Call for Papers - Ongoing round of submission, notification and publication.
    
  
Home    |    Login or Register    |    Contact CSC
By Title/Keywords/Abstract   By Author
Browse CSC-OpenAccess Library.
  • HOME
  • LIST OF JOURNALS
  • AUTHORS
  • EDITORS & REVIEWERS
  • LIBRARIANS & BOOK SELLERS
  • PARTNERSHIP & COLLABORATION
Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available
(no registration required)

(148.17KB)


-- CSC-OpenAccess Policy
-- Creative Commons Attribution NonCommercial 4.0 International License
>> COMPLETE LIST OF JOURNALS

EXPLORE PUBLICATIONS BY COUNTRIES

EUROPE
MIDDLE EAST
ASIA
AFRICA
.............................
United States of America
United Kingdom
Canada
Australia
Italy
France
Brazil
Germany
Malaysia
Turkey
China
Taiwan
Japan
Saudi Arabia
Jordan
Egypt
United Arab Emirates
India
Nigeria
Matrix Padding Method for Sparse Signal Reconstruction
Sabna N, P.R.Saseendran Pillai
Pages - 1 - 13     |    Revised - 31-1-2015     |    Published - 28-2-2015
Published in Signal Processing: An International Journal (SPIJ)
Volume - 9   Issue - 1    |    Publication Date - January / February 2015  Table of Contents
MORE INFORMATION
References   |   Abstracting & Indexing
KEYWORDS
Compressive Sensing, Greedy Algorithms, LMS Approximation, Relaxation Methods, Sparse Recovery, Sub-Nyquist Rate.
ABSTRACT
Compressive sensing has been evolved as a very useful technique for sparse reconstruction of signals that are sampled at sub-Nyquist rates. Compressive sensing helps to reconstruct the signals from few linear projections of the sparse signal. This paper presents a technique for the sparse signal reconstruction by padding the compression matrix for solving the underdetermined system of simultaneous linear equations, followed by an iterative least mean square approximation. The performance of this method has been compared with the widely used compressive sensing recovery algorithms such as l1_ls, l1-magic, YALL1, Orthogonal Matching Pursuit, Compressive Sampling Matching Pursuit, etc.. The sounds generated by 3-blade engine, music, speech, etc. have been used to validate and compare the performance of the proposed technique with the other existing compressive sensing algorithms in ideal and noisy environments. The proposed technique is found to have outperformed the l1_ls, l1-magic, YALL1, OMP, CoSaMP, etc. as elucidated in the results.
ABSTRACTING & INDEXING
1 Google Scholar 
2 CiteSeerX 
3 refSeek 
4 Scribd 
5 SlideShare 
6 PdfSR 
REFERENCES
D.L. Donoho. “Compressed Sensing.” IEEE Trans. Inform. Theory, vol. 52, no. 4, pp. 1289- 1305, Apr. 2006.
D.Needell and J.A.Tropp. “CoSaMP: Iterative Signal Recovery from Incomplete and Inaccurate Samples.” Applied Computational Harmonic Anal., vol. 26, no. 3, pp. 301–321, May 2009.
E. Candes, J. Romberg and T. Tao. “Stable Signal Recovery from Incomplete and Inaccurate Measurements.” Commun. Pure Applied Math., vol. 59, no. 8, pp. 1207-1223, Aug. 2006.
E. Cande`s and J. Romberg. “l1-MAGIC : Recovery of Sparse Signals via Convex Programming.” California Inst. Technol., Pasadena, CA, Tech. Rep., Oct. 2005. Available: http://users.ece.gatech.edu/~justin/l1magic/downloads/l1magic.pdf
E.J. Candès. “Compressive sampling,” in Proc. Int. Congr. Mathematicians, Madrid, Spain, vol. 3, 2006, pp. 1433–1452.
E.J. Candes and M.B. Wakin. “An Introduction to Compressive Sampling.” IEEE Signal Process. Mag., pp. 21-30, Mar. 2008.
E.J. Candes and T. Tao. “Decoding by Linear Programming.” IEEE Trans. Inform. Theory, vol. 51, no. 12, pp. 4203-4215, Dec. 2005.
J. Yang and Y. Zhang. “Alternating Direction Algorithms For l1-Problems In Compressive Sensing.” SIAM J. Scientific Computing, vol. 33, no. 1, pp. 250–278, 2011.
J.A. Tropp and A.C. Gilbert. “Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit.” IEEE Trans. Inform. Theory, vol. 53, no. 12, pp. 4655-4666, Dec. 2007.
J.A. Tropp and S.J. Wright. “Computational Methods for Sparse Solution of Linear Inverse Problems.” Proc. IEEE, vol. 98, no. 6, pp. 948-958, Jun. 2010.
J.A. Tropp. “Greed is Good: Algorithmic Results for Sparse Approximation.” IEEE Trans. Inform. Theory, vol. 50, no. 10, pp. 2231-2242, Oct. 2004.
K. Rao & P. Yip. Discrete Cosine Transform - Algorithms, Advantages, Applications. 1st Edition, Elsevier, Aug. 1990.
L. Vidya, V. Vivekananad, U. ShyamKumar, D. Mishra and R. Lakshminarayanan, “Feasibility Study of Applying Compressed Sensing Recovery Algorithms for Launch Vehicle Telemetry,” in IEEE Int. Conf. Microelectronics, Commun. Renewable Energy, 2013.
M.D. Plumbey, T. Blumensath, L. Daudet, R. Gribonval and M. Davis. “Sparse Representations in Audio and Music: From Coding to Source Separation.” Proc. IEEE, vol. 98, no. 6, pp. 995-1005, Jun. 2010.
Moreno-Alvarado and M. Martinez-Garcia. “DCT-Compressive Sampling of Frequency- sparse Audio Signals,” in Proc. World Congr. Eng. 2011, vol. II, London, UK, Jul. 2011.
R. Baraniuk, M. Davenport, R. DeVore and M. Wakin. “A simple proof of the Restricted Isometry Property for Random Matrices.” Constructive Approximation, vol. 28, no. 3, pp. 253–263, Dec. 2008.
R.G. Baraniuk, E. Candes, M. Elad and Y. Ma. “Applications of Sparse Representation and Compressive Sensing.” Proc. IEEE, vol. 98, no. 6, pp. 906-912, Jun. 2010.
R.G. Baraniuk, V. Cevher and M.B. Wakin. “Low-Dimensional Models for Dimensionality Reduction and Signal Recovery: A Geometric Perspective.” Proc. IEEE, vol. 98, no. 6, pp. 959-971, Jun. 2010.
R.G. Baraniuk. “Compressive sensing.” IEEE Signal Process. Mag., vol. 24, no. 4, pp. 118– 120,124, 2007.
S. Boyd and L. Vandenberghe. Convex Optimization, Cambridge University Press, 2004. Available: https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
S. Haykin. Adaptive Filter Theory. 3rd Edition, Prentice Hall, 1996.
S.J. Kim, K. Koh, M. Lustig, S. Boyd and D. Gorinevsky. “An Interior-Point method for Large-Scale l1-Regularized Least Squares.” IEEE J. Select. Topics Signal Process., vol. 1, no. 4, pp. 606–617, Dec. 2007.
Y. Chen, Y. Gu and A.O. Hero III. “Sparse LMS for system identification,” in IEEE Int. Conf. Acoustics, Speech and Signal Process, Apr. 2009, pp. 3125 – 3128.
Y. Gu, J. Jin and S. Mei. “lo Norm Constraint LMS Algorithm For Sparse System Identification.” IEEE Signal Process. Letters, vol. 16, no. 9, pp. 774-777, Sept. 2009.
Y. Zhang, J. Yang and W. Yin. “User’s guide for YALL1: Your algorithms for L1 Optimization.” Tech. Rep., 2010. [Online]. Available: http://www.caam.rice.edu/~optimization/L1/YALL1/User_Guide/YALL1v1.0_User_Guide.pdf
MANUSCRIPT AUTHORS
Miss Sabna N
Department of Electronics, Cochin University of Science and Technology, Cochin 682 022, India - India
sabnan@yahoo.com
Professor P.R.Saseendran Pillai
Department of Electronics - India


CREATE AUTHOR ACCOUNT
 
LAUNCH YOUR SPECIAL ISSUE
View all special issues >>
 
PUBLICATION VIDEOS
 
You can contact us anytime since we have 24 x 7 support.
Join Us|List of Journals|
    
Copyrights © 2025 Computer Science Journals (CSC Journals). All rights reserved. Privacy Policy | Terms of Conditions