Home > CSC-OpenAccess Library > Manuscript Information
This is an Open Access publication published under CSC-OpenAccess Policy.
Publications from CSC-OpenAccess Library are being accessed from over 158 countries worldwide.
EXPLORE PUBLICATIONS BY COUNTRIES |
EUROPE | |
MIDDLE EAST | |
ASIA | |
AFRICA | |
............................. | |
United States of America | |
United Kingdom | |
Canada | |
Australia | |
Italy | |
France | |
Brazil | |
Germany | |
Malaysia | |
Turkey | |
China | |
Taiwan | |
Japan | |
Saudi Arabia | |
Jordan | |
Egypt | |
United Arab Emirates | |
India | |
Nigeria |
Design of Binary to BCD Code Converter using Area Optimized Quantum Dot Cellular Automata Full Adder
B. Ramesh, M.Asha Rani
Pages - 49 - 64 | Revised - 31-10-2015 | Published - 30-11-2015
Published in International Journal of Engineering (IJE)
MORE INFORMATION
KEYWORDS
ODE Converter, Quantum Dot Cellular Automata, Clock Zones, Wire Crossover, Majority Gate.
ABSTRACT
The Integrated Circuit Technology (IC) is growing day to day to improve circuit performance and density for compact systems. A novel technology, Quantum dot Cellular Automata (QCA) was introduced to overcome the scaling limitations of CMOS technology. In order to bring a new paradigm of IC design in an efficient and optimized manner, a binary to BCD code converter is designed using QCA technology based area optimized adder. It is observed that the proposed binary to BCD code converter design gives better results in terms of the area and number of QCA cells. The results obtained by the proposed design shows that 61% of area reduced compared to boolean expression based design, this design is further optimized to reduce the QCA cell count by 45% with respect to the design in [1].
1 | A.G. Sasikala, S. Maragatharaj, S. Jayadevi, “Effective binary to BCD converter using quantum dot cellular automata,” in Proc. 2nd Int. Conf. on devices circuits and systems, pp. 1-5, 2014. |
2 | Y.B.Kim, “Challenges for nanoscale MOSFETs and emerging nano-electronics,” IEEE Trans. Electr. Electron. Mater, vol. 11, no. 3, pp.93-105, 2010. |
3 | International Technology Roadmap for Semiconductors (ITRS), http://www.itrs.net, 2007. |
4 | C.S. Lent, P.D. Tougaw, W. Porod, and G.H. Bernstein, “Quantum Cellular Automata,” Nanotechnology, vol. 4, no. 1, pp. 49-57, Jan.1993. |
5 | S.E. Frost, A.F. Rodrigues, A.W. Janiszewski, R.T. Rausch, and P.M.Kogge, “Memory in motion: A study of storage structures in QCA,” in Proc. 1st workshop Non-silicon Comput., 2002, pp. 1-8. |
6 | Y.Lu, M.Liu, and C.S.Lent, “Molecular quantum-dot cellular automata: From molecular structure to circuit dynamics,” J.appl. Phys., vol. 102, no. 3, pp.034311-1-034311-7, 2007. |
7 | Y.Lu, M.Liu, and C.S.Lent, “Molecular electronics-From structure to circuit dynamics,” in proc. 6th IEEE conf. Nanotechnol., Jul. 2006, pp.62-65. |
8 | E.P. Blair, E. Yost, and C.S. Lent, “Power dissipation in clocking wires for clocked molecular quantum-dot cellular automata,” J. Comput. Electron., vol. 9, no. 1, pp. 49-55, 2010. |
9 | W. Liu, L. Liang, M. O’Neil, and E.E. Swartzlander, “A first step towards cost functions for quantum dot cellular automata designs,” Nanotechnology, vol. 13, no. 3, pp. 476-487, 2014 |
10 | D. Adedi, G. Jaberipur, and M. Sangsefidi, “Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover,” IEEE Trans. Nanotechnol., vol. 14, no. 3, pp. 497-504, may 2015. |
11 | M. Liu, and C.S. Lent, “High-speed metallic quantum-dot cellular automata,” in Proc. 3rd IEEE Conf. Nanotechnol. (IEEE NANO), vol. 2, Aug. 2003, pp. 465-468. |
12 | P. Bhattacharjee, K. Das, M. De, and D. De, “SPICE modeling and analysis for metal island ternary QCA logic device,” in Information Systems Design and Intelligent Applications (Advances in Intelligent Systems and Computing), vol. 339. West Bengal, India: Spingerverlag, 2015, pp. 33-41. |
13 | M. Mitic et al., “Demonstration of a silicon-based quantum cellular automata cell,” Appl. Phys. Lett., vol. 89, no.1, pp. 013503-1-013503-3, 2006. |
14 | P. Agawal, and B. Ghosh, “Innovative design methodologies in quantum dot cellular automata,” Int. J. Circuit Theory Appl., vol. 43, no. 2, pp. 253-262, 2015. |
15 | A. Pulimeno, M. Graziano, A. Sanginario, V. Cauda, D. Demarchi, and G. Piccinini, “Bisferrocene molecular QCA wire: Ab initio simulations of fabrication driven fault tolerance,” IEEE Trans. Nanotechnol., vol. 12, no. 4, pp. 498-507, Jul. 2013. |
16 | M. Awais, M. Vacca, M. Graziano, M.R. Roch, and G. Masera, “Quantum dot cellular check node implementation for LDPC decoders,” IEEE Trans. Nanotechnol., vol. 12, no. 3, pp. 368377, May 2013. |
17 | J. Huang, M. Momenzadeh, M.B. Tahoori, and F. Lombardi, “Defect characterization for scaling of QCA devices [quantum dot cellular automata],” in Proc. IEEE 19th Int. Symp. Defect Fault Tolerance VLST Syst., 2004, pp. 30-38. |
18 | A. Gin, P.D. Tougaw, and S. Williams, “An alternative geometry for quantum dot cellular automata,” J. Appl. Phys., vol. 85, no. 12, pp. 8281-8286, 1999. |
19 | P.D. Tougaw and C.S. Lent, “Logical devices implemented using quantum dot cellular automata,” J. Appl. Phys., vol. 75, no. 3, pp. 1818-1825, 1994. |
20 | A.S. Shamsabadi, B.S. Ghahfarokhi, K. Zamanifar, and N.Movahedinia, “Applying inherent capabilities of quantum-dot cellular automata to design: D flip-flop a case study,” J. Syst. Archit., vol. 55, no. 3, pp. 180-187, 2009. |
21 | M. Crocker, M. Niemier, X.S. Hu, and M. Lienerman, “Molecular QCA design with chemically reasonable constraints,”ACM J. Emerging Technol. Comput. Syst., vol. 4, no. 2, art. no. 9, 2008. |
22 | K. Walus and G.A. Jullien, “Design rules for an emerging SOC technology: quantum dot cellular automata,” Proc. IEEE, vol. 94, no. 6, pp. 1225-1244, Jun. 2006. |
23 | R. Devadoss, K. Pual, and M.Balakrishnan, “Coplanar QCA crossovers,” Electron. Lett., vol. 45, no. 24, pp. 1234-1235, 2009. |
24 | S.H. Shin, J.C. Jeon, and K.Y. Yoo, “Wire-crossing technique on quantum-dot cellular automata,” in Proc. 2nd Int. Conf. Next Generation Comput. Inform. Technol., vol. 27, 2013, pp. 52-57. |
25 | M. Sangsefidi, D. Adedi, and M. Moradian, “Design a collector with more reliability against defects during manufacturing in nanometer technology, QCA,” J. Softw. Eng. Appl. vol. 6, no.6, pp.304-312, 2013. |
26 | C.S. Lent, M. Liu, and Y. Lu, “Bennett clocking of quantum dot cellular automata and the limits of binary logic scaling,” Nanotechnology, vol. 17, no. 16, pp. 4240-4251, 2006. |
27 | H. Cho and E.E. Swartzlander, “Adder design and analysis for quantum dot cellular automata,” IEEE Trans. Comput., vol. 58, no. 6, pp. 721-727, Jun. 2009. |
28 | C.S. Lent and P. D. Tougaw, “A device architecture for computing with quantum dots,” Proc. IEEE, vol. 85, no. 4, pp. 541-557, Apr. 1997. |
29 | K. Walus, G. Jullien, and V. Dimitrov, “Computer arithmetic structures for quantum dot cellular automata,” in Proc. 37th Asilomar Conf. Rec. Signals, Syst, Comput., vol. 2, 2004, pp. 1435-1439. |
30 | H. Cho and E.E. Swartzlander, “Adder and multiplier design in quantum dot cellular automata,” IEEE Trans. Comput., vol. 58, no. 6, pp. 721-727, Jun. 2009. |
31 | H. Cho and E.E. Swartzlander, “Adder design and analysis for quantum dot cellular automata,” IEEE Trans. Comput., vol. 58, no. 6, pp. 721-727, Jun. 2009. |
32 | E.E. Swartzlander, H. Cho, I. Kong, and S.W. Kim, “Computer arithmetic implemented with QCA: a progress report,” in Proc. 44th Asilomar Conf. Rec. Signals, Syst, Comput., 2010, pp. 1392-1398. |
33 | A. Vetteth, K. Walus, V.S. Dimitrov, and G.A. Jullien, “Quantum dot cellular automata carrylook-ahead adder ad barrel shifter,” in Proc. IEEE Emerging Telecomm. Technol. Conf.,2002, pp. 2-4. |
34 | V. Pudi and K. Sridharan, “ New decomposition theorems on majority logic for low-delay adder designs in quantum dot cellular automata,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 59, no. 10, pp. 678-682, Oct. 2012. |
35 | K. Walus, T.J. Dysart, G.A. Jullien, and R.A. Budiamn, “QCADesigner: A rapid design and simulation tool for quantum dot cellular automata,” IEEE Trans. Nanotechnol., vol. 3, no. 1, pp. 26-31, Mar. 2004. |
36 | V. Pudi and K. Sridhran, “Low complexity design of ripple carry adder and Brent-Kung adders in QCA,” IEEE Trans. Nanotechnol., vol. 11, no. 1, pp. 105-119, Jan. 2012. |
37 | B.Bishnoi, M. Giridhar, B. Ghosh, and M. Nagaraju, “Ripple carry adder using five input majority gates,” in Proc. IEEE Int. Conf. Electron. Devices Solid State Circuit, 2012, pp. 1-4. |
38 | R. Zhang, K. Walus, W. Wang, and G.A. Jullien, “Performance comparison of quantum dot cellular automata adders,” in Proc. IEEE Int. Symp. Circuits Syst., 2005, pp. 2522-2526. |
39 | I. Hanninen and J. Takala, “Robust adders based on quantum dot cellular automata,” in Proc. IEEE Int. Conf. Appl. Specific Syst., Architect. Process., 2007, pp. 391-396. |
40 | W. Wang, K. Walus, and G.A. Jullien, “Quantum dot cellular automata adders,” in Proc. IEEE 3rd Conf. Nanotechnol., vol.1, 2003, pp.461-464. |
Mr. B. Ramesh
ECE Department Jawaharlal Nehru Technological University Hyderabad Hyderabad, 500085, India - India
brameshb2@rediffmail.com
Dr. M.Asha Rani
JNTU College of Engineering, Hyderabad - India