Home   >   CSC-OpenAccess Library   >    Manuscript Information
IoT Network Attack Detection using Supervised Machine Learning
Sundar Krishnan, Ashar Neyaz, Qingzhong Liu
Pages - 18 - 32     |    Revised - 31-05-2021     |    Published - 30-06-2021
Volume - 10   Issue - 2    |    Publication Date - June 2021  Table of Contents
Supervised Learning, Network Attack Detection, IoT, Network Forensics, Network Security.
The use of supervised learning algorithms to detect malicious traffic can be valuable in designing intrusion detection systems and ascertaining security risks. The Internet of things (IoT) refers to the billions of physical, electronic devices around the world that are often connected over the Internet. The growth of IoT systems comes at the risk of network attacks such as denial of service (DoS) and spoofing. In this research, we perform various supervised feature selection methods and employ three classifiers on IoT network data. The classifiers predict with high accuracy if the network traffic against the IoT device was malicious or benign. We compare the feature selection methods to arrive at the best that can be used for network intrusion prediction.
1 Google Scholar 
2 Semantic Scholar 
3 BibSonomy 
4 refSeek 
5 ResearchGate 
6 J-Gate 
7 Scribd 
8 SlideShare 
A. Kumar, W. Glisson, and H. Cho, “Network Attack Detection Using an Unsupervised Machine Learning Algorithm” in Proc. 53rd Hawaii Int.Conf. Syst. Sci. Hawaii International Conference on System Sciences, 2020, [On-line], Available: https://aisel.aisnet.org/hicss- 53/st/cyber_threat_intelligence/8/, [Jan. 05, 2021].
Avast Threat Intelligence Team, “Hacker creates seven new variants of the Mirai botnet”, Internet: https://blog:avast:com/hacker-creates-seven-new-variants-of-the-mirai-botnet, 2018, [Jan. 05, 2021].
“Caret: Classification and Regression Training.”, Internet: https://cran:r- project:org/web/packages/caret/index:html, [Jan. 16, 2021].
“Distributed Random Forest (DRF).”, Internet: http://docs:h2o:ai/h2o/latest-stable/h2o- docs/data-science/drf:html, [Jan. 18, 2021].
“File:Random forest diagram complete.png - Wikimedia Commons.”, Internet: https://commons:wikimedia:org/wiki/File:Randomforest diagram complete:png, [Jan. 16, 2021].
“How 5G and IoT devices open up the attack surface on enterprises - Security Boulevard.”, Internet: https://securityboulevard:com/2020/04/how-5g-and-iot-devicesopen-up-the-attack- surface-on-enterprises/, 2020, [Jan. 05, 2021].
“New Cisco Annual Internet Report Forecasts 5G to Support More Than 10% of Global Mobile Connect — The Network.” Internet: https://newsroom:cisco:com/pressrelease- content?type=webcontentfn&garticleId=2055169, [Jan. 05, 2021].
“Recursive Feature Elimination — Yellowbrick v1.2.1 documentation.”, Internet: https://www:scikit-yb:org/en/latest/api/modelselection/rfecv:html, [Jan. 15, 2021].
“The ”Only” Coke Machine on the Internet.”, Internet: https://www:cs:cmu:edu/f_gcoke/history long:txt, [Jan. 05, 2021].
“What is an Intrusion Detection System?”, Internet: https://www:barracuda:com/glossary/intrusion-detection-system, [Jan. 05, 2021].
“What is Supervised Learning?”, Internet: https://www:ibm:com/cloud/learn/supervised- learning, [Jan. 16, 2021].
C. Ioannou and V. Vassiliou, May 2019, “Classifying security attacks in IoT networks using supervised learning” in Proc. - 15th Annu. Int. Conf. Distrib. Comput. Sens. Syst. DCOSS 2019. Institute of Electrical and Electronics Engineers Inc., [On-line] pp. 652–658., Available: https://ieeexplore.ieee.org/abstract/document/8804727, [Jan. 11, 2021].
E. Anthi, L. Williams, M. Slowinska, G. Theodorakopoulos, and P. Burnap, Oct 2019, “A Supervised Intrusion Detection System for Smart Home IoT Devices,” IEEE Internet Things J., [On-line] vol. 6, no. 5, pp. 9042–9053, Available: https://ieeexplore.ieee.org/document/8753563, [Jan. 11, 2021].
E. Balkanli, J. Alves, and A. N. Zincir-Heywood, Jan 2014, “Supervised learning to detect DDoS attacks,” in IEEE SSCI 2014 2014 IEEE Symp. Ser.Comput. Intell. - CICS 2014 2014 IEEE Symp. Comput. Intell. Cyber Secur. Proc. Institute of Electrical and Electronics Engineers Inc., Available: https://ieeexplore.ieee.org/document/7013367, [Jan. 07, 2021].
E. Hodo, X. Bellekens, A. Hamilton, P.-L. Dubouilh, E. Iorkyase, C. Tachtatzis, and R. Atkinson, 2016, “Threat analysis of IoT networks Using Artificial Neural Network Intrusion Detection System” 016 International Symposium on Networks, Computers and Communications (ISNCC), [On-line] pp. 1-6, doi: 10.1109/ISNCC.2016.7746067. Available: https://ieeexplore:ieee:org/abstract/document/7746067/, [Jan. 09, 2021].
E. Montalbano, “Report: Most Popular Home Routers Have ‘Critical’ Flaws,” Internet: https://threatpost:com/report-mostpopular-home-routers-have-critical-flaws/157346/, 2020, [Jan. 11, 2021].
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, P. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, A. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, and E. Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, “Scikit- learn: Machine Learning in fPgython.” Internet: https://scikit- learn:org/stable/modules/generated/sklearn:svm:SVC:html, [Jan. 18, 2021].
H. Kang, D. H. Ahn, G. M. Lee, J. D. Yoo, K. H. Park, and H. K. Kim, “IoT network intrusion dataset”, Internet: https://ieee-dataport:org/open-access/iot-network-intrusion-dataset, 2019, [Jan. 05, 2021].
I. El Naqa and M. J. Murphy, 2015, What Is Machine Learning? Cham: Springer International Publishing, [On-line] pp. 3–11, Available: https://doi:org/10:1007/978-3-319- 18305-3 1, [Jan. 14, 2021].
I. Ullah and Q. H. Mahmoud, “A Scheme for Generating a Dataset for Anomalous Activity Detection in IoT Networks,” in Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 12109 LNAI. Springer, may 2020, pp. 508–520. [On- line]. Available: https://link:springer:com/chapter/10:1007/978-3-030-47358-7 52, [Jan. 05, 2021].
J. Sakhnini, H. Karimipour, and A. Dehghantanha, Aug 2019, “Smart Grid Cyber Attacks Detection Using Supervised Learning and Heuristic Feature Selection,” in Proc. 2019 7th Int. Conf. Smart Energy Grid Eng. SEGE 2019. Institute of Electrical and Electronics Engineers Inc., [On-line] pp. 108–112., Available: https://ieeexplore.ieee.org/document/8859946, [Jan. 07, 2021].
K. Kersting, Nov 2018, “Machine Learning and Artificial Intelligence: Two Fellow Travelers on the Quest for Intelligent Behavior in Machines,” Front. Big Data, [On-line] vol. 1, p. 6, Available: https://www:frontiersin:org/article/10:3389/fdata:2018:00006/full, [Jan. 15, 2021].
K. P. Shung, “Accuracy, Precision, Recall or F1?”, Internet: https://towardsdatascience:com/accuracy-precision-recall-orf1-331fb37c5cb9, 2015, [Jan. 18, 2021].
L. F. Carvalho, S. Barbon, L. D. S. Mendes, and M. L. Proença, Jul 2016, “Unsupervised learning clustering and self-organized agents applied to help network management”, Expert Syst. Appl., [On-line]. vol. 54, pp. 29–47, Available: https://dl.acm.org/doi/abs/10.1016/j.eswa.2016.01.032, [Jan. 05, 2021].
L. Xiao, X. Wan, X. Lu, Y. Zhang, and D. Wu, Sep 2018, “IoT Security Techniques Based on Machine Learning: How Do IoT Devices Use AI to Enhance Security?” IEEE Signal Process. Mag., [On-line] vol. 35, no. 5, pp. 41–49, Available: https://ieeexplore.ieee.org/document/8454402, [Jan. 07, 2021].
M. Caron, P. Bojanowski, A. Joulin, and M. Douze, Jul 2018, “Deep Clustering for Unsupervised Learning of Visual Features,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), [On-line] vol. 11218 LNCS, pp. 139–156, Available: http://arxiv:org/abs/1807:05520, [Jan. 07, 2021].
NIST Glossary, Internet: https://csrc.nist.gov/glossary/term/Cyber_Attack, [Jan. 05, 2021].
P. A. Networks, “2020 Unit 42 IoT Threat Report”, Internet: https://start:paloaltonetworks:com/unit-42-iot-threat-report, 2020, [Jan. 05, 2021].
S. Grimaldi, A. Mahmood, and M. Gidlund, Dec 2018, “Real-Time Interference Identification via Supervised Learning: Embedding Coexistence Awareness in IoT Devices,” IEEE Access, [On-line] vol. 7, pp. 835–850, Available: https://ieeexplore.ieee.org/document/8570750, [Jan. 11, 2021].
S. Morgan, “Cybercrime To Cost The World $10.5 Trillion Annually By 2025,” Internet: https://cybersecurityventures:com/hackerpocalypse-cybercrime-report- 2016/fn#g:f_g:text=Cyberattacksarethefastestgrowing;insizefn%g2Csophisticationandcost:fn >ext=oeDDoSattacksfn%g2Cransomwarefn%g2Cand;SharkonABC’sSharkTank, 2020, [Jan. 05, 2021].
S. Mukherjee, H. Asnani, E. Lin, and S. Kannan, Jul 2019, “ClusterGAN: Latent space clustering in generative adversarial networks,” in 33rd AAAI Conf. Artif. Intell. AAAI 2019, 31st Innov. Appl. Artif. Intell. Conf. IAAI 2019 9th AAAI Symp. Educ. Adv. Artif. Intell. EAAI 2019, [On-line]. vol. 33, no. 01. AAAI Press, pp. 4610–4617.. Available: www:aaai:org, [Jan. 05, 2021].
S. Pafka, “Benchmarking Random Forest Implementations”, Internet: http://datascience:la/benchmarking-random-forestimplementations/, 2015, [Jan. 18, 2021].
T. Chen and C. Guestrin, Aug 2016, “XGBoost,” Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., Available: http://dx:doi:org/10:1145/2939672:2939785, [Jan. 18, 2021].
V. Morde and V. A. Setty, “XGBoost Algorithm: Long May She Reign!”, Internet: https://towardsdatascience:com/https-medium-com-vishalmordexgboost-algorithm-long-she- may-rein-edd9f99be63d, 2019 [Jan. 18, 2021].
V. Morfino and S. Rampone, Mar 2020, “Towards Near-Real-Time Intrusion Detection for IoT Devices using Supervised Learning and Apache Spark,” Electronics, [On-line] vol. 9, no. 3, p. 444, Available: https://www:mdpi:com/2079-9292/9/3/444, [Jan. 09, 2021].
Y. Charfaoui, “Hands-on with Feature Selection Techniques: Wrapper Methods,” Internet: https://heartbeat:fritz:ai/hands-onwith-feature-selection-techniques-wrapper-methods- 5bb6d99b1274, 2020, [Jan. 15, 2021].
Mr. Sundar Krishnan
Department of Computer Science, Sam Houston State University, Huntsville, TX - United States of America
Mr. Ashar Neyaz
Department of Computer Science, Sam Houston State University, Huntsville, TX - United States of America
Dr. Qingzhong Liu
Department of Computer Science, Sam Houston State University, Huntsville, TX - United States of America

View all special issues >>