Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

This is an Open Access publication published under CSC-OpenAccess Policy.
Publications from CSC-OpenAccess Library are being accessed from over 158 countries worldwide.
Vibration Attenuation of a Thin Cantilevered Beam Using LQG-Based Controller and Inertial Actuator
Ameen El-Sinawi
Pages - 119 - 138     |    Revised - 30-04-2010     |    Published - 10-06-2010
Volume - 4   Issue - 2    |    Publication Date - May 2010  Table of Contents
Inertial actuators, optimal control, LQG, Modal Analysis
This study considers the problem of attenuating the vibration at a certain location on a flexible cantilevered beam mounted on a vibrating base which is the tip in this case. Attenuation is achieved without the need for sensor placement at that location. A modal state-space model of the flexible beam is constructed from the beam’s first ten modes of vibration. A reduced-order optimal observer is utilized to estimate the deflection of the beam’s tip from measurements of vertical deflections at mid-span and actuator locations. An inertial actuator is mounted on the beam itself, provides the control effort necessary for attenuating the tip vibration, resulting from shaker excitation. Experimental and simulation results have demonstrated the effectiveness of the proposed control technique.
1 Google Scholar 
2 Academic Journals Database 
3 ScientificCommons 
4 Academic Index 
5 CiteSeerX 
6 refSeek 
7 iSEEK 
8 Socol@r  
9 ResearchGATE 
10 Libsearch 
11 Scribd 
12 WorldCat 
13 SlideShare 
14 PdfSR 
16 Chinese Directory Of Open Access 
1 J. Dosch, D. Leo, and D. Inman. “Modeling and control for vibration suppression of a flexible active structure”. Journal of Guidance Control and Dynamics, 18(2): 340- 346, 1995
2 J. N. Juang and R. S. Pappa. “An eigensystem realization algorithm for modal parameter identification and model reduction (control systems design for large space structures)”
3 Gawronski, W. and Williams, T. “Modal reduction for flexible space structures”. Journal of Guidance, 4: 68–76, 1991
4 Y-R Hu and Alfred Ng. “Active robust vibration control of flexible structures”. Journal of Sound and Vibration, 288: 43-56, 2005
5 J-H Han, K-H Rew and I. Lee. “An experimental study of active vibration control of composite structures with a piezo-ceramic actuator and a piezo-film sensor”. Smart Materials and Structures, 6: 549-558, 1997
6 M. J. Balas. “Active control of flexible systems”. Journal of Optimization Theory and Applications, 25 (3): 415-436, 1978
7 Yen, H-Y. and Shen, M. H. “Passive vibration suppression of a beam and blades using magneto-mechanical coating”. Journal of Sound and Vibration, 245(4): 701-714, 2001
8 Griffin, J. H. “Friction damping resonant stresses in gas turbine engine airfoil”. International Journal of Turbo and Jet Engines, 7, pp. 297-307, 1999
9 H.A. Malki, M. D. Feigenspan, and D. G. Chen. “Fuzzy PID control of a flexible-joint robot arm with uncertainties from time-varying loads”. IEEE Transactions on Control Systems Technology, 5(3): 371-378. 1997
10 Krodkiewski, J. M. and Faragher, J. S. “Stabilization of motion of Helicopter rotor blades using delayed feedback-modeling, computer simulation and experimental verification”. Journal of Sound and Vibration, 234(4): 591-610, 2000
11 L. Benassi and S.J. Elliott. “Active vibration isolation using an inertial actuator with local displacement feedback control”. Journal of Sound and Vibration, 278: 705–724, 2004
12 L. Benassi and S.J. Elliott. “Global control of a vibrating plate using a feedback-controlled inertial actuator”. Journal of Sound and Vibration, 283: 69-90, 2005
13 N. Hogan. “Impedance control: An approach to manipulation”. Journal of Dynamic Systems Measurement and Control, 107: 8-16, 1985
14 A. H. El-Sinawi. “Vibration attenuation of a flexible beam mounted on a rotating compliant hub”. I-Mech, Part I, Journal of Systems and Control Engineering, 218:121-135, 2004
15 El-Sinawi, A. H. and Hamdan, M. N. “Optimal vibration estimation of a non-linear flexible beam mounted on a rotating compliant hub”. Journal of Sound and Vibration, 259(4), pp. 857-872, 2003
16 El-Sinawi, A. H. and Kashani, A. R. “Active isolation using a Kalman estimator-based controller”. Journal of Vibration and Control, 7: 1163–1173, 2001
17 M. R. Serbyn. “Active control of cantilever-beam vibration”. Journal of Acoustical Society of America, 112 (5)5: 2246-2247, 2002
18 J. J. Dosch, G. A. Lesieutre; G. H. Koopmann; and C. L. Davis. “Inertial piezo-ceramic actuators for smart structures”. Smart Structures and Materials, 2447: 14-25, 1995
19 R. Babuska and H. B. Verbruggen. “An overview of fuzzy modeling for control”. Control Engineering Practice, 4 (11): 1593-1606, 1996
20 H. Irschik. A review on static and dynamic shape control of structures by piezo-electric actuation. Engineering Structures, 24(1): pp. 5-11, 2002
21 L.-C. Yao, J.-S. Chen, C,-Y, Hsu, “A Mode Switching Sliding-mode Controller with Observer-based State-Dependent Boundary Layer and Its Application”. International Journal of Engineering, 1(1): 39-53, 2007
22 C. Paulitsch, P. Gardonio and S. J. Elliot. “Active vibration control using an inertial actuator with internal damping”. Journal of Acoustical Society of America, 119 (4), pp. 2131-2140, 2006
23 [23]. Gawronski, W. and Williams, T. “Modal reduction for flexible space structures”. Journal of Guidance, 4: 68–76, 1991
24 [24]. Gawronski, W. K. “Dynamics and Control of Structures”, (Springer-Verlag; New York: First edition.), 1998
25 Bellos, J. and Inman, D. J. “Frequency response of non-proportionally damped, lumped parameter, linear dynamic system”. ASME Journal of Vibration and Acoustics, 112, pp. 194-201, 1990
26 Skelton, R. E. and Hughes, P. C. “Modal cost analysis of linear matrix second-order system”. Journal of Dynamic Systems, Measurements and Control, 102: 151-158, 1980
27 [27]. Maciejowski, J. M. “Multi Variable Feedback Design”. (Addison-Wesley; Workingham: England.) 1989
Associate Professor Ameen El-Sinawi
American University of Sharjah - United Arab Emirates