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Abstract 

 
In this paper a novel temperature controller, for non linear processes, under the influence of 
external disturbance, has been proposed. The control process has been carried out by Neural 
Network based Proportional, Integral and Derivative (NNPID). In this controller, two experiments 
have been conducted with respect to the setpoint changes and load disturbance. The first 
experiment considers the change in setpoint temperature in steps of 10oC from 50oC to 70oC for 
three different rates of flow of water. In the second experiment the load disturbance in terms of 
addition of 100ml/min of water at three different time intervals is introduced in the system. It has 
been shown that, in these situations, the proposed controller adjusts NN weights which are 
equivalent to PID parameters in both the cases to achieve better control than conventional PID. In 
the proposed controller, an error less than 0.08oC have been achieved under the effect of the 
load disturbance. Moreover, it is also seen that the present controller gives error less than 
0.11oC, 0.12oC and 0.12oC, without overshoot for 50oC, 60oC and 70oC, respectively, for all 
three rate of flow of water.  
 
Keywords: Neural Network Based PID (NNPID) Controller, Temperature Controller, Back-
propagation Neural Network, Load Disturbance.  

 
 
1. INTRODUCTION 

Temperature control is an important factor in chemical, material and semiconductor 
manufacturing processes [1]-[3]. To design a general purpose temperature controller with good 
response time, smaller error and overshoot with load disturbance for the industrial implementation 
is still a challenge in the control research field. Over the past several years the on-off control and 
PID control schemes have been employed in commercial products with reasonable success.  
 
A PID controller is the classical control algorithm in the field of process control. It still 
predominates in the process industries due to its robustness and effectiveness for a wide range 
of operating conditions and partly to its functional simplicity [4]. For the existing controllers, there 
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are three important parameters, namely, Kp, Ki and Kd which need to be evaluated [5]. The 
problem associated with the PID controller is to choose optimal value of these parameters so that 
the desired output is yielded for the appropriate process inputs. Usually, process engineers tune 
PID controller manually for an operation which, if done diligently, can take considerable time. 
Therefore, it is hard to establish an accurate dynamic model for a PID controller design. When the 
system has external disturbances, such as the variations of loads and changing process 
dynamics, then the transient response may go down. For this reason, free intelligent control 
schemes have gained the researcher attention. 
 
In order to overcome the above disadvantages [4], [6], [7], researchers have proposed some 
adjusting rules for the self tuning controllers (STC) [8]-[19]. They have considerable potential for 
the process control problems since STCs provide a systematic and flexible approach for dealing 
with uncertainties, nonlinearities, and time varying parameters. A basic model structure for static 
nonlinearities is the back-propagation neural network (BPNN) [20]. The major advantages of 
BPNN over the traditional controller is that it can tune the three PID  parameters on-line without 
requiring the prior knowledge of the mathematical model of different plants. Besides, the other 
advantages include its nonlinear mapping and self-learning abilities in various control processes, 
such as temperature control. It may be mentioned that the time varying and complex nonlinearity 
problems associated with PID controllers have been addressed by other researchers also using 
different algorithms [21], [22]. 
 
Neural Networks (NN) [23], which is the focus of the current work, is a better alternative to solve 
control engineering problems. It can be applied in two different ways: one is to use the NN to 
adjust the parameters of PID controller and the other is to use it as a direct controller. PID 
parameter values can also be adjusted by creating NN system based on the system output error 
signal [24]-[26], [27]-[30]. Prominent among them are the inverse model neuro-control approach 
by Widrow and Steams [29] and Psaltis, et al. [30] and further modified by other researchers [31]-
[34].  
 
In the present paper we have investigated two conditions viz the change in setpoint temperature 
and the load disturbance using Neural Network PID (NNPID) controller. In both the cases NN 
weights equivalent to PID parameters, are trained to achieve better control than existing 
conventional PID. 
  

2. PROPOSED DESIGN APPROACH AND EXPERIMENTAL DETAILS 

Fig.1 shows the block diagram of the proposed approach followed in the present work. According 
to this block diagram, the actuating error, Terr, can be expressed as 
Terr = Ts- To                                                          (1) 
Where Ts  and To  are the setpoint temperature and observed temperature respectively and Terr is 
the error in terms of temperature. 
 
The design of NNPID is shown in Fig. 2. It consists of three layers which are input layer, hidden 
layer and output layer. The input layer has two neurons represented by I1 and I2.The output layer  
 

 
 

FIGURE 1: Block Diagram of the approach followed 
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FIGURE 2: Neural Network tuning of PID Controller 
 
has one neuron represented by O1. The hidden layer has three neurons and they are symbolized 
as H1 (P-neuron), H2 (I-neuron) and H3 (D-neuron) respectively.  
 
In the present case weights for the different layer combinations are taken as follows: 
Weights between input layer and hidden layer are  

,                 (2) 

Weights between hidden layer and output layer are taken in terms of PID parameters as 
,  and ,                                                                  (3) 

Then, input to hidden layer nodes are defined as 
                                                   (4) 

                                      (5) 

                                                  (6) 

where ,  and are the inputs of the hidden layer nodes.  

 
The outputs of the hidden layer nodes are equal to their inputs, which can be expressed as 
function of proportional, integral and derivative as mentioned below:  

                              (7) 

                                  (8) 

                                   (9) 

Then, input to output layer becomes 
                 (10) 

                                     (11) 

where ,  and are output part of hidden layer nodes, and   is the input part of 

output layer.  
 
Thus eq. (11) illustrates that PID parameters, which compared with weights as given in eq. (3), 
are tuned by using NNPID algorithm. It is well-known that most neural networks cannot be 
practically used in a controller because the initial connective weights of the neural networks are 
randomly selected. The randomized selection procedure imparts instability to the system. 
Therefore, it demands more experience to choose or tune PID parameters in order to ensure the 
stability. This can be achieved via training and learning capability of NNPID algorithm. The simple 
and prevalent algorithm which we have used in our work is BPNN algorithm [20] for weighting 
coefficients.  
 
In the present controller, the main aim of the above algorithm is to minimize the error as given in 
eq. (12) in order to recover the system quickly from the effects of the external disturbance by 
tuning of PID parameters.  
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                (12) 

 
The weights of NNPID controller are adjusted by BPNN algorithm based on steepest descent on-
line training process. It is done in terms of adjusted weights of hidden-to-output layer [ and 

input-to-hidden layer [ ] [35]. The increments of weight in hidden-to-output connection are 

updated by using the gradient descent method as 
 

              (13) 

                                                                     (14) 

 

where η and α are learning coefficient and momentum, respectively.  Here the values of these 

terms are taken to be η = 0.005 and α = 0.5.  

Further eq. (14) can be rewritten as [35] 
                                                (15) 

             (16) 

Where we have defined 
                         (17) 

Similarly, the incremental weights of input-to-hidden connection are updated as 

                          (18) 

                                           (19) 

Now, eq. (19) can be rewritten as [35] 
                                                            (20) 

                         (21) 

Where we can define 
                                                                                                                                    (22) 

                         (23) 

 
Now we use updated weights,  and   from eq. (16) and eq. (21) for finding new 

weights for hidden-to-output and input-to-hidden connections. 
                                                                         (24) 

                                                                         (25) 

 
The new weights are adjusted by updated weights as per eq. (24) and eq. (25) with iterations till 
we get the minimum mean square error in terms of temperature. Now these updated weights are 
employed for the experiment discussed below. 
 
The schematic diagram of the experimental setup of the water bath temperature controller is 
shown in Fig. 3.  
 
The hardware for controlling the temperature of the bath has been designed and fabricated 
around the Atmel microcontroller 89C51. The temperature of the bath is acquired with the help of 
platinum resistance thermometer (PRT). When the PRT is excited with a constant current source 
of 1mA current, it gives the output in voltage form. This voltage is then fed to the 4½ digit analog 
to digital converter (ADC). This digitized voltage is then sent to the personal computer (PC) by 
microcontroller 89C51through RS232C interface. The program in PC does the calculations using 
the NNPID algorithm. After doing the entire calculations microcontroller controls the TRIAC firing 
circuit and the firing angle for the required energy, through heater, to be given to the water bath. 
The NNPID program in PC continuously monitors the temperature and accordingly controls the 
same in the bath. In case it senses any change in the temperature, it automatically modifies the 
parameters of the temperature controller. The NNPID program in PC has been written in Visual 
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BASIC-5.0 language. The program stores the data in the user defined file as well as plots the 
online data in the form of graph on the screen. A specially designed varying environment is 
created by continuous flow of fresh water in such a way that the level of the water inside the bath 
remains constant even if the hot water is removed at random outflow rates. Uniform heat 
distribution is maintained using the circulator, and the isolated system is used to minimize 
external disturbance. The cooling is achieved at a constant rate using the refrigeration system of 
the bath. 
 

 
 

FIGURE 3: Block Diagram of the Experimental Setup 
 
distribution is maintained using the circulator, and the isolated system is used to minimize 
external disturbance. The cooling is achieved at a constant rate using the refrigeration system of 
the bath. 
 

3. EXPERIMENTAL AND SIMULATION RESULTS 
In this paper two sets of experiments were conducted in the water bath. In the first set of 
experiments, the tracking performance of the two controllers i.e. NNPID controller and 
conventional PID controller with respect to setpoint changes are studied. In this system, further 
three set of experiments were conducted at three different flow of water i.e. at 100ml/min, 
250ml/min and 500ml/min as shown in Figs. 4, 5 and 6 respectively. In these experiments the 
setpoint temperature of the water bath was increased in steps of 10

o
C from 50

o
C to 70

o
C to 

investigate the effect of flow of water on temperature control at the different setpoint. 
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FIGURE 4:  Showing the comparison of NNPID controller with the conventional PID controller of a water 
bath for 100 ml/min flow rate of water with respect to setpoint changes. 

 
The simulation results subjected to the changes in setpoint for different flow rate of water are 
shown in Figs. (4-6). The three systems are categorized in terms of change in flow rate of water 
are shown in Table I. The settling time taken by NNPID and PID controllers to achieve target 
temperatures of 50

o
C, 60

o
C and 70

o
C for different flow rates of water are given in Table II.  

According to this table, when we refer Figs. (4-6), we infer that NNPID controller gives better 
performance in respect of less settling time as compared to the conventional PID controller in 
achieving change in setpoint temperature. Hence the experimental and simulation results of these 
systems show the simplicity, reliability and robustness of NNPID over conventional PID.  
 
To compare the results of the NNPID controller with the results of the conventional PID controller, 
the parameters of the PID controller were tuned for initial gain setting of NNPID controller by its 
best fit values as proportional gain, Kp=2.5, integral gain, Ki=100 and derivative gain, Kd=10. The 
neural network fine tunes the system iteratively based on the performance of the closed loop  
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FIGURE 5: Showing the comparison of NNPID controller with the conventional PID controller of a water bath 
for 250 ml/min flow rate of water with respect to setpoint changes. 
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FIGURE 6: Showing the comparison of NNPID controller with the conventional PID controller of a water bath 
for 500 ml/min flow rate of water with respect to setpoint changes 

 
 

Kp 2.5 

Ki 100 

Kd 10 

Power of Heater 1500 Watt 

Volume of water 15 liter 

Voltage 5volts 

Initial and Final Set point 
temperature 

50
o
C and 70

o
C 

Temperature change +10
o
C 

Flow rate of water 100ml/min, 250 ml/min, 
500 ml/min 

Load disturbance 100ml/min water 

 
TABLE 1: Different Values of System Parameters 

 
system. The temperature response of a water bath having 15 liter volume and heated with a 
power of 1.5KW for 100ml/min flow rate of water using NNPID and conventional PID are shown 
simultaneously for comparison in Fig.5. Similarly NNPID and conventional PID results for 
250ml/min and 500ml/min flow rate of water are shown in Fig.5 and Fig.6 respectively. It is clear 
from these figures that there is always overshoot for conventional PID at initial settling time for 
each set temperature as 50

o
C, 60

o
C and 70

o
C of the system. This is shown in Table III. This table 

also indicates that NNPID controller gives error less than 0.11
o
C, 0.12

o
C and 0.12

o
C without 

overshoot for 50
o
C, 60

o
C and 70

o
C respectively for all the three flow rate of water. These errors 

are comparatively less than conventional PID controller. In addition, the neural network achieves 
setpoint fast as compared to the conventional PID controller as shown in Figs. (4-6). One can 
possibly say that the neural network controller tracked well all the three setpoint and has good 
generalization capability even with a small number of training patterns.  
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 NNPID Controller PID Controller 
 

 Settling Time Settling Time 

Temperature 
range 

50
o
C-60

o
C 60

o
C-70

o
C 50

o
C-60

o
C 60

o
C-70

o
C 

 
100 ml/min 7min 9min 30sec 23min 23min 30sec 

 
250 ml/min 11min 18min 30sec 31min 31min 

 
500 ml/min 17min 27min 35min 35min 

 
 

TABLE 2: Settling Time of NNPID and PID Controllers For Three Flow Of Water 
 

 
 NNPID Controller Conventional PID Controller 

 
 Error without Overshoot Error with Overshoot 

Set 
Temperature 

50
o
C 60

o
C 70

o
C 50

o
C 60

o
C 70

o
C 

 
 Error Over 

shoot 
Error Over 

shoot 
Error Over 

shoot 

100 ml/min 
flow 

0.09
 o
C 0.10

 o
C 0.10

 o
C 1.38

 o
C 4.49

 o
C 1.0

 o
C 3.03

 o
C 1.0

 o
C 2.01

 o
C 

250 ml/min 
flow 

0.10
 o
C 0.11

 o
C 0.12

 o
C 2.32

 o
C 4.35

 o
C 1.87

 o
C 4.9

 o
C 2.73

 o
C 4.47

 o
C 

500 ml/min 
flow 

0.11
 o
C 0.12

 o
C 0.11

o
C 2.54

 o
C 4.93

 o
C 1.90

 o
C 4.77

 o
C 2.88

 o
C 5.48

 o
C 

 
TABLE 3: Error and Overshoot of NNPID and Conventional PID controller for three rate of flow of water 
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FIGURE 7: Showing the comparison of NNPID controller with the conventional PID controller of a water bath 

under the effect of load disturbances. 

In second set of experiments, the load disturbances in terms of addition of 100ml/min water were 
introduced in the process of system for studying the ability of the two controllers when the 
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external disturbance was imposed. These external disturbances were made in three steps at 
different interval of time. These three disturbances were added to the output at 43min, 59min and 
84min respectively for PID controller and for NNPID controller at 25min, 49min and 72min as 
shown in Fig. 7. It could be observed from this figure that when we introduce external disturbance 
of 100ml/min of water during three steps in the system for set temperature of 50

o
C, the NNPID 

controller takes much less settling time and overshoot as compared to conventional PID 
controller. So it is appropriate to say that neural network controller recovered fast with error less 
than 0.08 

o
C with less overshoot under the effect of these load disturbances. So we are able to 

say that NNPID controller has ability to adapt quickly to changes at its input. On the other hand 
the conventional PID controller has poor rate of recovery which deteriorate the system. 
Additionally, it has error greater than 0.2

o
C. Our experimental setup gives better settling time, 

less overshoot and minimum deviation in setpoint. 
 

4. CONCLUSION 
In conclusion, the present work shows the new approach of controlling the temperature of the 
dynamic system. This particular system designed and developed around Atmel’s 89C51 
microcontroller employed on a water bath. The temperature control of the system has been 
analyzed by conducting two experiments in respect of setpoint changes and load disturbances. 
The first experiment considers change in setpoint temperature in step of 10

o
C from 50

o
C to 70

o
C 

for three different rate of flow of water. It is observed that NNPID controller gives error less than 
0.11

o
C, 0.12

o
C and 0.12

o
C without overshoot for 50

o
C, 60

o
C and 70

o
C respectively for all three 

flow rate of water. In second experiment, the load disturbance in terms of addition of 100ml/min 
water at three different intervals of time is introduced. It gives error less than 0.08 

o
C with less 

overshoot under the effect of the load disturbance. In both the cases NN weights corresponding 
to PID parameters, are trained, to achieve better control than existing conventional PID. This 
paper has shown that inexpensive neural hardware may become an important technology for 
many modern industrial control applications. 
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