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Abstract 

 
As an example of multi-agent learning in soccer games of the RoboCup 2D Soccer Simulation 
League, we dealt with a learning problem between a kicker and a receiver when a direct free kick 
is awarded just outside the opponent’s penalty area. We propose how to use a heuristic function 
to evaluate an advantageous target point for safely sending/receiving a pass and scoring. The 
heuristics include an interaction term between a kicker and a receiver to intensify their 
coordination. To calculate the interaction term, we let a kicker/receiver agent have a 
receiver’s/kicker’s action decision model to predict a receiver’s/kicker’s action. Parameters in the 
heuristic function can be learned by a kind of reinforcement learning called the policy gradient 
method. Our experiments show that if the two agents do not have the same type of heuristics, the 
interaction term based on prediction of a teammate’s decision model leads to learning a master-
servant relation between a kicker and a receiver, where a receiver is a master and a kicker is a 
servant. 
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1. INTRODUCTION 

Recently, much work is being done on the learning of coordination in multi-agent systems [1, 2]. 
The RoboCup 2D Soccer Simulation League [3] is recognized as a test bed for such research 
because there is no need to control real robots and one can focus on learning coordinative 
behaviors among players. However, multi-agent learning continues to suffer from several difficult 
problems such as state-space explosion, concurrent learning [4], incomplete perception [5], and 
credit assignment [2]. In the games of the Robocup 2D Soccer Simulation League, the state-
space explosion problem is the most important and difficult. Solving it is the main objective of this 
paper. However, the other three problems should be considered in varying degrees.  
 
As an example of multi-agent learning in a soccer game, we dealt with a learning problem 
between a kicker and a receiver when a direct free kick is awarded just outside the opponent’s 
penalty area. The kicker must make a shoot or pass the ball to the receiver to score a goal. To 
which point in the soccer field should the kicker kick the ball and the receiver run in such a 
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situation?  We propose how to use a heuristic function to evaluate an advantageous target point 
for safely sending/receiving a pass and scoring. The heuristics include an interaction term 
between a kicker and a receiver to intensify their coordination. To calculate the interaction term, 
we let a kicker/receiver agent have a receiver’s/kicker’s action decision model to predict a 
receiver’s/kicker’s action. The soccer field is divided into cells whose centers are candidate 
targets of a free kick. The target point of a free kick is selected by a kicker using Boltzmann 
selection with the heuristic function. The heuristic function makes it possible to handle a large 
space of states consisting of the positions of a kicker, a receiver, and their opponents. 
Parameters in the function can be learned by a kind of reinforcement learning called the policy 
gradient method. The point to which a receiver should run to receive the ball is concurrently 
learned in the same manner.  
 
We found the following two points from our learning experiments. First, if a kicker and a receiver 
have the same type of heuristics in their action evaluation functions, they obtain policies similar to 
each other by learning and that makes both action decisions agree well. Second, if the two 
agents do not have the same type of heuristics, the interaction term based on prediction of a 
teammate’s decision model leads to learning a master-servant relation between a kicker and a 
receiver, where a receiver is a master and a kicker is a servant. This paper will present some 
clues to multi-agent learning problems through solving this type of free-kick problems. 

 
2. COORDINATION OF SOCCER AGENTS 
 
2.1 Cooperative Play in RoboCup 2D Soccer Simulation 
Reinforcement learning is widely used [6,7] in the research areas of multi-agent learning. In the 
RoboCup 2D Soccer Simulation League, Andou used Kimura’s stochastic gradient ascent (SGA) 
method [8] to learn the dynamic home positions of 11 players [9]. Riedmiller et al. applied TD 
learning to learn such individual skills as intercepting the ball, going to a certain position, or 
kicking and selecting those individual skills [10]. They dealt with attacking problems with 2v1 (2 
attackers and 1 defender), 2v2, 3v4, and 7v8. Stone et al. studied keepaway problems with 3v2 
[11] and half-field offense problems with 4v5 [12] using Sarsa [6] to learn the selection of macro 
behaviors such as ball holding, passing, dribbling, and shooting. 
 
2.2 Coordination at Free Kicks 
In the previous section, we cited several researches on the cooperative behaviors of soccer 
agents. However, a crucial problem remains. In their research, each agent apparently learns its 
policy of action selection “autonomously” to complete the received task.  However, Riedmiller et 
al. assumed that all agents share input information, which are the x-y positions of all players and 
the ball, with other agents [10]. Stone et al. used other agents’ experiences, which are time-series 
data on state, action, and reward, to accelerate learning in a large problem [12]. For that purpose, 
agents must communicate their experiences to their partners to facilitate information sharing 
among themselves. If agents share input information or experiences with other agents, all agents 
will obtain the same value function by learning. That will simplify the realization of various 
cooperative plays among agents. However, if an agent’s observation is imperfect or uncertain as 
in games of the RoboCup 2D Soccer Simulation League, all agents cannot share the same input 
information with other agents. If communication between agents is not perfect, they cannot share 
their experiences with other agents. Moreover, if only agents that have identical value functions 
are assumed, agent individuality and division of roles among them may not emerge from agents’ 
learning. In the next section, we propose a method where all agents learn autonomously without 
assuming perfect communication or identical input information. 
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3. LEARNING SOCCER AGENTS BY A POLICY GRADIENT METHOD 
 
3.1    Policy Gradient Method 
A policy gradient method is a kind of reinforcement learning scheme that originated from Williams’ 
REINFORCE algorithm [13]. The method locally increases and maximizes the expected reward 
per episode by calculating the derivatives of the expected reward function of the parameters 
included in a stochastic policy function. This method, which has a firm mathematical basis, is 
easily applied to many learning problems. It is extended by Kimura to learning problems in 
Partially Observable Markov Decision Processes (POMDPs) , which is known as Stochastic 
Gradient Ascent (SGA) method [8]. Moreover, Igarashi et al. proved that a policy gradient method 
can be applied to learning problems in non-Markov Decision Processes [14,15]. They applied it to 
pursuit problems where the policy function consists of state-action rules with weight coefficients 
that are parameters to be learned [15]. In this paper, we take this approach for agents to learn 
how to make their action decisions. 
 
3.2    Stochastic Policy for Action Decision 
In this section, we propose a stochastic policy for determining kicker’s and receiver’s actions 
during direct free kicks. We divide the opponent’s penalty area into 32 cells (5m×5m) and assume 
additional three cells (5m×4.5m) inside the goal net area, as shown in Fig. 1. Acell denotes the set 

of center points of these 35 cells. Selecting a kicker’s/ receiver’s action aK/aR(∈Acell) is defined as 
selecting a cell to the center of which a kicker/receiver should kick the ball or run. If the two 
agents select the same cell, i.e. aK=aR, their intentions agree well with each other and a pass 
between them would succeed with a high possibility.  
 
 

 
 

FIGURE 1: Example of Player Arrangements. 

 
 

We consider objective function Eλ(aλ; s,{ωλ
j}) ( ≤ 0) of an agent such as 
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Note that action aλ  with a lower value of Eλ(aλ; s,ωλ), which means an action with a higher value of 

Uj
λ(aλ;s), is selected by (2) with a higher possibility. Weight parameters ωλ in (1) and (2) are 

determined by a policy gradient method summarized in the next section. 
 
3.3    Autonomous Action Decision and Learning 
For the autonomous action decisions and the learning of each agent, we approximate policy 

function π(a;s) for the whole multi-agent system by the product of each agent’s policy function 

πλ (aλ;s, ωλ)  in (2) as [15,16]  
 

( ) ( ); ; ,a s a s
λ

λ λ
λ
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where a=(aK,aR). 
 
In (3), it seems that the correlation among agent action decisions is neglected. However, each 

agent can see all other agent states and use them in its policy function πλ (aλ;s, ωλ). Thus, the 
approximation in (3) will contribute to learn coordination among agents. Note that each agent 
cannot get perfect information on state s and communication among agents is limited in games of 
the RoboCup 2D Soccer Simulation League. Therefore, agents cannot get accurate and complete 
information on the whole system nor share their observations with each other perfectly. 
 
At the end of each episode, common reward r is given to all agents after evaluating results and 
behaviors of the whole agent system. That is a promising idea to avoid causing concurrent 

learning problems. The derivative of expectation of reward E[r] for parameter ωλ  is given as 
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if we use (3) and assume that Eλ’(aλ’;s) (λ’ ≠ λ) does not depend on ωλ. L is the size of an episode. 
 

With (3), characteristic eligibility eω
 on the right-hand side of (4) can be written as [15,16]: 
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where aλ(t) and s(t) are the action and state of agent λ at discrete time t. 
 

The derivative of E[r] in (4) leads to the learning rule of parameters ωλ  as 
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where ε is a positive small number called learning ratio. Let assume that each agent makes an 
action decision by policy πλ in (2) only once at the start of every episode, i.e. at t=0, and updates 

ωλ  by the learning rule in (6) at the end of every episode. The learning rule for agent λ  is given 
by 
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4. FREE-KICK PROBLEM AND LEARNING EXPERIMENTS 
 
4.1    Arrangement of Players 
We only consider the part of a soccer field used in the RoboCup 2D Soccer Simulation League. A 
kicker and a receiver are agents that learn team play during free kicks. There are a defender and 
a goalie that are opponents, who do not learn anything. An example of the arrangement of the 
four players is shown in Fig. 1. The origin of the coordinate axes is located at the center mark of 
the soccer field. The x/y-axis is set parallel to the touch/goal line. 
 
A kicker is only given the role of kicking the ball during direct free kicks. The x-coordinate of the 
free-kick position is fixed to 24 m from the opponent goal line, while the y-coordinate is selected 
at random. A receiver is assumed to run to receive the pass and to immediately shoot toward the 
goal. The receiver is set at random to a cell that is not an offside position and not any of the three 
cells behind the goal’s mouth. An opponent goalie/defender is randomly located in the 
goal/penalty area. The two defenders try to intercept the pass and thwart the two offense agents. 
In addition to the four players, a coach-client called a “trainer” changes the play mode from kickoff 
to free kick, sets the players and the ball, watches the game, and informs the two agents whether 
a kicker’s pass was safely received and whether their shots successfully scored a goal. 
 
4.2    Heuristics Used in Objective Function 

In learning experiments, four kinds of heuristic functions {Ui
λ(aλ)} (i=1,2,3,4) were used to 

evaluate the suitability of the selected cell for kickers and receivers. In this section, let cell k be 

the one selected by kicker’s/receiver’s action aλ. U1
λ(aλ;s) considers the existence of opponents in 

the pass direction. U2
 λ(aλ;s) expresses heuristics where shooting from nearer to the goal mouth 

has a greater chance of scoring a goal. U3
λ(aλ;s) evaluates a distance between the center of cell k 

and the nearest opponent to the center of cell k. U4
λ(aλ;s) considers the distance between the 

center of cell k and the current receiver’s position. 
 

U1
λ, U3

λ  and U4
λ are heuristics for passing the ball safely, while U2

λ is heuristics for making an 
aggressive pass. These four functions are normalized to avoid exceeding 10.0 and their strict 
definitions are given in Appendix. 
 
4.3    Interaction Between Two Action Decisions 
In this section, we introduce an interaction between the action decisions of a kicker and a receiver. 
If any discrepancy exists in the information that the two agents get or perceive, learning the 
cooperative play described in Section 3 may be difficult. In actual human soccer games, all 
teammates cannot be expected to share identical information and heuristic knowledge to make 
their decisions. For this reason, we consider another heuristics, U5, an interaction term. That 
makes one agent select its action that fits well an action selected by a teammate agent. The 
interaction term helps accelerate cooperation between the two agents. We define this interaction 
term by function U5(aK,aR;s): 
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where aK/aR is kicker’s/receiver’s action and (XKR,YKR) is a difference vector between a cell to 
which a kicker intends to kick the ball and a cell to which a receiver runs. Adding interaction term 
U5(aK,aR;s) in (8) to the objective function in (1) , we use the following objective functions EK(aK;s, 
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To calculate interaction term U5(aK,aR;s) in (8), a kicker/receiver needs information on the action 
that the other teammate is going to select. One solution is sending the information by say 
command. But completely assuming the sending and receiving of all teammate actions is neither 
realistic in actual human soccer games nor desirable even in games of the RoboCup 2D Soccer 
Simulation League. In this paper, we adopt a method in which an agent has the other teammate’s 
action-decision model inside itself and uses it for predicting the teammate’s next action without 
asking it of the teammate. Thus receiver’s action a*R in (9) is an action predicted by a kicker, and 
kicker’s action a*K in (10) is an action predicted by a receiver. The next section describes how to 
predict a teammate’s action. 
 
4.4    Prediction of a Teammate’s Action 

Let us discuss a kicker’s action decision. Objective function EK(aK;s,ωK) in (9) is used to determine 

kicker action aK. Function EK(aK;s,ωK) includes receiver’s action a*R in its interaction term 
U5(aK,a*R;s) shown in (8). Receiver’s action a*R should be determined by minimizing receiver 

objective function ER(aR;s,ωR) shown in (10). Function ER(aR;s,ωR) includes kicker action a*K in 
U5(a*K,aR;s). That is, determining kicker’s action aK needs receiver’s action aR and vice versa. To 
break this endless loop, we use receiver’s/kicker’s action a*R/a*K predicted by minimizing 

ER(aR;s,ω R)/EK(aK;s,ωK) that has no interaction term U5(aK, aR;s): i.e., 
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for calculating the right-hand sides of (9) and (10). This method represents that an agent predicts 
another agent’s action using the other agent’s action-decision model. The receiver and kicker 

models are represented by weight coefficients {ωi
R} (i=1,2,3,4) and {ωi

K}(i=1,2,3,4) in (11) and 
(12), respectively. However, the values of the coefficients are updated every episode during 
learning. To make the prediction as accurate as possible, a kicker and a receiver teach each 
other the values of their own weight coefficients every ten episodes by say command in our 
experiments. This helps update a teammate’s action-decision model and keeps it current. This 
teaching in games is not necessary at all if agents are not learning their policy functions. 
 
4.5    Reward 
We deal with a cooperative play between a kicker and a receiver during direct free kicks. For 
learning this cooperative play, a large reward must be given to the two agents only if a kicker’s 
pass is successfully received by a receiver and a receiver’s shot successfully scores a goal. For 
this purpose, reward r depends on the results of a kicker’s passing and a receiver’s shooting. In 

preliminary experiments, we defined reward function r(σ)  given to episode σ, such as 
 
 r(σ) = -30.0  if Ppass=false,  

 r(σ) =  5.0  if Ppass=true and Pshot=false, 
and  
 r(σ)=100.0  if Ppass=true and Pshot=true.  

 
Proposition Ppass/Pshot means that a kicker’s pass/receiver’s shot is successful. Identical reward 

r(σ) is given to a kicker and a receiver by a trainer agent who judges whether a pass from a 
kicker to a receiver and the receiver’s shot has succeeded. An episode consists of 50 simulation 
cycles, and takes five seconds in actual time. When a kicker or a receiver successfully scores a 
goal, the episode is concluded even before 50 simulation cycles have been completed. 
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4.6    Learning Experiments for a Kicker and a Receiver 
We made four experiments to verify whether a kicker and a receiver can simultaneously learn 
their policies by applying the policy gradient method described in Section 3 to free-kick problems 
under the following conditions. A kicker and a receiver play against a defender and a goalie, as 
shown in Fig. 1. We exploited the programs of Trilearn Base [17] for the defender and goalie of 
the opponent. Trilearn Base is a program based on the UvA Trilearn2003 team’s program that 
won the RoboCup2003 championship. Trilearn Base’s defender and goalie are excellent players, 
while Trilearn2003’s high level strategy is not implemented in Trilearn Base. Experiment 1 
assumes that a kicker and a receiver have the same type of objective function, as shown in (1). 
However, they do not have interaction term U5(aK,aR;s), which Experiment 2 considers. In 
Experiment 3, a kicker has an objective function consisting of U1

K, U2
K, and U3

K, and a receiver 
has an objective function consisting of U2

R, U3
R, and U4

R. In Experiment 4, interaction term 
U5(aK,aR;s)  was added to the objective functions used in Experiment 3. Experiments 3 and 4 deal 
with cases where a kicker and a receiver do not have heuristics U4

K and U1
R for deciding their 

next actions, respectively. Note that a receiver immediately makes a shoot if he can get the ball 
because we are only concentrating on making a receiver learn where to run to receive a pass, not 
how to dribble a ball. 
 

5. EXPERIMENTAL RESULTS AND DISCUSSION 

Four learning experiments described in Section 4.6 were conducted under conditions where 

ε=0.1 and T=10.0. Temperature parameter T is not lowered during the learning of ωλ but fixed to 
search the parameter space for different good combinations of agents’ policies. The initial values 

of weight ωλ  are selected at random from an interval between 10.0 and 30.0. Figures 2-4 show 
the changes of the passing success rate, the scoring rate, and the expectation of reward while 
learning 2000 episodes, respectively. Only their averages over every 50 episodes are plotted in 

the three figures. Changing the initial values of ωλ, all four experiments were carried out ten times, 
and the values plotted in Figs. 2-4 are ensemble averages of the ten sets of experiments. Fig. 5 

shows a typical example of the change of weight coefficients {ωi
λ}in the ten trials. 

 
5.1    Experiment 1 
In Experiment 1, a kicker and a receiver use the same type of objective functions consisting of 

four heuristics from U1
λ to U4

λ. Figs. 5a and b shows that the ratio of the magnitudes of a kicker’s 

{ωi
K} approaches that of a receiver’s {ωi

R} as learning continues, even if the initial values of a 

kicker’s {ωi
K} are different from a receiver’s {ωi

R}. The passing success rate increases from 42% 
to 78% in Fig. 2, and the scoring rate increases by 4 times from 8% to 32% in Fig. 3. These two 
increases mean that both the kicker and the receiver have acquired the same policy for action 
decisions and that successful passes contribute to scoring goals. 
 
5.2    Experiment 2 
In Experiment 2, interaction term U5 is added to the objective function used in Experiment 1. Figs. 

5c and 5d show the same tendency of {ωi
λ} as in Experiment 1 except ω5

λ. The value of kicker’s 

ω5
K  became much larger than receiver’s ω5

R. This means that a kicker follows a receiver’s action 
to realize cooperative play. As a result, the scoring rate is improved and becomes slightly larger 
than in Experiment 1 where there is no interaction term U5. 
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FIGURE 2: Passing Success Rate.   FIGURE 3: Scoring Rate. 

 

 
FIGURE 4: Expectation of Reward. 

 
5.3    Experiment 3 
In Experiment 3, a kicker has a set of heuristics, U1

K, U2
K, and U3

K, which is different from a 
receiver’s set of heuristics, U2

R, U3
R, and U4

R. Passing success rate increases from 30% to 70%, 
as shown in Fig. 2, and the scoring rate increases by three times, from 5% to 15%, after learning 
2000 episodes, as shown in Fig. 3. Figs. 5e and 5f show a common tendency on the changes of 

ω2
λ

  and ω3
λ for kickers and receivers, who realize cooperative play by making the common two 

heuristics, U3
λ and U4

λ, dominant in their policies. However, while watching their actual play in 
Experiment 3, we observed that their actions do not completely agree with each other. A small 
discrepancy exists between the cell to which a kicker passes the ball and the cell to which a 
receiver runs to receive it. This small discrepancy allows the defenders and the goalie time for 
defending. That is proved by the very low scoring rate shown in Fig. 3, whereas the passing 
success rate is not so bad when compared with other three experiments in Fig. 2. 
 
5.4    Experiment 4 
Interaction term U5 is added to the policy used in Experiment 3. After learning 2000 episodes, the 
observed passing success rate is about 6 points higher than that in Experiment 3 (Fig. 2). Fig. 3 
shows that the scoring rate increases about twofold the rate observed in Experiment 3. Moreover, 
expectation of reward E[r] increases by three times that obtained in Experiment 3 (Fig. 4).  
 

In Figs. 5g and 5h, kicker’s ω5
K  and receiver’s ω4

R become much larger than the other weight 

coefficients. Since ω5
R nearly becomes zero after learning (Fig. 5h), a receiver does not try to 

predict a kicker’s action. The receiver does not leave its current position, because ω4
R is very 

large and the other weights are nearly zero. That is, the receiver stays and waits at his own 
current position. A kicker understands the receiver’s intention and follows the receiver’s choice. 

This kicker’s policy was obtained by increasing weight ω5
R of interaction term U5 because a kicker 

does not have heuristics U4
K that favors a pass close to a receiver. If the two agents do not have 

the same type of heuristics, the interaction term based on prediction of a teammate’s decision 
model accelerates learning a master-servant relation between a kicker and a receiver, where a 
receiver is a master and a kicker is a servant as shown in Fig.6. 
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  (a) Kicker (Exp. 1)   (b) Receiver (Exp. 1) 

 
  (c) Kicker (Exp. 2)   (d) Receiver (Exp. 2) 

 
  (e) Kicker (Exp. 3)   (f) Receiver (Exp. 3) 

 
  (g) Kicker (Exp. 4)   (h) Receiver (Exp. 4) 
 

FIGURE 5: Example of Change of Weight Coefficients {ωi
λ} during Learning Process in 

Experiments 1-4. 
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FIGURE 6: Master-servant Relation Obtained by the Interaction Term in Experiment 4, where a 
Kicker and a Receiver do not Have the Same Type of Heuristics. 

 

6. CONSLUSION & FUTURE WORK 
As an example of multi-agent learning problems, we considered a learning problem between a 
kicker and a receiver when a direct free kick is awarded just outside the opponent’s penalty area 
in the soccer games of the RoboCup 2D Soccer Simulation League. We proposed a function that 
expresses heuristics for evaluating how target position is advantageous for safely sending/ 
receiving a pass and scoring a goal. This evaluation function does not depend on the dimension 
of the soccer field and the number of players. The weight coefficients in the function were learned 
by a policy gradient method. However, we did not try to make the weight coefficients converged  

to certain values, for example, by decreasing ε in learning rule (7). Our method needs criteria for 
deciding which weight coefficients should be best. 
 
The heuristics includes an interaction term between a kicker and a receiver to intensify their 
coordination. The interaction term works to make an agent follow the teammate’s action. To 
calculate the interaction term, we let a kicker/receiver agent have a receiver’s/kicker’s action-
decision model to predict the teammate’s action. Except for the interaction term, information on 
the action-decision model is exchanged with a teammate at a certain time interval, i.e, every 10 
episodes during the learning process. The results of our learning experiments show that even if a 
kicker’s and a receiver’s heuristics are different, scoring rate is increased about two times of that 
obtained by learning without the interaction term. This means that adding an interaction term, 
which makes an agent follow a teammate’s action, and predicting the teammate’s action using 
the teammate’s action-decision model are very effective for two agents to acquire a common 
policy, even if they do not completely have identical action-decision heuristics. However, our 
method needs human heuristics enough for solving the target problem, and the action-decision 
model of a teammate for predicting the teammate’s action. 
 
In the future, our agents will have and learn both passer and receiver policies so that they can 
learn wall-passes. An agent must switch its role from a receiver to a passer, and vice versa. We 
will also apply our method to more general cooperative play such as keeping the ball away from 
opponents and making through passes. Using action-decision models of teammates would be 
very useful for learning such team play. 
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Appendix: Heuristic Functions from U1
λλλλ to U4

 λ λ λ λ
 

In our learning experiments, the following four heuristic functions {Ui
λ(a)} (i=1,2,3,4) were used to 

evaluate the suitability of the selected cell for kickers and receivers. In this section, let cell k be 
the one selected by kicker or receiver action a. All heuristic functions are normalized to avoid 
exceeding 10.0. Fig. 7 illustrates definitions of the four heuristic functions schematically. 
 

(i) U1
λ(a;s): considers the existence of opponents in the pass direction and is defined by 

 

( ) p-opp k

1

2.0    if  15   and  2.0
;

10.0  else

o

opp
d d

U a s
λ

θ ≤ ≥ −
= 


 ,     (13) 

 

where θp-opp is an angle between a pass direction and a direction to an opponent. dk is the 
distance between the center of cell k and a kicker. dopp is the distance between a kicker and the 
nearest opponent to the center of cell k. 
 

   
    
   (a) U1     (b) U2 
 

   
    
   (c) U3     (d) U4 
 

FIGURE 7: Heuristics {Ui
λ} (i=1,2,3,4). 

 
 

(ii) U2
λ(a;s): expresses a heuristics where shooting from nearer to the goal mouth has a greater 

chance of scoring a goal. It is defined by 
 

( ) ( )2
; 37.5 3.5

G G
U a s X Y

λ = − − +  ,       (14) 

 
where vector (XG,YG) is a distance vector between the center of cell k and the center of the goal 
mouth. 
 

(iii) U3
λ(a;s): evaluates a distance between the center of cell k and the nearest opponent to the 

center of cell k as follows: 
 

( ) ( )3 0 0
; 5.0U a s X Yλ = +

 ,         (15) 
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where vector (X0,Y0) is a distance vector between the center of cell k and the position of the 
nearest opponent. Heuristics U3 means that it is desirable to receive a pass near a place without 
opponents. 
 

(iv) U4
λ(a;s): considers the distance between the center of cell k and the current receiver’s 

position. It is defined by 
 

( ) ( )4 ; 50.0 5.0r rU a s X Y
λ = − − +  ,       (16) 

 
where vector (Xr,Yr) is a distance vector between the center of cell k and a receiver. If the distance 
is small, receivers can easily receive a pass. 

 


