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Abstract 

 

Unlocking the complexity of a living organism’s biological processes, functions 
and genetic network is vital in learning how to improve the health of humankind. 
Genetic analysis, especially biclustering, is a significant step in this process. 
Though many biclustering methods exist, only few provide a query based 
approach for biologists to search the biclusters which contain a certain gene of 
interest.  This proposed query based biclustering algorithm SIMBIC+ first 
identifies a functionally rich query gene. After identifying the query gene, sets of 
genes including query gene that show coherent expression patterns across 
subsets of experimental conditions is identified. It performs simultaneous 
clustering on both row and column dimension to extract biclusters using Top 
down approach.  Since it uses novel ‘ratio’ based similarity measure, biclusters 
with more coherence and with more biological meaning are identified.  SIMBIC+ 
uses score based approach with an aim of maximizing the similarity of the 
bicluster. Contribution entropy based condition selection and multiple row / 
column deletion methods are used to reduce the complexity of the algorithm to 
identify biclusters with maximum similarity value. Experiments are conducted on 
Yeast Saccharomyces dataset and the biclusters obtained are compared with 
biclusters of popular MSB (Maximum Similarity Bicluster) algorithm. The 
biological significance of the biclusters obtained by the proposed algorithm and 
MSB are compared and the comparison proves that SIMBIC+ identifies biclusters 
with more significant GO (Gene Ontology).  
 
Keywords: Data Mining, Bioinformatics, Biclustering, Gene Expression Data, Gene Selection, Top-Down 
Approach, Gene Ontology. 

 

1. INTRODUCTION 

Gene expression is conversion of information encoded in a gene. Gene expression data is a 
valuable resource for researchers who are focusing on clustering of genes to draw meaningful 



J.Bagyamani,   K. Thangavel & R. Rathipriya  

International Journal of Biometrics and Bioinformatics (IJBB), Volume (4): Issue (6) 202 

inferences. Expressions of genes under different conditions serve as valuable clues to 
understand the cell differentiation, pathological and genetic behavior. For most functionally 
related genes, tight correlation occurs under specific experimental conditions. Clustering deals 
with finding patterns in a collection of unlabeled data. Traditional clustering algorithms consider all 
of the dimensions of an input dataset in an attempt to learn as much as possible about each 
object described. According to Kerr et. al [12],  clustering the microarray matrix can be achieved 
in two ways: (i) genes can form a group which show similar expression across conditions, (ii) 
samples can form a group which show similarity across all genes. This gives rise to global 
clustering or traditional clustering where a gene or sample is grouped across all dimensions. 
Biclustering [15, 21], a relatively new unsupervised learning technique, cluster the objects under 
subset of attributes.  It allows the assignment of individual objects to multiple clusters. Co-
expressed genes, i.e., genes with similar expression patterns, can be clustered together and 
manifest similar cellular functions. Hence biclustering aims to find sub-matrices with coexpressed 
expression values.  
 
1.1 Query driven Biclustering  
In this Query driven Biclustering technique, usually a query gene is given as input, and a single 
bicluster which consists of a set of genes and a subset of conditions / samples that are similar to 
the query gene is extracted. The resultant bicluster that include the query gene answer the 
following questions which are not answered by most existing biclustering methods in which 
biologists are interested in [7]. 

(i) “Which genes involved in a specific protein complex is co expressed?”  
(ii) “Given a set of known disease genes, how to select new candidate genes that may be   

linked to the same disease?” 
Given a specific gene or set of genes (seed genes) known or expected to be related to some 
common biological pathway or function: 

(i) “Which genes are (functionally) related to the seed genes and which features (conditions) 
are relevant for this biological function?” 

  
1.2 Biological Significance 
An Open Reading Frame (ORF) is a DNA sequence that contains a start codon and a stop 
codon in the same reading frame. ORF is supposed to be a gene which encodes a protein, but in 
some cases encoded protein for ORFs are not known. The yeast Saccharomyces cerevisiae [13] 
is an excellent organism for this type of experiment because its genome has been sequenced 
and all of the ORFs have been determined. Each study determines the expression level of every 
ORF at a series of time points. The resulting dataset must be analyzed to determine the roles of 
specific genes in the process of interest. Genes coding for elements of a protein complex are 
likely to have similar expression patterns. Hence, grouping ORFs with similar expression levels 
can reveal the function of previously uncharacterized genes.  
 
1.3 Coherent Bicluster 
Genes involved in common processes are often co-expressed. In this paper, constant bicluster 
with reference to the query gene and coherent bicluster with reference to the query gene are 
extracted. The biological significance of both the biclusters with reference to the same query gene 
is identified. Comparison of the biological significance shows that coherent bicluster has more 
biological significance than the constant bicluster.  Hence the focus in identifying coherent (i.e., 
patterns that rise and fall concordantly) bicluster is that co-expression may reveal much about the 
genes' regulatory systems. Coherent bicluster [1] has more biological significance than constant 
bicluster. 
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1 2 5 0 

2 3 6 1 

4 5 8 3 

5 6 9 4 

Additive Coherent Bicluster 

 
TABLE 1: Additive Coherent Bicluster and Multiplicative coherent Bicluster 

 

This paper is organized as follows: Section 2 details the preliminary of gene expression data 
along with literature survey. Section 3 explains the proposed work and the evaluation measures. 
Section 4 provides the experimental results of Yeast Saccharomyces Cervisiae expression data. 
Biological validation of the genes within the bicluster is provided in terms of gene ontology in 
Section 5. Section 6 concludes the article. 
 

2. Background 
2.1 Microarray Gene Expression Data 
Genes are how living organisms inherit features from their ancestors. The information within a 
particular gene is not always exactly the same between one organism and another, so different 
copies of a gene do not always give exactly the same instructions. Gene expression levels can be 
determined for samples taken (i) at multiple time instants of a biological process (different phases 
of cell division) or (ii) under various conditions (e.g., tumor samples with different 
histopathological diagnosis). A gene expression database can be regarded as consisting of three 
parts – the gene expression data matrix, gene annotation and sample / condition annotation. 

 
2.2 Problem statement 
A gene expression matrix A = [ aij ] of size m x n where each element represents the expression 
level of gene ‘i’ under condition ‘j’ is considered. Let I be the set of genes and J the set of 
conditions of A.  Biclustering identification is to find a submatrix AI’J’ = A ( I’, J’) with sets of rows 

I’  I and sets of columns J’   J . . In general, the problem can be defined as one of finding large 

sets of rows and columns such that the rows show unusual similarities along the dimensions 
characterized by columns and vice-versa. The bicluster cardinality or volume of bicluster is simply 
the product of the number of genes and number of conditions in the bicluster. 

 
2.3 Nature of biclustering Algorithms 
Biclustering, which has been applied intensively in molecular biology research recently, provides 
a framework for finding hidden substructures in large high dimensional matrices Tanay et al. [19, 
20] defined a bicluster as a subset of genes that jointly respond upon a subset of conditions. 
Biclustering algorithms may have two different objectives: to identify one bicluster or to identify a 
given number of biclusters. This proposed method identifies one bicluster at a time.  
 
Many biclustering methods [3] such as iterative row column [6,8] divide and conquer [9], 
exhaustive bicluster enumeration, distribution parameter identification exist in literature. Greedy 
iterative search methods are based on the idea of creating biclusters by adding or removing 
rows/columns from them, that optimizes the given criteria. They may make wrong decisions and 
loose good biclusters, but they have the potential to be very fast.  
 
Cheng and Church [5] used a greedy procedure starting from the entire data matrix and 
successively removing columns or rows contributing most to the mean squared residue score. 
They used both single node deletion and multiple node deletion methods in order to arrive one 
bicluster at a time and mask the previously discovered biclusters. Iterative Signature Algorithm 
(ISA) by Ihmels et al [11] has been found to be very effective in identifying (Transcription Module) 
TMs in yeast expression data. However, the major problem with the algorithm is that it starts with 
a totally random input gene seed and hence can result in non-meaningful TMs. Thus to gain 
confidence in the quality of TMs they run their algorithm for a large number of seeds and report a 

  1 2 0.5 1.5 

2 4 1 3 

4 8 2 6 

3 6 1.5 4.5 

Multiplicative coherent Bicluster 
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TM only if it is obtained.  Dhollander et al. [7] introduced a model-based query-driven module 
discovery tool QDB, but it is aimed at performing informed biclustering instead of pattern 
matching, and it does not take into account the complex correlation patterns such as inverse 
patterns. Owen et al. [16] proposed a score-based search algorithm called Gene Recommender 
(GR) to find genes that are co expressed with a given set of genes using data from large 
microarray datasets. GR first selects a subset of experiments in which the query genes are most 
strongly co-regulated. Hence multiple query genes are required. Hu et al. [10] developed model-
based gene expression query algorithm BEST (Bayesian Expression Search Tool) built under the 
Bayesian model selection framework. It is capable of detecting co-expression profiles under a 
subset of samples/experimental conditions. In MSB [14] the maximum similarity bicluster for 
query gene or reference gene i* is computed, by trying the algorithm for all the conditions j* and 
then identifying bicluster with maximum similarity. The advantage of MSB is that it is unnecessary 
to mask previously discovered biclusters. SIMBIC [2] algorithm is an improvement of MSB in 
terms of computational efficiency but the biclusters obtained by both the methods are same. 
Instead of single row / column deletion, multiple rows / columns are deleted. Also for a specific 
reference gene i*, the algorithm need not be executed for all the reference condition j* but j* can 
be restricted to n/2 conditions that has high contribution entropy. This proposed SIMBIC+ 
algorithm is an improved version of SIMBIC in the sense that it uses novel ‘ratio’ based similarity 
measure, applied on conditions with high contribution entropy.  Also multiple rows or multiple 
columns are deleted in each iteration until the gene expression matrix reduces to a single 
element. Then bicluster with maximum similarity is identified and evaluated using ACV (Average 
Correlation Variation) measure. The biological significance and p - value of each obtained 
bicluster are evaluated. The Gene Ontology (GO) of the biclusters obtained by the proposed 
SIMBIC+ and MSB are compared and the comparison shows that SIMBIC+ outperforms SIMBIC 
and MSB. 
 

3. PROPOSED WORK  
3.1 Condition selection 
Preprocessing often involves some operation on feature-space in order to reduce the 
dimensionality of the data. This is referred to as feature selection [17]. The features are sorted 
based on the contribution entropy value. SVD-based entropy [18] of the dataset is defined as 
follows. Let sj denote the singular values of the matrix A. sj

2
 are then the eigen values of the n x n 

matrix AA
T
. The values are normalized by using (1). 

 

                           (1) 

 
and the resulting dataset entropy is 
 

                                       E =     (2) 

 
where N is the total number of attributes. This entropy varies between 0 and 1. The minimal value 
E = 0 corresponds to an ultra ordered dataset and E = 1 corresponds to unordered dataset. The 
contribution of the i

th
 feature to the entropy CEi is defined by a leave-one-out comparison 

according to 
 
                                       CEi  =  E(A[n x m]) – E(A[n x (m-1)])                   (3) 
 
where, in the last matrix, the i

th
  feature is removed. Thus the features are sorted by their relative 

contribution to the entropy. Simple ranking (SR) method sorts the features. Select ‘n/2’ features / 
conditions according to the highest ranking order of their CEi values.   
  
3.2 Ratio based Similarity between genes 
Gene selection is critical in molecular class prediction. In a cellular process, only a relatively 
small set of genes are active. So select genes i* which has specific functional importance in gene 
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ontology viz. Cellular component, Biological process, Molecular function. Let i* be a reference 
gene / query gene.   
Let j* be the reference condition. j* may be chosen in such a way that it has high contribution 
entropy. The contribution entropy of all the conditions are computed and j* is chosen from the 
selected ‘n/2’ conditions of the expression data that has high contribution entropy. Because there 
is a dependency between co-expression and functional relation, co-expressed genes provide 
excellent candidates for further study. However, the dependency is complex, and it cannot be 
used to identify the best choice of similarity measure. In [2, 14], the similarity measure is based 
on the absolute value of the difference. This measure would help us to identify constant and 
additive biclusters.  In order to identify a coherent pattern (shifting and scaling pattern), similarity 
measure is defined in terms of ratio.  
 

For an element aij of expression matrix A (I, J) and a reference gene i*  I, 

 

   dij = abs ( aij  / ai*j ) and   davg =   

 
where | . | refers to number of elements. The similarity between two genes sij is defined as  
 

                                          (4) 

 

If dij  >  davg,  then the two elements aij and ai*j   are not similar and the similarity sij  is set to 0.  

 
3.3 Ratio based Similarity score for a bicluster 
Let S (I, J) be an m x n similarity matrix of A (I, J). The similarity score S (I, J) of the bicluster AIJ 
is defined as below.   
 

For row i I, the similarity score of row ‘i’ is S (i, J) =                  (5) 

For row j J’, the similarity score of column ‘j’ is S (I, j) =                (6) 

The similarity score of bicluster S (I, J) = min min S (i, J), min S (I, j)}              (7) 

 
If this minimum is min(S(i, J)) find the index of all the rows corresponding to this minimum and 
remove all those rows from A(I, J) to get A(I’, J) else find the index of the columns  corresponding 
to column minimum and remove all those columns from A(I, J) to get A(I, J’). Then A (I, J) is 
updated as A (I, J’) or A (I’, J). Multiple row / column deletion is performed until the the row size 
(mr) or column size (mc) is less than or equal to 1. Identify the bicluster which has high similarity 
score as maximum similarity bicluster. Popular measures used for evaluating quality of a bicluster 
are MSR (Mean Squared Residue)[5] and ACV (Average Correlation Variation)[4] measure. MSR 
measures well all types of constant biclusters [1] and ACV is perfect measure for coherent 
biclusters. 
 
SIMBIC+ Algorithm 
Constant bicluster: 
Input 

1. Gene expression matrix A(I, J) 
2. Reference gene i* which has GO functional importance. 
3. Reference condition j* from selected (n/2) features. 

 
Output a maximum similarity bicluster. 
Procedure 

1. Compute similarity matrix S (I, J) using (4) for the reference gene i*.  
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2. Parameters (mr, mc) = size (A (I, J)). 
3. While (mr ≤ 1 or  mc ≤ 1) 

4. Compute row_sim,  S(i, J)      

5. Compute col_sim,  S(I, j) =  

6. find min(S(i, J) and    find min S(I, j) 
7. Find min { min(S(i, J’) & min S(I’, j)} 
8. If this minimum is min(S(i, J’)) find the index of the rows corresponding to this minimum 

and remove all those rows from A(I , J) to get A(I’, J) 
9. else find the index of the columns  corresponding to column minimum and remove all 

those columns from A(I , J) to get A(I , J’). 
10. Update A(I, J) = A(I’, J) or  A(I, J) = A(I, J’) and S(I, J) = S(I’, J) or S(I, J) = S(I, J’) 
11. Find the similarity of bicluster using (7) for the updated S (I, J). 
12. Update mr, mc. 
13. End while 
14. Extract the bicluster with maximum similarity A (I’, J’). 
15. Compute ACV and MSR of A (I’, J’). 
 

3.4 Comparison of SIMBIC+ with MSB 
 

MSB SIMBIC+ 

Every row is considered as a reference 
gene i*. 

Only genes with functional importance are 
considered as reference gene i* 

Every column is considered as a reference 
column j*. 

 The (n/2) conditions that have more 
contribution entropy are considered as j*. 

Number of iterations is m+n-2. Number of iterations is very less.  
Single node deletion method is used. Multiple node deletion method is used. 
Distance measure is the absolute 
difference between the reference gene and 
other genes. 

Distance measure is the ratio between the 
reference gene and other genes. 

Similarity measure depends on the 
parameters α and β. 

No such parameters used for bicluster 
identification. 

More complex. Complexity and number of iterations are 
reduced. 

Biclusters have biological significance. Biclusters have still more biological 
significance. 

 
TABLE 2: Comparison of MSB and SIMBIC+ 

 
This SIMBIC+ algorithm is implemented in Matlab, 2GHz processor with 3 GB RAM. 
 

4. Experimental analysis 
4.1  Dataset 
In order to test the efficiency of the proposed algorithm the Yeast Saccharomyces Cerevisiae 
data with 2884 genes and 17 conditions was considered wherein the missing values are replaced 
by -1. [http://arep.med.harvard.edu/biclustering/]  
  

4.2 Bicluster Evaluation Measures 
Two types of biclusters namely constant and additive coherent are identified using this algorithm. 
It is observed from Table 3 that additive biclusters have more biological significance than the 
constant biclusters. The performance of the algorithm is validated using MSR and the ACV. For 
each bicluster, MSR and ACV are computed using the formulae  
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                  (8) 

 
where  rij = aij - µik - µjk + µk,  µik is the row mean, µjk is the column mean and µk is the mean of 
the bicluster.  

  (9) 

 
where c_rowij is the correlation coefficient between rows i and j and c_colpq is the correlation 
coefficient between columns p and q. Bicluster with low MSR and high ACV (i.e., ACV 
approaching 1) is a good bicluster. ‘P’ value of a bicluster provides the biological significance of a 
bicluster. It provides the probability of including genes of a given category in a cluster by chance. 
Thus overrepresented bicluster is a cluster of genes which is very unlikely to be obtained 
randomly. Suppose that we have a total population of N genes, in which M have a particular 
annotation.  If we observe x genes with that annotation, in a sample of n genes, then we can 
calculate the probability of that observation, using the hyper geometric distribution. Thus the 
probability of getting x or more genes with an annotation, out of n, given that M in the population 
of N have that annotation, is: 
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The gene ontology namely Biological Process (BP), Molecular Function (MF) and Cellular 
Component (CC) of the bicluster can be identified using GOTermfinder.                                     
 

4.3 Performance of SIMBIC+ Algorithm 
Table 3 gives the comparison of the performance of the proposed algorithm for corresponding 
reference gene i* and reference condition j* for identifying a maximum similarity bicluster of Yeast 
Saccharomyces Cerevisiae dataset. It is observed that the first four biclusters of Table 3 identified 
by the proposed SIMBIC+ are highly correlated compared to bicluster obtained from MSB for the 
same reference gene and reference condition. Even though the last two biclusters of Table 3 
identified by MSB are more correlated (with high ACV) the volume of the bicluster is 
comparatively less i.e., statistically these are good biclusters. Statistical significance alone does 
not decide the quality of the bicluster. Statistical measures evaluate a bicluster theoretically, but 
the biological significance proves the real quality of the bicluster obtained. Hence the biological 
significance of the biclusters obtained by the proposed SIMBIC+ and MSB are tabulated in Table 
4 and Table 5 respectively.   

 

i* j* 
Nature 
of 
bicluster  

 SIMBIC+ MSB 
 No. of 

Iterations 
ACV Size of 

bicluster 
No. of 
Iterations 

ACV Size of 
bicluster 

210 14 Constant  1903  0.4864  20 x 17  2899  0.3165  25 x 17 

210 14 Additive  2647  0.9553  18 x 16  2899  0.7020  15 x 12 

288 14 Constant  1903  0.3556  22 x 17  2899  0.2519  22 x 16 

288 14 Additive  2583  0.9684  19 x 16  2899  0.9224  19 x 14 

2462   9 Additive  1759  0.9300  19 x 17  2899  0.9988  29 x 8 

1459 17 Additive   2455  0.9199  19 x 16   2899  1.0000    6 x 6 

TABLE 3: Comparison of performance of SIMBIC+ with MSB 

The selected conditions of yeast Saccharomyces data based on the contribution entropy are 6, 7, 
8, 9, 12, 13, 14, 15 and 17. Bicluster plots or parallel coordinate plot and heatmaps provide the 
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visual representation of the bicluster.  Figures 1, 3, 5, 7 are the bicluster plots of biclusters 
obtained by the proposed SIMBIC+ algorithm and Figures 2, 4, 6, 8 are the bicluster plots of 
biclusters obtained by MSB. Figure 1 is the bicluster plot of additive bicluster with 19 genes, 16 
conditions when i* is chosen as 288 (gene ID ‘YBR198C’ which has the functional importance of 
SLIK (SAGA like complex) and reference condition j* is chosen as 14. This bicluster has ACV = 
0.9684 and MSR= 9.7747 x 10

4
.  Figure 2 is the bicluster plot of additive bicluster with 19 genes, 

14 conditions for the same reference gene and reference condition. This bicluster has ACV = 
0.9224 and MSR = 5.3994 x 10

4
.  Figure 3 shows the bicluster plot of additive bicluster with 19 

genes and 16 conditions when i* is chosen as 210 and reference condition j* is chosen as 14. 
This bicluster has ACV= 0.9553 and MSR= 7.6272 x 10

4
.  Figure 4 shows the bicluster plot of 

additive bicluster with 15 genes and 12 conditions for the same reference gene and reference 
condition. This bicluster has ACV= 0.7020 and MSR= 4.6092 x 10

4
. 
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FIGURE 1: Additive Bicluster using SIMBIC+                   FIGURE 2: Additive Bicluster using MSB 
                             with i*=288                                                                      with i*=288 
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FIGURE 3: Additive Bicluster using SIMBIC+                           FIGURE 4: Additive Bicluster using MSB 
                  with i*=210 and j*=14                                                             with i*=210 and j*=14 

  
Figure5 shows the bicluster plot constant bicluster with 22 genes and 17 conditions when i* is 
chosen as 288 and reference condition j* is chosen as 14. This bicluster has ACV= 0.3556 and 
MSR= 1.0717 x 10

5
.  Figure 6 shows the bicluster plot of constant bicluster with 22 genes and 16 
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conditions for the same reference gene and reference condition. This bicluster has ACV= 0.2519 
and MSR= 8.8503 x 10

4
. 

 
Figure7 shows the bicluster plot of constant bicluster with 20 genes and 17 conditions when i* is 
chosen as 210 and reference condition j* is chosen as 14. This bicluster has ACV = 0.4864 and 
MSR = 9.9778 x 10

4
.  Figure 8 shows the bicluster plot of constant with 25 genes, 17 conditions 

for the same reference gene and reference condition. This bicluster has ACV= 0.3165 and MSR= 
1.204 x 10

5
. 
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    FIGURE 5: Constant Bicluster using SIMBIC+                 FIGURE 6: Constant Bicluster using MSB 

with i*=288 and j*=14    with i*=288 and j*=14 
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      FIGURE 7: Constant Bicluster using SIMBIC+                    FIGURE 8: Constant Bicluster using MSB 
with i*=210 and j*=14    with i*=210 and j*=14 
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FIGURE 9: Biological significance of constant bicluster with i* = 210 and j*=14 using SIMBIC+ 
 

5. BIOLOGICAL VALIDATION 
The annotations consist of three ontologies, namely biological process, cellular component and 
molecular function. The biological significance and the p value are obtained from GO 
TermFinder

1
. From Table 4 and Table 5, it is also observed that bicluster of the proposed 

SIMBIC+ algorithm are GO enriched. Table 6, provides the comparison of GO of the proposed 
SIMBIC+ algorithm and GO of MSB algorithm. Also Figures 9, 10 and 11 provide the biological 
network of the resultant bicluster. Figure 9 provides the GO for constant bicluster of SIMBIC+ with 

                                                
1
 http://www.yeastgenome.org/cgi-bin/GO/goTermFinder.pl 
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i* = 210. The genes involved in this bicluster are responsible for biological processes 
phospholipid dephosphorylation and phosphoinositide dephosphorylation. Figure 10 provides the 
GO (cellular function) for additive bicluster of SIMBIC+ with i*=210 and j*=14. Figure 11 provide 
the GO (molecular function) for additive bicluster of SIMBIC+ with i*=288 and j*=14. The genes 
involved in this bicluster are responsible for ATPase activity, coupled to transmembrane 
movement of ions, phosphorylative mechanism. 
 

 
 

FIGURE 10: Biological significance of additive bicluster i* = 210 and j*=14 using SIMBIC+ 

 
 



J.Bagyamani,   K. Thangavel & R. Rathipriya  

International Journal of Biometrics and Bioinformatics (IJBB), Volume (4): Issue (6) 212 

 
 

FIGURE 11: Biological significance of additive bicluster i* = 288 and j*=14 using SIMBIC+ 



J.Bagyamani,   K. Thangavel & R. Rathipriya  

International Journal of Biometrics and Bioinformatics (IJBB), Volume (4): Issue (6) 213 

Reference gene i*=210 , reference condition j*=14 , alpha=.2  beta = .2  gamma=.9,  volume= 
15x 12  MSR 46092 ACV=0.7020 , Type : Additive bicluster, GO:  Biological Process  

GOID GO_term Cluster frequency P-value FDR 

19236 response to pheromone 3 out of 15 genes, 20.0% 0.09218 0.22 

Nature of GO: Molecular Function 

4519 endonuclease activity 2 out of 15 genes, 13.3% 0.04723 0.6 

Nature of GO: Cellular component unknown 

Reference gene i*=210 , reference condition j*=14 , alpha=.2  beta = .2  gamma=.9,  volume= 
25x 17  MSR 120400 ACV=0.3165 , Type :Constant bicluster.  

Biological Process - Unknown 

Molecular Function - Unknown 

Cellular component - Unknown 

 
TABLE 4: Biological significance of Biclusters of Yeast Dataset obtained from MSB 
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Reference gene  i*= 210, Reference condition j* = 14 , volume = 20 *17 = 340 ,MSR =98960 
ACV=.4953 Type: constant Bicluster Nature of GO: Biological Process 

GOID GO_term Cluster frequency P-value FDR 

46839 phospholipid dephosphorylation 2 out of 20 genes, 10.0% 0.02953 0.18 

46856 phosphoinositide 
dephosphorylation 

2 out of 20 genes, 10.0% 0.02953 0.09 

9987 cellular process 20 out of 20 genes, 100.0% 0.06939 0.09 

Nature of GO: Molecular Function 

3682 chromatin binding 4 out of 20 genes, 20.0% 0.00084 0 

Nature of GO: Cellular Component 

4437 inositol or phosphatidylinositol 
phosphatase activity 

2 out of 20 genes, 10.0% 0.00723 0.02 

Reference gene  i*= 210, Reference condition j* = 14 , volume = 18 *16 = 288 ,MSR =76272 , 
ACV=.9553 Type: Additive Bicluster Nature of GO:Cellular Component 

Nature of GO: Biological Process 

6814 sodium ion transport 2 out of 18 genes, 11.1% 0.00848 0 

15672 monovalent inorganic cation 
transport 

3 out of 18 genes, 16.7% 0.00902 0 

Nature of GO: Molecular Function 

15662 ATPase activity, coupled to 
transmembrane movement of 
ions, phosphorylative mechanism 

2 out of 18 genes, 11.1% 0.01372 0.12 

42625 ATPase activity, coupled to 
transmembrane movement of 
ions 

2 out of 18 genes, 11.1% 0.06971 0.19 

44451 nucleoplasm part 6 out of 20 genes, 30.0% 0.00237 0 

5654 nucleoplasm 6 out of 20 genes, 30.0% 0.00394 0 

43234 protein complex 11 out of 20 genes, 55.0% 0.00874 0 

44428 nuclear part 10 out of 20 genes, 50.0% 0.02298 0 

46695 SLIK (SAGA-like) complex 2 out of 20 genes, 10.0% 0.04023 0.02 

44422 organelle part 14 out of 20 genes, 70.0% 0.04762 0.01 

44446 intracellular organelle part 14 out of 20 genes, 70.0% 0.04762 0.01 

124 SAGA complex 2 out of 20 genes, 10.0% 0.05593 0.01 

70461 SAGA-type complex 2 out of 20 genes, 10.0% 0.06171 0.02 

32991 macromolecular complex 12 out of 20 genes, 60.0% 0.08059 0.01 

TABLE 5: Biological significance of Biclusters of Yeast Dataset obtained from SIMBIC+ 
 

Table:4 provides the biological significance constant and additive biclusters of yeast data for the 
reference gene i*=210. Table:5 provides the biological significance constant and additive 
biclusters of yeast data for the reference gene i*=210. There are 2 biological significances for 
MSB and 19 biological significances for SIMBIC+.Table:6 provides the comparison of GO 
enrichment of Biclusters of Yeast Dataset obtained by proposed SIMBIC+ and existing MSB 
algorithms. It is observed that highly correlated biclusters have more biological significance than 
biclusters with similar values. Also the proposed SIMBIC+ algorithm identifies biclusters with 
more biological significance (with low ‘p’ value and less False Discovery Rate). 
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i* j* Type SIMBIC + MSB 

210 - Constant 3 1 1 0 0 0 
210 14 Additive 2 2 10 1 1 0 
2462 9 Additive 5 3 1 2 1 2 

1459 17 Additive 4 2 6 1 1 3 
288 14 Constant 2 1 3 2 1 3 
288 14 Additive 3 2 5 2 2 4 

TABLE :6 Comparison of GO enrichment of Biclusters of Yeast Dataset obtained by SIMBIC+ and MSB 
 

6. CONCLUSION AND FUTURE WORK 
This proposed algorithm identifies biclusters of gene expression data with more biological 
significance. The multiple node deletion method based on the new similarity score applied on the 
extracted features / conditions, makes the algorithm very efficient and less time consuming. The 
biological significance of the biclusters and ‘p’ value are obtained using GO-Term Finder. Results 
prove that the proposed SIMBIC+ algorithm is computationally efficient and biologically 
significant. Also the results prove that biclusters with scaling pattern are more biologically 
significant than the biclusters with shifting pattern.  
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