ θ− , ]0,2[ /1 θ−
, 

]0,0[  and ]0,0[ , respectively, where [a, b] = [lower, upper] tail dependence coefficients. By 

plugging in the values of θ  found in Section 3.1, theoretical [lower, upper] tail dependence 
coefficients for the Gumbel, Clayton, Frank and independence copulas are [0,0.2838], [0.2943,0], 
[0,0] and [0,0], respectively. This indicates that the Gumbel copula has the upper tail dependence 
but does not have the lower tail dependence, the Clayton copula has the lower tail dependence 
but does not have the upper tail dependence, while the Frank and the independence copulas 
have neither. Numerical computations of the tail dependence using the limit formulas above are 
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reported in Table 1. It shows the same phenomena as in the theoretical analysis. For example, as 

u  tends to 1 through values less than 1,  Uλ
 for Gumbel tends to 0.2838. 

 
 

+→ 0u
 

Gumbel 

Lλ  

Clayton 

Lλ  

Frank 

Lλ  

Indep. 

Lλ . 

 

−→1u
 

Gumbel 

Uλ  

Clayton 

Uλ  

Frank 

Uλ  

Indep. 

Uλ  

.10 

.05 

.005 

.001 

.00001 

0.1922 

0.1170 

0.0225 

0.0071 

0.0003 

0.3806 

0.3486 

0.3076 

0.2995 

0.2947 

0.1973 

0.1075 

0.0117 

0.0024 

0.0000 

0.1000 

0.0500 

0.0050 

0.0010 

0.0000 

.90 

.95 

.995 

.999 

.99999 

0.3459 

0.3147 

0.2869 

0.2844 

0.2838 

0.1482 

0.0762 

0.0078 

0.0016 

0.0000 

0.1973 

0.1075 

0.0117 

0.0024 

0.0000 

0.1000 

0.0500 

0.0050 

0.0010 

0.0000 

 
                 TABLE 1: Tail dependence coefficient for the copulas associated with data 
 

4. THE PROCEDURES 
 
4.1     Bivariate Weibull Distribution 
In the parametric analysis of survival analysis, one of the commonly used models is the two-
parameter Weibull distribution. We construct the bivariate Weibull distributions based on the four 
copula functions stated in Section 2.2. Specifically, given two marginal Weibull distributions  

                                                    ,2,1,1)(
)/( =−= −

iexF
i

iix

ii

αβ
 

it is possible to construct a bivariate distribution ),( 21 xxF such 

that ),( 21 xxF = ))(),(( 2211 xFxFC . For example, choosing the Gumbel copula gives a bivariate 

Weibull distribution given by 

                               ),( 21 xxF = }]))(log())(log[(exp{ /1

2211

θθθ
xFxF −+−−

,  
the Clayton copula yields a bivariate Weibull distribution given by 

                                           
),( 21 xxF =

θθθ /1

2211 )1)()(( −−− −+ xFxF
, 

the Frank copula leads to a bivariate Weibull distribution given by 

                                      
),( 21 xxF = ]

1

)1)(1(
1log[

1
)()( 2211

−

−−
+−

−

−−

θ

θθ

θ e

ee
xFxF

, 

and the independence copula produces a bivariate Weibull distribution given by  

                                                    ),( 21 xxF = )()( 2211 xFxF . 

For the multiple myeloma data, where 1X  and 2X respectively represent HB and ST, it is found 

that Weibull distributions can be fit to them with 1α  = 11.307, 1β =3.859, and 2α =20.175, 

2β =0.839. Associated with these, we use the four bivariate distribution functions above as the 

underlying distribution of returns to compute value at risk stated in Section 4.4. 
 
4.2   Simulation 
From the scatter plot of ST and HB in Figure 2 in Section 3.1, Pearson’s correlation coefficient is 
not sufficiently informative on the dependence structure. It is problematic to identify the 
dependence (co-movement) of the variables at the tails. Computation of the linear correlation 
coefficient of ST and HB yields 0.1852.  The corresponding −p value for testing the hypothesis of 

no correlation against the alternative that there is a non-zero correlation is 0.4094. This value 



Eun-Joo Lee, Chang-Hyun Kim & Seung-Hwan Lee 

International Journal of Biometrics and Bioinformatics (IJBB), Volume (5) : Issue (3) : 2011 156 

does not show pronounced evidence that the two variables are linearly dependent. So, the 
dependence structure of the variables is modeled via copula. 
In Section 4.1, we created four bivariate Weibull distributions based on Gumbel, Clayton, Frank 
and the independence copulas. The first three copulas are respectively parameterized by 

θ =1.2834, 0.5667 and 2.07 as discovered in Section 3.1. Figure 3 shows 250 simulated values 
from the four bivariate Weibull distributions that use the Gumbel, Clayton, Frank and 
independence copulas. In this figure, it seems that the positive dependence is somewhat 
observed. A high level of hemoglobin (HB) tends to influence the survival time (ST) of patients in 
the Gumbel copula, indicating high tail dependence. Positive dependence between the variables 
is also observed in the Frank copula. However, it seems that there is no dominant copula among 
the Archimedean copulas considered here. The independence copula provides no distinct 
patterns due to the assumption of independence among the variables. 

           

 

       FIGURE 3: Indpendence, Gumbel, Clayton and Frank copulas, 1000 simulated samples 
 
4.3    Copula Adequacy 
A copula is the dependence structure of the data distribution. Since it has varying amounts of tail 
dependence depending on the choice of copulas, properly chosen copulas should be used in 
application. The adequacy of the copula selected also needs to be checked. These issues are 
discussed in this section. The procedures are based on the distance of the copula distribution and 
its empirical version. 

Define a pseudo random variable
i

T , for nji ,...,1, = , 

               =
i

T {the number of )1/(},:,...,1),,( ,2,2,1,1,2,1 −<<= nXXXXnjXX ijijji . 

Further, define )()( tTPtK
i

≤=  for t  in [0,1]. Genest and Rivest [12] showed that the 

distribution of ),( vuC is 
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)(

)(
)(

t

t
ttK

ϕ

ϕ

′
−= . 

By plugging in, the following )(tK ’s for the copulas are obtained: the Gumbel copula has 

θ

tt
ttK

log
)( −= , the Clayton copula takes 

θ

θ tt
ttK

−
−=

+1

)( , the Frank copula gives 

1

1
log)(

−

−−
−=

−

−

θ

θθ

θ e

ete
ttK

tt

, and the independence copula yields ttttK log)( −= . Now, 

define an empirical distribution of )(tK , 

                                                            ∑
=

∧

≤=
n

i

i tTI
n

tK
1

)(
1

)( , 

where I  is the indicator function. Then, we select the copula that best fits the data for which the 

distance of )(tK and its estimate )(tK
∧

is minimized. Specifically, as usual in the literature, the 

best copula is selected as the one which minimizes the Kolmogorov-Smirnov type distance 
defined as  

                                                   )()}()({),( 2
1

0
tKdtKtKKKD

∧∧∧

∫ −= .                                      (5) 

For the Gumbel, Clayton, Frank and independence copulas associated with data, computation of 

),(
∧

KKD yields 0.0063, 0.0047, 0.0052 and 0.0162, respectively. This implies that the Clayton 

copula may be the best model for the data set considered. It appears that the independence 
copula is unlikely to be appropriate in this study.  
We now check the validity of the copula chosen. The procedures are based on a process, derived 
from the distance measure in (5), over the domain of the copula generator. Define the process in 
t ,  

                                                  ∫
∧∧

−=
t

tKdtKtKtD
0

2 )()}()({)(  

for 10 ≤< t . Similar to Lin et al. [23], Lee and Yang [22] and Lee et al. [21], with the parameter 
of association, we generate data from the copula through simulation. From the simulated data, we 

obtain an estimate of the parameter, 

∧

θ . Denote the resulting distribution of the copula by )(* tK  
. The process associated with this and the parameter estimate is then given by 

                                                 )()}()({),( 2

0

** tKdtKtKtD
t ∧∧∧

∫ −=θ  

for 10 ≤< t , and this simulated process is an approximation to the observed process )(tD .  
A large number of samples can be generated repeatedly from this simulated process. Since the 

null distribution of the copula is approximated by ),(*
∧

θtD , there will be no distinguished 

behavior of )(tD  comparing to a large number of realizations produced from ),(*
∧

θtD , if the 
copula fits the data. Under the null hypothesis that the copula model is valid, the process 

),(*
∧

θtD  will randomly fluctuate above, near zero. So, as a numerical measure for the 

assessment of the model adequacy, we consider the supremum of the process  )(tD  over (0,1], 

)(sup
10

tDS
t≤<

= . An unusually large value of S would indicate that the copula is not valid. Let 

),(sup *

10

*
∧

≤<

= θtDS
t

. Then, the distribution of S is approximated by the conditional distribution of 
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*S given the data. This implies that the p -value )( sSP ≥  can be approximated by )( * sSP ≥ , 

and )( * sSP ≥  is estimated through the simulation technique. For the data considered here, 

using these procedures associated with the Clayton copula, the estimated p -value is 0.4945, 

which means the Clayton copula is appropriate. This estimated p -value is based on 1000 
realizations of the simulated process as suggested by Lin et al. [23].  
Using the same procedures, we also found that the results for Gumbel and Frank copulas are not 
significant (not shown). Therefore there is not sufficient evidence to reject the Gumbel, Clayton 
and Frank copulas.  Thus all three classes of models may be applicable, although comparisons of 
the results from the individual models suggest that the Clayton copula may fit the data better. 
More data may be required to discriminate adequately between the three copulas.  
 
4.4    Life Expectancy Estimate 
 

Copula VaR (90%) ES (90%) VaR (95%) ES(95%) 

Gumbel 54.6223 84.9359 74.8936 106.4190     

Frank 54.5661    84.6025     74.7020 105.8340      

Clayton 54.4268 84.3032     74.2875 105.5011      

Independence 54.1984   83.6832     74.0877 104.4382      

 
                                  TABLE 2: Time estimates (in months) of VaR and ES 
 
In this section, we employ the copulas to calculate value at risk. The value at risk (VaR) is a risk 
measurement technique often used in the area of Financial Risk Management (Jorion [17]). 

Consider a linear combination of 1X  and 2X ,  2211 XwXwZ += ,  where 1X  and 

2X represent the same type of data, and 1w  and 2w are the weights taken over the real number 

( R ), for each variable, with distribution function 
ZF . Let z  be a realization of Z , and R be the 

set of real numbers. The Value at Risk of Z at probability level α is then defined as 

                                          VaRα ( Z ) = )(
1

α
−

ZF = inf{ α≥∈ )(| zFRz }. 

Value at Risk is in fact an alternative notation for the quantile function of 
ZF evaluated atα . In 

the area of Financial Risk Management, VaR is commonly used to estimate the largest potential 
loss that might be expected from holding a portfolio over a given period of time at a specified 
confidence level (Crouhy et al. [4]). For example, if a portfolio has a VaR of $1million at the 95 
percent confidence level, then VaR is the cutoff loss such that the probability of losing at least 
$1million is less than 5 percent over a given time period. So VaR is a measure of risk that 
summarizes the distribution of returns into a single number. Similarly, in this work, we use this 
VaR as a tool to examine the anticipated life expectancy of a patient with multiple myeloma from 
diagnosis until death. As stated in Collet [2], multiple myeloma is a disease characterized by the 
accumulation of abnormal plasma cell in the bone marrow. Its proliferation within the bone causes 
pain and the destruction of bone tissue. The condition could be fatal unless treated.  

To obtain the distribution of
1−

ZF under the setting above, we aggregate simulated returns of 1X  

and 2X associated with the weights, 1w  and 2w . In this work, where 1X and 2X respectively 

represent ST and HB, letting 1w =1 and 2w =0, based on the bivariate Weibull distribution, we get 

VaR for the survival time, and its procedures are based on a large number of simulated samples 
generated from copula. For our case, we simulated 5,000,000 samples from each copula to 
calculate VaR. Since our concern is with longest survival time, VaR is evaluated at the upper tail 
of the returns distribution of simulated values. Table 2 presents the estimated values of VaR at 90 
and 95 percent confidence levels, i.e., 90% (longest) survival time and 95% (longest) survival 
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time, in months, from diagnosis until death from multiple myeloma. Expected shortfall (ES) is also 
used to examine the anticipated longest survival time. ES is the expectation in excess of VaR, 
indicating what we expect if an event occurs (Crouhy et al. [4]). ES averages data over all levels 
greater than or equal to VaR, and so it tells us the average size of the survival time in excess of 
VaR. In practice, ES is simply obtained by calculating the sample mean of the simulated values 
above the corresponding VaR. The estimates of ES are displayed in Table 2. For example, in the 
case of the Clayton copula, which is chosen as the most appropriate copula for data, VaR (95%) 
and ES (95%) show that the survival times of a patient under treatment could extend to 6.1 and 
8.8 years, respectively. 
 

5.    CONCLUDING REMARKS 
Using Archimedean copulas, bivariate Weibull distributions were constructed. Selecting a copula 
that may best fit data is important in applications. In an application for multiple myeloma data, it 
was shown that the Clayton copula best fits the data among the copulas considered. Four 
different copulas with the different tail dependencies were used to determine this outcome. With 
extra computing costs, the goodness-of-fit testing procedures of the copula chosen were 
evaluated. The tail dependence was identified and explained graphically. Based on the bivariate 
Weibull distribution, we calculated value at risk, where attention is confined to the upper tail of the 
distribution, to examine the anticipated longest life expectancy of a patient.  
 

6. REFERENCES 
[1]    D.G. Clayton, “A model for association in bivariate life tables and its application in 

epidemiological studies of familial tendency in chronic disease incidence”. Biometrika, 
65:141-151, 1978 

 
[2]         D. Collect, “Modelling Survival Data in Medical Research”. Chapman, 1999 
 
[3]    R.D. Cook and M.E. Johnson, “A family of distributions for modeling non-elliptically 

symmetric multivariate data”. Journal of the Royal Statistical Society, Series B, 43, 210-
218, 1981 

 
[4]        M. Crouhy, D. Galai, and R. Mark, “Risk Management”. McGraw-Hill, 2001 

[5]       B.G. Durie and S.E. Salmon, “A clinical staging system for multiple myeloma. Correlation 
of measured myeloma cell mass with presenting clinical features, response to treatment, 
and survival”. Cancer, 36(3), 842-854, 1975 

 
[6]    V. Durrleman, A. Nikeghbail and T. Roncalli, “Which copula is the right one?”. Credit 

Lyonnais, Available at SSRN: http://ssm.com/abstract=1032545, 2000 
 
[7]      P. Embrechts, A. McNeil and D. Straumann, “Correlation: Pitfall and Alternative”. Risk, 12, 

69-71, 1999 
 

[8]    M.J. Frank, “On the simultaneous associativity of ),( yxF  and ),( yxFyx −+ ”. 
Aequationes Mathematicae, 19, 194-226, 1979 

 
[9]     M.J. Frees and E. Valdez, “Understanding relationships using copulas”. North American 

Actuarial Journal, 2, 1-25, 1998 
 
[10]    C. Genest and R.J. MacKay, “Copules Archimediennes et Failles de Lois 

Bidimensionnelles Don’t les Marges Sont Donnees”, The Canadian Journal of Statistics, 
14, 145-159, 1986a 

 
[11]    C. Genest and R.J. MacKay, “The joy of copulas: Bivariate distributions with uniform 

marginals”. American Statistician, 40, 280-283, 1986b 



Eun-Joo Lee, Chang-Hyun Kim & Seung-Hwan Lee 

International Journal of Biometrics and Bioinformatics (IJBB), Volume (5) : Issue (3) : 2011 160 

 
[12]   C. Genest, and L. Rivest, “Statistical inference procedures for bivariate Archimedean 

copulas”. Journal of American Statistical Association, 88, 1034-1043, 1993 
 

[13]  P.R. Greipp, J. San Miguel, B.G. Durie, J.J. Crowley, B. Barlogie, J. Bladé, M. 
Boccadoro, J.A. Child, H. Avet-Loiseau, R.A. Kyle, J.J. Lahuerta, H. Ludwig, G. 
Morgan, R. Powles, K. Shimizu, C. Shustik, P. Sonneveld, P. Tosi, I. Turesson, and J. 
Westin, “International staging system for multiple myeloma”. Journal of Clinical Oncology, 
23, 3412-3420, 2005 

 
[14]   E.J. Gumbel, “Bivariate exponential distributions”. Journal of American Statistical 

Association, 55, 698-707, 1960 
 
[15]    P. Hougaard, “A class of multivariate failure time distributions”. Biometrika, 73, 671-678, 

1986 
 
[16]     H. Joe, “Multivariate Models and Dependence Concepts”. Chapman & Hall, London, 1997 
 
[17]     P. Jorion, “Value at Risk: The New Benchmark for Managing Financial Risk”.  McGraw-Hill 

Publication, 2007 
 
[18]   J.M. Krall, V.A. Uthoff and J.B. Harley, “A step-up procedure for selecting variables 

associated with survival”. Biometrics, 31, 49-51, 1975 
 
[19]    P. Kumar and M.M. Shoukri, “Evaluating Aortic Stenosis using the Archimedean copula 

methodology”. Journal of Data Science, 6, 173-187, 2008 
 
[20]       R.A. Kyle and S.V. Rajkumar, Multiple myeloma. Blood, 111(6), 2962-2972, 2008 
 
[21]    S. Lee, E.-J. Lee and B.O. Omolo, “Using integrated weighted survival difference for the 

two-sample censored data problem”. Computational Statistics and Data Analysis, 52, 
4410-4416, 2008 

 
[22]   S. Lee and S. Yang, “Checking the censored two-sample accelerated life model using 

integrated cumulative hazard difference”. Lifetime Data Analysis, 13, 371-380, 2007 
 
[23]   D.Y. Lin, L.J. Wei and Z. Ying, “Checking the cox model with cumulative sums of 

martingale-based residuals”. Biometrika, 80, 557-72, 1993 
 
[24]   A. McNeil, R. Frey and P. Embrechts, “Quantitative Risk Management: Concepts, 

Techniques and Tools”. Princeton University Press, 2005 
 
[25]     M.R. Melchiori, “Which Archimedean copula is the right one?”. Yield Curve, 37, 1-20, 2003 
 
[26]     R.B. Nelsen, “An introduction to copulas”. Springer, 1999 
 
[27]     L. Rivest and M. Wells, “A Martingale Approach to the Copula-Graphic Estimator for the 

Survival Function under Dependent Censoring”. Journal of Multivariate Analysis, 79, 138-
155, 2001 

 
[28]    A. Sklar, “Functions de repartition a n dimensions et leurs merges”. Publication of the 

Institute of Statistics, University of Paris, 8, 229-231, 1959 
 
[29]      G. Venter, “Tails of copulas”. Proceedings of the Astin Colloquium, 2001. 
 



Eun-Joo Lee, Chang-Hyun Kim & Seung-Hwan Lee 

International Journal of Biometrics and Bioinformatics (IJBB), Volume (5) : Issue (3) : 2011 161 

[30]    M. Zheng and J. Klein, “Estimates of marginal survival for dependent competing risks 
based on an assumed copula”. Biometrika, 82, 127-138, 1995 

 


