Home   >   CSC-OpenAccess Library   >    Manuscript Information
Modeling and Simulation of Spread and Effect of Malaria Epidemic
ALUKO,Olabisi Babatope, BABATUNDE, Oluleye Hezekiah, ISIKILU Idayat Temilade, OJO Bamidele
Pages - 20 - 27     |    Revised - 15-05-2012     |    Published - 20-06-2012
Volume - 3   Issue - 1    |    Publication Date - June 2012  Table of Contents
Modelling, Malaria, Epidemic
The purpose of this paper is to consider malaria infection (A) and the control of malaria (B) as the two sets of soldiers engage in a war. The principal objectives are to see if it is possible with time to reduce and eradicate malaria in our environment taking reasonable precaution. The methodology approach is to model a mathematical equation using battling method approach to find the time(t) that control malaria in our environment will conquer the malaria infection i.e. when A(t)=0. The number of provided facilities (n) for the protection of malaria is also considered and varied. The result shows that as the number of malaria control increases the control time is decreasing.
1 Google Scholar 
2 CiteSeerX 
3 Scribd 
4 SlideShare 
5 PdfSR 
Anderson, R.M. et al (1989). Non-linear phenomena in host-parasite interactions. Parasitology 99 (Suppl.), S59-S79
Anderson, R.M., May, R.M. (1991). Infections Disease of Humans: Dynamics and control. Oxford, United Kingdom, Oxford University Press.
Ballou, W.R. et al (2004). Update on the Clinical Development of Candidate Malaria Vaccines. Am J Trop Med Hyg 71 (2 suppl): pp239 – 247.
Breman, J.G.; Egan, A.; Keusch, G.T. (2001). The intolerable burden of malaria: a new look at the numbers – Am J. trop med Hyg 64 (suppl): iv-vii.
Field, J.W. (1949). Blood examination and prognosis in acute falciparum malaria. Trans. R. Soc. Trop. Med. Hyg. 43, 33-48
Field, J.W.; Niven, J.C. (1937). A note on prognosis in relation to parasites counts in acute subtertian malaria. Trans. R. Soc. Trop. Med. Hyg. 6, 569-574.
Greenwood, B. et al (2005). Malaria. Lancet: 1487- 1498 [
Hellriegel, B. (1992). Modeling the immune response to malaria with ecological concepts: short- term behavior against long - term equilibrium. Proc. R. Soc. B 250, 249-256.
Hetzel, C.; Anderson, R.M. (1996). The within – host cellular dynamics of blood stage malaria – theoretical and experimental studies. Parasitology 113, 25-38.
Hyun, M Yang, (2001). A mathematical model for malaria transmission relating global warming and local socioeconomic conditions. Rev. saude public vol. 35 no 3 sao panlo June 2001.
Kitchen, S.F. (1949a). Falciparum malaria in malariology (ed. M.F. Boyd), pp. 995-1016. London, UK: Saunders.
Mackinnon, M.J.; Read, A.F. (2004). Virulence in Malaria: an evolutionary viewpoint. Phil Trans. R. Soc. B 359, 965 – 986.
Mc Queen, P.G.; Mckenzie, F.E. (2004). Age structured red blood cell susceptibility and the dynamics of malaria infections. Proc. Natl Acad. Sci USA 101, 9161 - 9166.
Molineaux, L. (2001). Plasmodium falciparum parasitaemia described by a new mathematical model. Parsitology 122, 379-391.
Rustom Antia, et al. (2008). The dynamics of acute malaria infections .1. Effect of the parasites red blood cell preference. Proc R. Soc B 2008 275, 1449-1458.
Snow, R.W. et al. (2005). The global distribution of clinical episodes of malaria. Nature 434:214-217
Thomas Smith. et al (2006) Mathematical modeling of the impact of malaria vaccines on the clinical epidemiology and natural entory of plasmodrum falciparum malaria: Overview am. J Trop. Med. Hyg, 75 (suppl 2), 2006 pp 1-10
Dr. ALUKO,Olabisi Babatope
- Nigeria
- Nigeria
Dr. Oluleye Hezekiah
- Nigeria
Dr. ISIKILU Idayat Temilade
- Nigeria
Dr. OJO Bamidele
- Nigeria

View all special issues >>