

INTERNATIONAL JOURNAL OF SOFTWARE

ENGINEERING (IJSE)

VOLUME 3, ISSUE 2, 2012

EDITED BY

DR. NABEEL TAHIR

ISSN (Online): 2180-1320

I International Journal of Software Engineering (IJSE) is published both in traditional paper form

and in Internet. This journal is published at the website http://www.cscjournals.org, maintained by

Computer Science Journals (CSC Journals), Malaysia.

IJSE Journal is a part of CSC Publishers

Computer Science Journals

http://www.cscjournals.org

INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING

(IJSE)

Book: Volume 3, Issue 2, April 2012

Publishing Date: 16 - 04 - 2012

ISSN (Online): 2180-1320

This work is subjected to copyright. All rights are reserved whether the whole or

part of the material is concerned, specifically the rights of translation, reprinting,

re-use of illusions, recitation, broadcasting, reproduction on microfilms or in any

other way, and storage in data banks. Duplication of this publication of parts

thereof is permitted only under the provision of the copyright law 1965, in its

current version, and permission of use must always be obtained from CSC

Publishers.

IJSE Journal is a part of CSC Publishers

http://www.cscjournals.org

© IJSE Journal

Published in Malaysia

Typesetting: Camera-ready by author, data conversation by CSC Publishing Services – CSC Journals,

Malaysia

CSC Publishers, 2012

EDITORIAL PREFACE

The International Journal of Software Engineering (IJSE) provides a forum for software
engineering research that publishes empirical results relevant to both researchers and
practitioners. It is the second issue of third volume of IJSE and it is published bi-monthly, with
papers being peer reviewed to high international standards.

The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal.
Starting with volume 3, 2012, IJSE appears in more focused issues. Besides normal publications,
IJSE intend to organized special issues on more focused topics. Each special issue will have a
designated editor (editors) – either member of the editorial board or another recognized specialist
in the respective field.

IJSE encourage researchers, practitioners, and developers to submit research papers reporting
original research results, technology trend surveys reviewing an area of research in software
engineering, software science, theoretical software engineering, computational intelligence, and
knowledge engineering, survey articles surveying a broad area in software engineering and
knowledge engineering, tool reviews and book reviews. Some important topics covered by IJSE
usually involve the study on collection and analysis of data and experience that can be used to
characterize, evaluate and reveal relationships between software development deliverables,
practices, and technologies. IJSE is a refereed journal that promotes the publication of industry-
relevant research, to address the significant gap between research and practice.

IJSE gives the opportunity to researchers and practitioners for presenting their research,
technological advances, practical problems and concerns to the software engineering. IJSE is not
limited to a specific aspect of software engineering it cover all Software engineering topics. In
order to position IJSE amongst the most high quality journal on computer engineering sciences, a
group of highly professional scholars are serving on the editorial board. IJSE include empirical
studies, requirement engineering, software architecture, software testing, formal methods, and
verification.

International Editorial Board ensures that significant developments in software engineering from
around the world are reflected in IJSE. The submission and publication process of manuscript
done by efficient way. Readers of the IJSE will benefit from the papers presented in this issue in
order to aware the recent advances in the Software engineering. International Electronic editorial
and reviewer system allows for the fast publication of accepted manuscripts into issue publication
of IJSE. Because we know how important it is for authors to have their work published with a
minimum delay after submission of their manuscript. For that reason we continue to strive for fast
decision times and minimum delays in the publication processes. Papers are indexed &
abstracted with International indexers & abstractors.

EDITORIAL BOARD

EDITORIAL BOARD MEMBERS (EBMs)

Dr. Richard Millham
University of Bahamas
Bahamas

Dr. Vitus S.W. Lam
The University of Hong Kong
 Hong Kong

Dr Xiaohong (Sophie) Wang
Salisbury University
United States of America

International Journal of Software Engineering (IJSE), Volume (3), Issue (2) : 2012

TABLE OF CONTENTS

Volume 3, Issue 2, April 2012

Pages

11 - 22

23 - 31

Contributors to Reduce Maintainability Cost at the Software Implementation Phase

Mohammed Abdullah H. Al-Hagery

Distributed Agile Development: Practices for building trust in team through Effective

communication

Satya Prasad Ravi, Lakshmi Sridhar Movva, B.Reddaiah

32 - 39 Java-centered Translator-based Multi-paradigm Software Development Environment
Xiaohong (Sophie) Wang

40 - 51 Using Met-modeling Graph Grammars and R-Maude to Process and Simulate LRN Models
Nardjess Dehimi, Allaoua Chaoui

Mohammed Abdullah H. Al-Hagery

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 11

Contributors to Reduce Maintainability Cost at the Software
Implementation Phase

Mohammed Abdullah H. Al-Hagery
Faculty of Computer/Department of Computer Science,
Qassim University, Boridah, KSA

Abstract

Software maintenance is important and difficult to measure. The cost of maintenance is the
most ever during the phases of software development. One of the most critical processes in
software development is the reduction of software maintainability cost based on the quality of
source code during design step, however, a lack of quality models and measures can help
asses the quality attributes of software maintainability process. Software maintainability suffers
from a number of challenges such as lack source code understanding, quality of software code,
and adherence to programming standards in maintenance. This work describes model based-
factors to assess the software maintenance, explains the steps followed to obtain and validate
them. Such a method can be used to eliminate the software maintenance cost. The research
results will enhance the quality of the source code. It will increase software understandability,
eliminate maintenance time, cost, and give confidence for software reusability.

Keywords: Maintainability Time, Software Maintenance, Standard Code, Quality of lines of
Code, Understandability, Maintainability Factors.

1. INTRODUCTION
Software maintenance is an important phase in the software life cycle. It focuses on keeping
the software fully functional and up to date. Maintenance engineers used different approaches
and methods to gain understanding of software systems so maintenance tasks can be
performed effectively. A lot of efforts have been put into finding a way to measure
maintainability of software [1].

Maintainability cannot be seen as an attribute of the software system alone, because it
depends a great deal on who maintains it, a team that has a lot of experience with a particular
system will maintain it more easily. Both the software and the team have internal attributes that
influence maintainability, for example, structural complexity of the software and skill of the team
members. We want to survey the factors that lead to low or high maintainability [2].

A change request can be due to a failure, changing requirements, prevention or any other
reason. The activities by the maintenance team include actually performing the change, but
also documenting, testing, and reporting, depending on the maintenance procedures. When a
system is changed extensively a new team is formed to implement the changes that are not
regarded as a change. Such a situation is more like a new system being developed [2]. There
are many factors that influence maintainability can be assembled and adapted from [3], [4], [5],
[6], [7], [8], [9]. Measuring the maintainability of source code revisions presents some
challenges [10].

This work concentrates on quality of source code rather than code defects. Code defects are
defects attributable to coding errors such as branching to a wrong location. These defects are
found throughout the coding process as well as in final test of changes and enhancements to
an application.

1.2 Survey of Related Works
The largest cost associated with any software product over its life-cycle is the software
maintenance cost. One approach to controlling maintenance costs was to utilize software
metrics during the development phase [11]. A number of studies is examining the link between
Object Oriented software metrics and maintainability have found that in general these metrics

Mohammed Abdullah H. Al-Hagery

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 12

can be used as predictors of maintenance effort [12],[11],[13],[14], and [15], which can be
measured in working hours.

Yuming and Hareton, presented an empirical study that sought to build object-oriented software
maintainability prediction models using a novel exploratory modeling technique, MARS. To
build the MARS models, they made use of the Li and Henry’s data sets, UIMS and QUES,
obtained from two different object-oriented systems. The prediction performances of the MARS
models were assessed and compared with those of the multivariate linear regression models.
These models are the artificial neural network models, the regression tree models, and the
support vector models, but their focus was not on the implementation phase and data set used
was not enough to prove the suggested model [16].

Mari et al. introduces the framework of maintainability and the techniques that promote
maintainability in three abstraction levels; system, architecture and component. In system
dimension, the maintainability requirement is considered from a business related point of view.
In architecture, maintainability means a set of quality attributes e.g. extensibility and flexibility.
At the component level, maintainability focuses on modifiability, reusability, integration, and
testability [17]. Ardimento et al. in [18] reports the results of their empirical study aimed at
understanding how characterizations of components affect the maintenance effort of the
system components. They have made the assessment that:

(i) Functionality of each component should be as concentrated as possible over a single aspect

of the application domain,
(ii) The training time offered by the component’s producer usually indicates the complexity of

understanding it and if a component is difficult to understand, then it is difficult to maintain;
and

(iii) A deep knowledge of the component is necessary for the organization before its adoption.

Van Koten and Gray, make the first use of the BBNs in building software maintainability
prediction models. They use a special type of Bayesian networks called Naïve–Bayes classifier,
which assumes no expert knowledge about the prior probability distribution but learns it from
data by batch learning. The results show that the prediction accuracy of the BBN model is more
accurate than regression-based models for one system but is less accurate than regression-
based models for another system. Accurate software metrics-based maintainability prediction is
desirable first because it reduces future maintenance efforts by enabling developers to better
identify the determinants of software quality and thereby improve design or coding, and second
because it provides managers with information for more effectively planning the use of valuable
resources. Although a number of maintainability prediction models have been developed in last
decade, they have low prediction accuracies according to the criteria suggested in [15], [19].

Maintainability metrics are commonly language dependent, and computing them requires tools
that typically assume access to the full definitions of the software entities [10]. It was found that
a number of metrics such as the lines of code changed, and the number of operators changed
are strongly correlated to maintenance efforts [1]. Heitlager et al. discussed several problems
with the maintainability index (MI), and they identified a number of requirements to be fulfilled
by a maintainability model to be usable in practice. they sketched a maintainability model that
alleviates most of these problems, and discussed their experiences with using such as system
for IT management consultancy activities [20].

Bertoa et al. have been reported that they presented a set of measures to assess the
maintainability of software components. Furthermore, they described the process followed to
obtain and validate them. Such a process can be maintained for defining and validating
measures for other quality characteristics [21]. Wu et al. proposed a technique for maintaining
evolving component based system by utilizing a static analysis to identify the interfaces, events
and dependence relationship that would be affected by the modification in the maintenance
activity [22], [23]. The maintainability of a software system can be measured in different ways.
Currently and in past studies, maintainability has been defined as ‘‘time required to make
changes’’ and ‘‘time to understand, develop, and implement modification’’[24]. As well as,
Yuming and Hareton measured the maintainability of a software system as the number of
changes made to code during a maintenance period. They employed a novel exploratory

Mohammed Abdullah H. Al-Hagery

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 13

modeling technique, multiple adaptive regression splines (MARS), for building maintainability
prediction models using the metric data collected from two different object-oriented systems
[16].

1.3 Motivations and Objective
One of the most critical processes in software development is the reduction of software
maintainability cost accordingly the quality of code design, however, a lack of quality models
and metrics can help asses the software maintainability process. Software maintainability
suffers from many challenges such as lack of source code quality, and source code
understanding, adherence to programming standards in maintenance. The main objective of
this work is to define and establish a Criteria-Based-Model that can be used to assess S/W
quality characteristics, and that can assist in implementation phase. Such criteria could reduce
the maintenance cost; these criteria will be created as three or one group. This objective can be
detailed in the following points:
1.Create a group of criteria that support writing a standard software programs(proposed

criteria)
2.Construction of a mathematical model for applying the proposed criteria to reduce the final

S/W cost.
3.Increase S/W understandability, readability and flexibility.
4.Participation of undergraduate students in the research work through the formation of work

groups to study the code standardization, to write some programs and then execute software
maintenance on several software programs. These programs help to ensure acceptance of
the model and the proposed factors or criteria.

2. SOFTWARE MEASUREMENT
Software measures can be classified into three types; derived measures, base measures, and
indicators. Base measures do not depend upon any other measure (e.g., the number of tables
in the manuals). A derived measure is derived from other base or derived measures (e.g., the
ratio of methods per interface). An indicator is a measure that is derived from other measures
using an analysis model according to decision criteria. The objective of that is to obtain a
measurement result that satisfies an information need (e.g., the size of a sub-system is
“medium” if it has more than 30 assemblies, provides more than 45 interfaces, and its manuals
have more than 7,000 Line of Code (LOC).

Measures relate a defined measurement approach and a measurement scale. A measurement
approach is the logical sequence of operations, described generally, used in quantifying an
attribute with respect to a specified scale [25]. A measure is expressed in units, and can be
defined for more than one attribute. Examples of measures for software component attributes
include the number of provided interfaces, the ratio of methods per required interface, or the
throughput of video frames emitted per input video frame (they correspond, respectively, to
possible measures for the aforementioned attributes size, interface complexity, and
performance)[21].

Accurate software metrics-based maintainability prediction can not only enable developers to
better identify the determinants of software quality and thus help them improve design or
coding, it can also provide managers with useful information to help them plan the use of
valuable resources[16].
The act of measuring software is a measurement, which can be defined as the set of
operations that aims at determining a value of a measurement result, for a given attribute of an
entity, using a measurement approach [21].

The term metric is not present in the measurement terminology of any other engineering
disciplines, at least with the meaning it is commonly used in software measurement. Therefore,
the use of the term “software metric” seems to be imprecise, while the term “software measure”
`seems to be more appropriate to represent this concept. Accordingly, in the following the term
measure will be used. This is also consistent with ISO/IEC and IEEE Computer Society
positions which, in order to ensure both consensus and consistency with other fields of
sciences, made a decision in the year 2002 to align their terminologies on measurement with
the internationally accepted standards in this field. In particular, ISO-JTC1-SC7 is trying to

Mohammed Abdullah H. Al-Hagery

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 14

follow as much as possible the ISO international vocabulary of basic and general terms on
metrology [26]. A number of software metrics measuring maintainability has been proposed by
means of theoretical and empirical studies. However, component based system presents a
unique maintenance challenges. Unlike the traditional software systems, one cannot be done
by viewing or changing the source codes of the component, but are restricted to reconfiguring
and reintegrating components [27].

3. MAINTAINABILITY
Maintainability [28] is “The ease with which a software system or component can be modified to
correct faults, improve performance or other attributes, or adapt to a changed environment”.
The seminal research work by Basili and Turne in 1975 has identified different characteristics of
software system that effect software maintainability. Effective maintenance involves detailed
observations of the behavior of a system and is driven by software complexity [29]. Voas in
1998 provided an overview of the maintenance challenges raised by Component Based
Software Development by identifying reasons including frozen functionality, incompatible
upgrades, unreliable components and complex middleware [27].

The “understandability” of a source code is related directly to the maintainability, because
understandability is one of the dominant factors affecting software maintainability [30]. For
example, let us assume a perfect source code that does not have any faults or logical errors.
Nevertheless, if a source code is difficult to understand, an increase of costs and/or of failure
potential during maintenance is then inevitable. Several factors such as complex logic, the
many variables included in a code and lengthy codes could interfere with the understanding of
the program context by maintenance personnel [31].

3.1 Maintainability Attributes
The software maintainability affects by a number of criteria such as: understandability,
reusability, learnability, readability, and operability. It can be defined as follow:

• Understandability: the capability of the component to enable the user to understand whether the
component is suitable, how it can be used for particular tasks and conditions of use. System
developers should be able to select a component suitable for their intended use, for example,
component elements (e.g. interfaces, operations) should be easy to understand [21].

• Reusability: the capability of the software to enable the developer or the maintainer to modify its
functions easily.

• Readability: the ability of the software to enable the developer or maintainer to understand the
software functions by reading its lines of source code.

• Learnability: the capability of the software component to enable the user or system developer to
learn its application. For example, the user manual and the help system should be completed,
the help should be context sensitive and explain how to perform common tasks, etc.

• Operability: the capability of the software component to enable the user (system developer) to
operate and control it. An Operability measure should be able to assess whether system
developers can easily operate and control the component. Operability measures can be
categorized by the dialogue principles described in ISO/IEC-9241-10 [21]. Figure 1 illustrates
the relation between maintainability and source of code.

Mohammed Abdullah H. Al-Hagery

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 15

3.2 Factors Affecting Maintainability
In [32], four main factors for software maintainability are included in ISO/IEC 9126 such as
analyzability, changeability, stability, and testability. These factors are defined clearly in [33].
First, analyzability is attributes of software that bear on the effort needed to diagnose of
deficiencies or causes of failure and to identify parts to be modified. Second, changeability is
some attributes of software that bear on the effort needed to make modifications, eliminate
faults or change the system in response to environmental change. Third, stability that can be
represented by attributes of software that bear on the risks associated with unexpected effects
of modifications. Finally, Testability attributes of software that bear on the effort needed to
validate modifications.

Studies that take the application development view of software seem to address maintenance
as an afterthought of development rather than a critical and expensive part of the total system
life-cycle. For example, Dekleva [34] evaluates how the choice of development approach will
influence maintenance. Perry in [35] addresses maintenance quality in the context of
development quality. The maintenance phase of the life-cycle is a natural and necessary part of
the system operation [36]. Software evolves over time primarily due to changes in requirements
and technologies. As a result, Information systems development is typically acknowledged as
an expensive and lengthy process, often producing code that is of uneven quality and difficult to
maintain. Software reuse has been advocated as a means of revolutionizing this process. The
claimed benefits from software reuse are reduction in development cost and time, improvement
in software quality, increase in programmer productivity, and improvement in maintainability
[37]. Prasanth et al., proposed a model for improving software maintainability based on risk
analysis, they identified a set of metrics that affects the external and internal complexity [38].

4. QUALITY OF SOURCE CODE
There are two main types of software quality, Quality of process and quality of products. In
general, there is a lack of consensus about how to define and categorize software quality
characteristics. Quality of system documentation includes quality of external documentation and
quality of internal documentation [39].

The development of high-quality software must satisfy both the users’ requirements and the
software firm’s budget [40]. Program restructuring is a key method for improving the quality of
ill-structured programs, thereby increasing the understandability and reducing the maintenance
cost [41]. Our concentration is on some important rules of code design. Quality is one of the
most sought after dimensions of the business software applications that organizations depend
on today. Despite this high demand for quality, very few studies have been done that evaluate
the ongoing quality of software applications during the maintenance portion of the system life-
cycle [42]. Quality is also measured objectively as number of failures and defects per month
[42] and also quality can be supported by a standard implementation of code which, will result
in quality software maintenance.

FIGURE 1: The relation between maintainability and source of code

Source code measure
e.g cyclomatic

complexity

Source code properly

e.g complexity

System quality

characteristics e.g

changeability

Can be measured by

Can be measured by

Influence

Indicator

Mohammed Abdullah H. Al-Hagery

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 16

5. METHODOLOGY STEPS
The research methodology includes; establishment of some criteria related to standard code
design, construction of a suitable model for measuring the values of the proposed criteria,
maintain of construction groups (BSc students team), and results comparison. The following
steps are representing the research methodology in details
1- Construction of documentation criteria and evaluation formula as shown in Table 1 and

Formula 1.
2- Preparation of code segments (two sets, each one contains 18 programs) by two ways
 a) Undocumented code, denoted by g1
 b) Documented code, denoted by g2
3- Execute a short training course in the international documentation standards, to train two

groups of code maintainers (four Bsc students)
4- Apply the criteria of Table 1 on g1 and g2 separately, the calculated results are shown in

Table 2.
5- Calculate the total satisfaction for each set.
6- Maintain the software code (g1 & g2) depends on adaptive maintenance, then calculate the

maintainability time for each program in g1 and g2.
7- Results comparison

5.1 Coding Factors
The proposed factors selected depend on three groups [43], these factors increase the code
understandability; this will reduce the maintainability time of software. The proposed factors are
thirteen factors, can be classified in three groups; first associated with general code, second
associated with methods, third associated with classes. Each factor can be assigned to any of
the following values {0,1,2,3,4}. Where, 0 indicates that the factor effect is absent, 1 means
factor satisfaction is low, 2 means factor satisfaction is medium, then 3 is high and 4 means
factor is completely satisfied (very high), kindly see Formula (1), that was created by Al-Hagery
[43], the values of any factor FR in Table 1 can be estimated by Formula (1).

The proposed factors were extracted from three groups of factors implemented in [43]. These
factors produce a high quality code to reduce the maintainability cost. These factors are shown
in Table 1.

 0 : iff satisfaction ≥ o & < 10%

 1 : iff satisfaction >10% & ≤ 25%

 FR_measure = 2 : iff satisfaction >25% & ≤ 50% (1)

 3: iff satisfaction >50% ≤ 75%

 4 : iff satisfaction >75% ≤ 100%

Mohammed Abdullah H. Al-Hagery

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 17

Index Factor name
Factor rank (FR)

0 1 2 3 4

1 Variables scope and role are defined clearly ○

2 Code describes what is being done ○

3 Understand the code by reading the
comments

 ○

4 Preface comments defined clearly ○

5 Use nouns or noun phrases for naming ○

6 Use alignment to enhances readability ○

7 End of lines comments ○

8 The meaning of return values ○

9 Use verbs for Function names, Get, Find, … ○

10 The purpose of each method/function ○

11 Variables declarations should be left aligned ○

12 Use correct spelling in names ○

13 Avoid using names that differ only by letter ○

 Total Satisfaction = 29 0 5 3 2 3

TABLE 1: Maintenance Based Factors

Our model-based factor (MBF) is proposed to find the degree of documentation based on some
standard criteria, as shown in formula (2).

 n
MBF = ∑(Factor i × Factor_Rank), n=13 (2)
 i=1

For the example, the value of MBF obtained in Table 1 is 29, this value gives an indicator of the
documentation level, the minimum value of MBF is 0 and the maximum value is 52, so the
value of this example classified as medium.

6. WORKING GROUPS

Two teams are selected for maintenance purpose, each team consists of two students, the
development strategy used is the "extreme programming". Team members are a final year
students at the Computer Science department. On the other hand, the teams studied and
practiced the concepts of writing standard code and they created some documented code as a
result of their training, but this is not included within the research data, because they were
maintain a code written by another people.

7. RESEARCH DATA SETS

The maintenance task performed by using eighteen software programs designed in C & C++
programming languages. This software constitutes the research data set that was used to
prove the research validity. This data set was prepared as two groups, the first group prepared
as a documented code, its documentation level graduated from 66% to 12% as partially
documented code. Second group is prepared as undocumented code as shown in Table 2
column 3.

8. EXPERIMENTAL RESULTS
Table 2 displays summary results in this research. It includes some important attributes such as
Complexity level, level of documentation (g1 and g2), total time1 for group 1 and total time2 for
group2 and indicators. All these attributes are selected to be used for results evaluation and
interpretation. The table contents are organized in ascending order depends on the value of
indicator of the last column. The indicator value is assigned as follows:

Mohammed Abdullah H. Al-Hagery

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 18

Time1 > Time2 → - (the results are negative)
Time1< Time2 → + (the results are positive)
Time1 equal Time2 → ≡ (the results are equal)

program
no

Complexity
level

Level of
Documentation Time1 Time2 Indications *

g1 g2

9 15 15 1 6 5 -

16 65 18 1 10 7 -

1 60 40 1 5 4 -

14 80 36 1 22 20 -

11 20 42 1 5 3 -

7 20 21 2 7 7 ≡

3 50 26 1 2 2 ≡

6 20 12 1 3 5 +

5 40 21 1 8 16 +

10 10 25 1 17 24 +

4 35 34 1 3 10 +

8 35 35 1 3 4 +

18 70 35 2 4 6 +

2 45 36 1 1 2 +

17 70 40 1 14 23 +

13 75 45 1 3 4 +

12 60 46 1 2 5 +

15 50 44 2 8 14 +

Average 6.83 8.94

TABLE 2: Summary of Experimental results

9. RESULTS DISCUSSION
Based on the results shown above in Table 2, these results show the rate of time that was
measured during the maintenance of 18 programs applied in this research. The maintenance
time was measured in two separate cases. First case, contains programs classified as partially
documented. The second case contains undocumented programs, In the first case and second
case, the average rate of time for maintenance was equal to (6.38.3) and (8.94) units of time,
respectively.

FIGURE 2: Maintenance cost results

cost of
undocumentd

code
268.3
50%

cost of
documentd

code
205
38%

posative
diffrence

63.3
12%

posative diffrence

cost of documentd code

cost of undocumentd
code

Mohammed Abdullah H. Al-Hagery

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 19

Based on the previous values, found that the difference in time is equal to (2.11) unit of time, if
we supposed that the cost of each maintenance hour is equal to 30 US$. So based on this
value, the average cost of case 1 was 268US$ ≡ 50% of the total cost, and the average cost of
case 2 was 205US$ ≡ 38% of the total cost, as well as the difference of the average in cost was
63.3 US $ ≡ 12% of the total cost, as presented in figure 2. Although there is a positive
difference supports the principle of documented code which applied in this research. The total
results showed three types of values, first gives a negative results, the second gives positive
results, then the last gives a balanced results, as illustrated in figure 2.

Eleven programs of eighteen supports the principle of code documentation in a positive and
shows important difference in the results, and based on this relative difference can present
positive results for the proposed model, this obtained clearly how much cost can be reduced by
building a complete documented code. Finally, it is important to mention that the average level
of documentation of all applied programs was equal to 61% depends on both problem
complexity and code size, and the average level of complexity of the used programs was equal
to 46.

The more documentation process within large and complex programs, would contribute to
the maintenance process required in the future, in addition to reducing the cost to do
so. Also by comparing the results shown in Table 2, it is clear that small programs are
not affected by documentation because its ideas is simple, easy, and the required time for
maintenance is very short.

10. CONCLUSION
After discussing the results presented in this work, we found that applying the international
quality standards on the code contents is very important to reduce its cost. In addition to that, it
enables developers to reuse the source code. This code also will be more flexible, readable,
easy to understand, and then S/W development organizations can do future development at a
lower cost and better results depends on the results of this research. For programs that are
small, simple, and well documented, they have negative results because the maintainers spend
a lot of time and effort to understand the idea of the program by reading its documentation,
although they can understand the idea directly without documentation of the Source code.

The presented results gave in general a positive effect of applying standard documentation
process on software code, especially for long life software projects. The impact of this process
is positive to support reducing the cost of software maintenance. By the proposed model we
predicted that the medium level of software documentation reduces the cost of long-term
maintenance by 12% and high level of software documentation (full documented code with
complex programs) reduces the total maintenance cost by 24% at least, depending on the
results comparisons presented above. This value is increasing with large, complex, and full
documented projects/software. This also will encourage organizations to support the software
quality by improving the developer's culture in this side, so any other S/W teams in future can
enhance and improve documented legacy systems by adding new features or new functions.

11. FUTURE WORKS
There are some points can be taken into account to extend and modify this work from different
points; firstly, increase the proposed factors to cover all quality factors. Secondly, improve the
research results by increasing the number of maintenance teams. Thirdly, expanding the
testing data to be more than 18 projects depends on big sizes, and complex projects that are
completely documented.

12. REFERENCES
[1] M. Reformat, A. Kapoor, and N. J. Pizzi. “Software Maintenance: Similarity and Inclusion

of Rules in Knowledge Extraction”, Proc of the 18th IEEE International Conference on
Tools with Artificial Intelligence (ICTAI'06), 2006, 723-731.

[2] W. Hordijk, and R. Wieringa. "Surveying the Factors that Influence Maintainability",
In: Proc of the 10th European software engineering conference held jointly with 13th ACM

Mohammed Abdullah H. Al-Hagery

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 20

SIGSOFT international symposium on Foundations of software engineering, 5-9 Sep.
2005, pp. 385-388.

[3] N. E. Fenton, and S. L. Pfleeger. "Software Metrics: A Rigorous and Practical Approach",
PWS Publishing Co, 1998.

[4] M. A. CÔTÉ, W. Suryn, C. Y. Laporte, and R. A. Martin. "The evolution path for industrial
software quality evaluation methods applying ISO/IEC 9126: quality model: Example of
MITRE’s SQAE method. Software Quality Journal", Elements of Software Science, vol.
13, pp. 17-30, 2005.

[5] Y. Ahn, J. Suh, S. Kim, and H. Kim. "The software maintenance project effort estimation
model based on function points", Journal of Software Maintenance, vol. 15, Issue 2, pp.
71-85, March/April 2003.

[6] L. Bass, P. Clements, and R. Kazman, "Software Architecture in Practice", Addison-
Wesley, 2nd edition, 2003.

[7] T. L. Graves, and A. Mockus. "Inferring change effort from configuration management
databases", In METRICS ’98: Proc of the 5th International Symposium on Software
Metrics, IEEE Computer Society, 1998, pp 267-273.

[8] M. Lehman. "Laws of Software Evolution Revisited", Software Process Technology
(EWSPT 96), 1996, vol. 1149, pp 108-124.

[9] A. Monden, D. Nakae, T. Kamiya, S. Sato, and K. Matsumoto. "Software quality analysis
by code clones in industrial legacy software", In IEEE METRICS ’02: Proceedings of the
8th International Symposium on Software Metrics, 2002, pp. 87-87.

[10] H. Abram, W. G. Michael, and C. H. Richard. "Reading beside the lines: Using
indentation to rank revisions by complexity", journal of Science of Computer
Programming,
Vol. 74, Issue 7, pp. 414-429, May 2009.

[11] R. K Bandi, V. K. Vaishnavi, and D. E. Turk. "Predicting maintenance performance using
object-oriented design complexity metrics", IEEE Transactions on Software Engineering,
vol. 29, no.1, pp.77-87, 2003.

[12] W. Li, and S. Henry. "Object-oriented metrics that predict maintainability", Journal of
Systems and Software, vol. 23, no. 2, pp.111-122, 1993.

[13] S. C. Misra. "Modeling design/coding factors that drive maintainability of software
systems", Software Quality Journal, vol. 13, no. 3, pp.297-320, 2005.

[14] M. T. Thwin, and T. S. Quah. "Application of neural networks for software quality
prediction using object-oriented metrics", Journal of Systems and Software, vol. 76, no.2,
pp.147-156, 2005.

[15] K. V. Coten, and A. Gray. "An application of Bayesian network for predicting object-
oriented software maintainability", Information and Software Technology, vol. 48, no.1,
pp. 59-67, 2005.

[16] Y. Zhou, and H. Leung. "Predicting object-oriented software maintainability using
multivariate adaptive regression splines", The Journal of Systems and Software, vol. 80,
pp. 1349-1361, 2007.

[17] M. Mari, and N. Eila. "The impact of maintainability on component-based software
systems", In Proc of 29th Euromicro Conference, 2003, p. 25-32.

Mohammed Abdullah H. Al-Hagery

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 21

[18] P. Ardimento, A. Bianchi, and G. Visaggio. "Maintenance-oriented selection of software
components", In Proc of Eighth European Conference on Software Maintenance and
Reengineering, 2004, p. 115-124.

[19] S. D. Conte, H. E. Dunsmore, and V. Y. Shen. "Software Engineering Metrics and
Models", Benjamin-Cummings Publishing, Redwood City, CA, USA,1986.

[20] I. Heitlager, T. Kuipers, and J. Visser. “A Practical Model for Measuring Maintainability",
Proc of the 6th International Conference on the Quality of Information and
Communications Technology, IEEE, 2007, pp. 44-49.

[21] M. F. Bertoa, J. M. Troya, and A. Vallecillo. "Measuring the usability of software
components", The Journal of Systems and Software, vol. 79, pp.427-439, 2006.

[22] Y. Wu, and J. Offutt. "Maintaining evolving component-based software with UML", In Proc
of Seventh European Conference on Software Maintenance and Reengineering, 2003, p.
133-142.

[23] Y. Wu, D. Pan, and M.H. Chen, "Techniques of maintaining evolving component based
software", In Proc of International Conference on Software Maintenance, 2000, p. 236-
246.

[24] L. S. Rising. "Information hiding metrics for modular programming languages", PhD
dissertation, Arizona State University, 1992.

[25] ISO/IEC 15939, "Software Engineering-Software Measurement Process", 2002.

[26] ISO VIM, second ed. "International Vocabulary of Basic and General Terms in
Metrology", International Standards Organization, Geneva, Switzerland, 1993.

[27] J. Voas. "Maintaining component based systems", IEEE Software, vol. 15, no. 4, pp. 22-
27, 1998.

[28] IEEE Standard Glossary of Software Engineering Terminology, ANSI/IEEE Std 610-
1990, The Institute of Electrical and Electronics Engineers, New York, NY, 1990.

[29] G. T. Heineman, and W. T. Councill. "Component-Based Software Engineering: Putting
the Pieces Together", Addison-Wesley, 2001, pp. 741-753.

[30]S. S. Yau, R. A. Nicholl, J. J. Tsai, and S.S. Liu. "An integrated life-cycle model for software
maintenance", IEEE Transactions on Software Engineering, 1988, vol.14, no .8, pp.1128-
1144.

[31] J. Park, W. Jung, and J. Ha. "Development of the step complexity measure for
emergency operating procedures using entropy concepts", Journal of Reliability
Engineering & System Safety, vol. 71, pp. 115-130, 2001.

[32] ISO/IEC 9126. "Software Engineering-Product Quality-Part 1: Quality Model",
International Standards Organization, Geneva, Switzerland, 2001.

[33] C. Chen, C. Lin, C. Wang, and C. Chang. "Model for measuring quality of software in
DVRS using the gap concept and fuzzy schemes with GA", Journal of Information and
Software Technology vol. 48, pp.187-203, 2006.

[34] S. M. Dekleva. "The influence of the information systems development approach on
maintenance", the journal of MIS Quarterly. Vol.16.issue.3, pp.353-372. 1992.

[35] W. E. Perry. "Quality concerns in software development", the challenge is consistency,
Journal of Information Systems Management, vol. 9, Issue 3, pp. 48-50, 1992.

Mohammed Abdullah H. Al-Hagery

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 22

[36] M. A. Cusamano, and C. F. Kemerer. "A quantitative analysis of U.S. and Japanese
practice and performance in software development", Journal of Management Science,
vol. 36, issue 11, pp. 1384-1406, 1990.

[37] D. L. Nazareth, and M. A. Rothenberger. "Assessing the cost-effectiveness of software
reuse: A model for planned reuse", The Journal of Systems and Software, vol. 73, pp.
245-255, 2004.

[38] P. Narayanan, S. P. Raja, X. Birla, K. Navaz, and S. A. Abdul Rahuman. "Improving
Software Maintainability through Risk Analysis", International Journal of Recent Trends in
Engineering, vol. 2, issue. 4, pp. 198-200,November 2009.

[39] J. A. Hoffer, J. F. George, and J. S. Valacich. "Modern Systems Analysis and Design",
Third Edition, 2005.

[40] R. A. DeMillo, R. J. Liption, and A. J. Perlis. "Software Project Forecasting", Software
Metrics, MIT Press, Cambridge, MA, p. 77, 1981.

[41] C. Lung, X. Xu, M. Zaman, and A. Srinivasan. "Program restructuring using clustering
techniques", The Journal of Systems and Software, vol. 79, pp.1261-1279, 2006.

[42] M. Ghods, and K. M. Nelson. "Contributors to quality during software maintenance",
Journal of Decision Support Systems, vol. 23, issues 4. pp. 361-369, 1998.

[43] M. A. Al-Hagery. "Model-based factors to extract quality Indications in software lines of
code", International Journal of Computer Science & Information Technology (IJCSIT), vol.
3, issue 2, pp. 112-121, April 2011.

Dr. Satya Prasad Ravi1, Lakshmi Sridhar Movva2 & B.Reddaiah3

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 23

Distributed Agile Development: Practices for Building Trust in
Team Through Effective Communication

Dr. Satya Prasad Ravi profrsp@gmail.com
Associate Professor, Dept. of Computer Science & Engg.,
Acharya Nagarjuna University , Guntur, Andhra Pradesh, India

Lakshmi Sridhar Movva ml.sridhar@gmail.com
Certified Scrum Master and Industry Consultant in Information Technology.

B.Reddaiah b.reddaiah@in.com
Assistant Professor, Department of computer Applications,
Yogi Vemana University, Kadapa, Andhra Pradesh, India

Abstract

Agile methods have been now widely popular and have been proved to be delivering high-quality
software to the global users in shorter time frames and are effectively handling the continuous
change on the requirements from the users. However, due to various reasons such as technical
expertise scarcity, functional expertise scarcity, cost effectiveness, resource availability,
globalization, necessity to work to the fullest taking the advantage of time zone variations and
other factors; the teams can be geographically dispersed. We can call them Distributed Agile
teams[1]. Given this globally distributed nature of the Agile team, the major challenge lies with the
team communication and building trust across the team;

It is difficult to foster team bonding and collaboration with the distributed teams with few or no
face-to-face interaction. The difficulties in communication and lack of trust in Distributed agile
teams would have an impact on the productivity .Our ob-ejective is to suggest usage of some of
the existing practices and propose a new practice KYTE to overcome the barriers of
communication and building trust in Distributed Agile Teams ,which would contribute to the
increase in productivity.

Keywords: Agile Methodologies, Distributed Agile, Team Communication, Building Trust, KYTE

1. INTRODUCTION
[6]Software organizations constantly need to react to market dynamics, new customer
requirements and technological innovations (Beck 2000; Lycett et al. 2003). The degree of market
dynamics and needs has increased over the past decades creating a number of fast moving
software organizations (Börjesson and Mathiassen 2004). The experiments and surveys on agile
methods promise faster development thus improving the communication and collaboration inside
agile teams and within the teams, customers and business units (Anderson 2003). Many
organizations regard agile methods as a way of addressing key problems in software
development; namely, the software takes too long to develop, costs too much and has quality
issues upon delivery (Holström et al. 2006). Thus, agile methods (e.g. Extreme Programming
[XP]; Beck and Andres 2004) and SCRUM (Schwaber and Beedle 2002) have been suggested as
a way of responding to the changes, shortening the development time and improving
communication and collaboration, especially in situations in which timing is a critical competitive
advantage for an organization (Anderson 2003; Karlstrom and Runeson 2006). Communication
and trust between team members is an important factor in software development and, thus, a
relatively common success factor. These factors are even more important if the team is
distributed.

Dr. Satya Prasad Ravi1, Lakshmi Sridhar Movva2 & B.Reddaiah3

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 24

In a Distributed Agile team environment the team members do not work in close proximity. They
might belong to different Countries, Regions, Cit-is, organizations, Cultures, Race, Origin and can
be at different levels of expertise. For example the Product Owner sits in London, Business might
be at China and the Scrum Master can be located in Bangalore, India along with few team
members and some team members might be working from Hyderabad, India. Given this diversity;
when working as a team; it would be difficult to effectively communicate and build trust among the
team members without a face-to-face interaction.

[1]
The more Distributed the team is ,the more

challenging it becomes in terms of communication.Working with a distributed team means
actively working on communication,making sure teams have right tools, addressing the issues
head on and always seeking ways to improve

[1]
Communication can impact team members

understanding of what they should be doing.

The types of Distributed teams in the order of increased distribution of team members is

• Collocated part time,

• Distributed with overlapping hours and
• Distributed with no overlapping hours.

The challenge of communication increases in the same order.
However; the existing communication methods given below can break these barriers to an extent.
In this paper we propose a few more methods that would enrich the communication enabling to
build the trust between the team members and lead to a productive Distributed Agile team. The
various methods that are existent to overcome these barriers are as below.

2. EXISTING COMMUNICATION METHODS
The Existing Communication Methods; few of them:

Share your screen Using Remote Desktop, VNC, Net Meeting, Team Viewer etc for Screen
sharing .This is very useful for demonstrating new features, reproducing bugs, working with
customers, sharing Ideas / understanding, assisting in installations and much more.

Screen casts are video/audio recordings of the computer screen and a person talking; they are
very useful for explaining a feature or module to another developer. Recording then viewing a
screen cast is not as effective as sitting alongside someone explaining in real-time, but it has the
tremendous advantage of re-playability. A series of screen casts explaining important parts of a
system will get new team members up to speed quickly. The Knowledge transfer activity for the
new joiners can be given with these screen casts.

Screen Shots. Don’t just tell; show. Show another developer on your team what you mean; by
taking a screenshot and showing them up.

Mockups. A distributed team leaves more room for misunderstanding of desired results.
Counteract this by building a mockup (text files, paper, Excel, etc.) of what you want. These
mockups can be very well shared across the distributed team by taking a photograph and
sending them across or they can be shared via screen sharing too.

Issue Tracking. Mantis, Trac, Jira,MKS is a few of them. These tools manages and maintains lists
of issues, their priorities, severities and status as on date as needed by an organization.

Source Control Systems. CVS, SVN, Clear Case, proforce,vss are a few of them and are helpful
to have the project version history available locally to all the team member though they are
dispersed geographically.

Phone calls Phone calls are cheap now a days. VOIP is the best for long distance calls. However;
usage of Skype, IM, Office communicator which are available for online voice conversations are
at their best.

Dr. Satya Prasad Ravi1, Lakshmi Sridhar Movva2 & B.Reddaiah3

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 25

Instant Messaging. Do not type longer conversation until and unless you require the chat
transcripts to be recorded. The key value in IM is as a substitute for the awareness of who is
available and working and for shorter and quick conversations/clarifications.

Email is probably the most important tool. Used to keep a record of the communication. Use it to
summarize discussions, MOM, conclusions arrived at, communication to group. Each of these
methods/tools help in communicating the information across the team.However;Usage of these
tools/methods without actually knowing the other person might not be that effective when
compared to the usage of the same with a known team member personally. This gap comes with
many apprehensions, assumptions we have about the other team member sitting on the other
side of the globe or in the other city elsewhere whom you have never met. As we are dealing with
the Distributed Agile team; we propose a few new methods to minimize the ineffective
communication between the team members and hence build the trust between them to an extent.

3. ADDITIONAL PRACTICES

3.1 KYTE: Know Your TEam Better

FIGURE:1

KYTE (Know Your TEam better) is a new process created keeping in view the challenges in
distributed environment particularly lessened trust among the team members because of poor
communication.

Teams tend to work for years together without knowing much about the other team mem-
bers.There were instances the team members feel that they should have know the other team
members better to communicate with them better. Effective communication would be possible
with lessened apprehensions about the other members and having a oneness amongst the team.

KYTE is one step towards overcoming these problems to an extent. As the name says it is all
about knowing the team better; better in terms of knowing the team members; their thought
process; their culture; their expertise; their thoughts about us; their interest and to be crisp
knowing anything about them which makes us communicate better with them.

The KYTE template provides the details of all the team members viz Team members name; their
birthday; about them; where they are from (add a hyperlink to their native pointing to any of the
website that provides the details); area of interests; favorites etc which helps the other team
members to know a bit of what he/she is.

The details of the new team members should be added on need basis.The Template should be
stored in a common folder enabling ease of access to do any updates on it .This should be
shared across every quarter.Any recent photographs, photographs taken during festivals in last

Dr. Satya Prasad Ravi1, Lakshmi Sridhar Movva2 & B.Reddaiah3

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 26

quarter and the festival details (provide a hyperlink for the festival, any of your photos) in their
country would be good things to add any point in time.Below is the sample KYTE format.

Any New team member who is on-boarded to project will be asked to fill in those details and
update KYTE template should be shared across team.

Details of the following people can be added to KYTE.
• Product owner
• Scrum Master
• Team Members
• Stake holders

Sample KYTE template for one team member

FIGURE 2: KYTE Template with filled in Details of all team members

Dr. Satya Prasad Ravi1, Lakshmi Sridhar Movva2 & B.Reddaiah3

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 27

FIGURE 3

3.2 Use Pinup Boards
Also as a part of the KYTE; Prepare a poster with simplest details of the team members photos,
their name, location, designation, Company and pin it up to the pin boards at the desks. Below is
a sample. You will eventually end up having a look at the team members once in a while and this
would definitely help in giving you a feel that you know your team better.

Dr. Satya Prasad Ravi1, Lakshmi Sridhar Movva2 & B.Reddaiah3

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 28

FIGURE 4: A sample of team member details for putting on Pin up boards.

3.3 Usage of Photograph in IM:
Practice to use the photograph of self in IM. This would definitely prove better when you are
chatting with the team member. Usage of a webcam along with teleconference via phone or
IM,skype etc which would be more beneficial.

3.4 WWU
WWU is we wish you.WWU is about wishing the other team members with a card at least once or
twice a year. Pick up a nice card with a team motivating quotation on any occasion and send it
across signed by all the team members. Though it looks simple; but it would definitely work
wonders in conveying team members that we are with you. It would boost up the team morale.
Pin the cards received on to the pin boards.

4. ADOPTION AND CONCLUSION
The practices described in this paper are proposed to a Distributed agile team.The team has not
been using these practices before and there is scope for some improvement in the team as it is
totally distributed.Further;the plan for analyzing the impact of the new practices on comfort in
communication and trust in team is measured based on a feedback from the team. The team is
given a questionnaire and asked to answer them before and after usage of the KYTE and
suggested practices in this paper.

The set of questions shared with the team is as follows.

1. Do all team Members know the other team members and their interests?

2. How well do members of your team share responsibility for tasks?

3. Do team members interact not only in meetings but also through other means like
IM,Phone more effectively?

4. Do team members argue even it is not productive to do so?

5. Does the team engage in complex analysis, including listening and asking questions?

6. Does the team collectively own the situation in difficulties.

7. What do you feel is the overall comfort in communication across team?

8. Do you trust your team members?

The team were asked to select one of the five options as answers as below

• Extremely Well

Dr. Satya Prasad Ravi1, Lakshmi Sridhar Movva2 & B.Reddaiah3

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 29

• Very Well

• Moderately Well
• Slightly Well

• Not at all Well
The Answers were given rating as below

• Extremely Well -5

• Very Well -4
• Moderately Wel-3

• Slightly Well-2

• Not at all Well-1

The feedback received from the team is rated and summed up for each question and is as below
Here Before (B) is before implementing this practices and After (A) is after implementing them
Below is the data calculated from the feedback ratings.

TABLE:1

Sno Feedback Before (B) After (A)

1 FB1 13 15

2 FB2 11 16

3 FB3 15 17

4 FB4 14 16

5 FB5 12 15

6 FB6 12 16

7 FB7 12 16

8 FB8 14 15

Here FB1 is Feedback for Question 1
Each value in the cell in Before (B) column is the sum of ratings given by the team members
before implementing KYTE and suggested features

For example; in the above table Before(B) data related to FB1 is 13 which is sum of the ratings
given by five team members 2+3+3+2+3= 13

Each Cell in After(A) is the sum of ratings after implementation

 Cb: Comfort in communication and trust within team before the adopting the new features are
 Sum(B)
 Cb = ----------------------
 FB cnt*highest score for FB*team member cnt

 Cb = 103/8*5*5 =103/200=0.515

 Ca : Comfort in communication and trust within team after adopting the new features is
 Sum(B)
 Ca= ----------------------
 FB cnt*highest score for FB*team member cnt

 Ca = 126/8*5*5=126/200 = 0.63

Dr. Satya Prasad Ravi1, Lakshmi Sridhar Movva2 & B.Reddaiah3

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 30

FIGURE 5 : Below is the comfort chart representing the data in Table:1

After implementing the suggested practices and KYTE, it is evident that there is some information
exchange happening within the team on the details of the other members. Though the information
shared about each team member might look simple; after the KYTE and other practices are
implemented, the effectiveness of having a feel that the team knows each other well has
increased considerably and the feel of oneness among the team has been expressed by the team
members.Also, a few team members who never had an opportunity or situation to speak with
each other members have opened up a communication channel discussing about their interests.
Also it is observed that some of the less interactive team members sending wishes to others on
some occasion or the other. Now the team members are more open for discussion and have
less/fewer apprehensions about the others in the team when compared with the earlier situation
in the team.

To asses the comfort on communication and increase in trust front, a questioner was framed. We
have gauged the rating of comfort in communication from 0 to 1; which is ‘Not Comfortable at all’
to ‘Highly comfortable’. Before implementing the suggested practices, based on the feedback on
the questioner from the the team members, and the rating given to them, we have calculated the
comfort in communication and increase in trust and is at 0.515. The same has elevated to 0.63
after implementing the KYTE and practices suggested,which means we have the members in
team knowing each other much better ,communicating much better and trusting each other.

Based on the data gathered; the total percentage of increase in comfort of communication and
increase in trust by implementing these suggested and new features is as below
Increase in comfort Cθ = Ca - Cb = 0.63-0.515 =0.115
Percentage of Comfort Increase Ci= Cθ * 100 = 0.115 *100 =11.5 %

Further; Productivity of a team is based on various factors and one factor being effective
communication between the team and trust between team members. The productivity of team
would be high if there is an open communication between team members and they trust each
other.If there is a Ci increase in the communication comfort and trust between team members;
then it would definitely cater to the overall increase in productivity of team. Thus implementing the
new KYTE practice and following the suggested practices proved to have a positive impact and
boost up the comfort in communication and trust, which directly caters to the overall increase in
productivity of the distributed teams.

Dr. Satya Prasad Ravi1, Lakshmi Sridhar Movva2 & B.Reddaiah3

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 31

5. REFERENCES
[1] A practical Guide to Distributed Scrum: Elizabeth Woodward,Steffan Surdek and Matthew

Ganis.

[2] Coaching Agile Teams-Lyssa Adkins

[3] Agile Product Management with Scrum –Roman Pichler.

[4] Experience Report: Distributed agile: project management in a global environment
Seiyoung Lee & Hwan-Seung Yong

[5] Agile Alliance, Principles behind the Agile Manifesto,
http://agilemanifesto.org/principles.html.

[6] Highsmith J, Cockburn A. Agile software development: The business of innovation

[7] Lycett M, Macredie RD, Patel C, Paul RJ. Migrating agile methods to standardized
development practice

[8] A Paper named Mira Kajko-Mattsson ‘A Problems in Agile Trenches-08’

[9] A paper named ‘The impact of agile practices on communication in software development’
by M. Pikkarainen & J. Haikara & O. Salo & P. Abrahamsson & J. Still

[10] http://www.agilealliance.com

[11] http://www.controlchaos.com

[12] http://www.scrumalliance.org

Xiaohong (Sophie) Wang

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 32

Java-centered Translator-based Multi-paradigm
Software Development Environment

Xiaohong (Sophie) Wang xswang@salisbury.edu
Department of Mathematics and Computer Science
Salisbury University
Salisbury, MD 21801, USA

Abstract

This research explores the use of a translator-based multi-paradigm programming method to
develop high quality software. With Java as the target language, an integrated software
development environment is built to allow different parts of software implemented in Lisp, Prolog,
and Java respectively. Two open source translators named PrologCafe and Linj are used to
translate Prolog and Lisp program into Java classes. In the end, the generated Java classes are
compiled and linked into one executable program. To demonstrate the functionalities of this
integrated multi-paradigm environment, a calculator application is developed. Our study has
demonstrated that a centralized translator-based multi-paradigm software development
environment has great potential for improving software quality and the productivity of software
developers. The key to the successful adoption of this approach in large software development
depends on the compatibility among the translators and seamless integration of generated codes.

Keywords: Software Development Environment, Translator, Multi-paradigm.

1. INTRODUCTION
Improving the quality of software products and the productivity of software developers has been
an enormous challenge for the software industry. To respond to the challenge, many new design
and development methodologies and programming paradigms have been introduced. The
availability of modeling tools and rich sets of libraries and the adoption of design patterns and
application frameworks all contribute to produce better software systems today. Another rapid
evolving frontier in this campaign is the development of programming languages based on
different paradigms. In the context of computer science, a programming paradigm is defined as a
computational model [1] that a programming language is based on, i.e., the style or approach a
programming language uses to express problem solving plans. In the past forty years, several
generations of programming languages have been introduced based on the following four
dominant programming paradigms: imperative, functional, logic and object-oriented. Since real
world problems are much diversified, it is not surprising that some styles are better suitable to
solve some problems than others. Another observation is that for large sophisticated software, it
is likely that a single paradigm may not be enough to develop all parts of the system. This
naturally led to the pursuit of software development using programming languages with different
paradigms, i.e., multi-paradigm programming. The overall objective of multi-paradigm
programming is to allow developers to choose a paradigm best suited for the part of the problem
to be solved. As for how multiple paradigms can be deployed to build a single application, many
different routes have been taken to try to answer this question.

The translator-based multi-paradigm programming was first proposed in [6]. This approach allows
multi-paradigm programming by translating the source code written in different paradigms into a
target language code before they are integrated. [7] has demonstrated the feasibility of this
approach by developing a compiler for a functional programming language. However, there are
still some questions remain to be answered. How feasible and realistic is it to use this approach in

Xiaohong (Sophie) Wang

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 33

large scale real world application development? What are the main obstacles of deploying this
approach in real world?

The rest of this paper is organized as following. In the second section, the background of the
translator-based multi-paradigm is discussed. In the third section, we describe our experiment
with the translator-based multi-paradigm programming by implementing a centralized software
development platform SourceMerge, which allows for program development with logic, functional
and object-oriented programming languages. Using this platform, a calulator application is
developed with expression validation, evaluation and GUI components written in Prolog, Lisp and
Java respectively. Issues encountered during this experiment are also discussed in this section.
The final section summarizes our current work.

2. TRANSLATOR-BASED MULTI-PARADIGM PROGRAMMING
A programming paradigm is often defined as a computational model ([1]) that a programming
language is based on. In general, a programming language implements only a single paradigm.
For example, the imperative paradigm, with C as an example language, is identified by the use of
variables, assignment statements and explicit flow of control. The functional paradigm, with Lisp
as a representative, distinguishes itself in function definitions, recursion and the ability to create
high-order functions. Logic paradigm depends on rules and logic, and a main language
supporting this paradigm is Prolog. The object-oriented paradigm, featured by Java, uses class
inheritance hierarchy and polymorphism to create applications with dynamically reusable code.
Some modern programming languages can support more than one paradigm. For example, C++
supports both imperative and object-oriented paradigm and SICStus Prolog supports both logic
and object-oriented paradigm. Each paradigm has its strength and weakness in representing the
concepts and carrying out the actions of a specific application. Multi-paradigm programming is to
explore different ways to integrate the best features of each paradigm in software development.

Generally speaking, multi-paradigm programming can be accomplished either inside the same
programming language (i.e., language extension using multi-paradigm languages) or in a system
that assures a certain way of integration and interaction among separate processes or modules.
[2] and [3] proposes to use a multi-paradigm language. Rather than deciding what the correct
paradigm is to use, using a language that implements every paradigm can easily solve the issue
theoretically ([2]). The problem with this approach is that a language with many paradigms
intertwined would be too difficult for most programmers to learn and would be rather hard to
understand and debug applications written in such language. An emerging theme is the ability to
access one programming language from another ([4]). A good practice would suggest keeping
paradigms separated to allow for understandable code. [6] and [7] approach the problem by
translating a single language program into a target language such as C. While the approach is
credible, it restricts the abilities of multi-paradigm programming to only allowing source and target
paradigms to be used together. As one can see, all those approaches are limited in either the
number of paradigms can be combined and the degree of integration can be achieved.

Translator-based programming has been discussed in [1], [6], and [9]. The main idea is that
different parts of an application can be written in different programming languages; later those
different parts are translated into one target language; finally the translated source code in the
target language are compiled into a final executable by the target language compiler. A similar
approach surfaced after [6] allows for two languages to be written together in the same source
file(s) and to be translated/interpreted during compile time ([4]). This approach is much like
translator-based multi-paradigm programming except the code are written as if part of the same
language instead of being written in separate files as separate programs. [1] argues that after
comparing with all others, the translator-based multi-paradigm approach appears to be the most
viable and expandable solution since theoretically it allow any number of paradigms to be
integrated in a natural way and it is a much better compromise between ease of use and degree
of integration.

Xiaohong (Sophie) Wang

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 34

3. JAVA-CENTERED TRANSLATOR-BASED MULTI-PARADIGM PLATFORM
To answer the questions such as how feasible and realistic is it to use translator-based multi-
paradigm approach in large scale real world application development and discover the main
obstacles of deploying this approach, we developed a Java-centered translator-based multi-
paradigm platform SourceMerge. SourceMerge provides a simple interface for selecting source
files written in different paradigms and translated them into the target paradigm. In this case, Java
is selected as the target language and programs written in Lisp and Prolog representing logic and
functional paradigm are prime candidates to be translated. Once the selected source files written
in Prolog and/or Lisp are translated by their corresponding compilers respectively, SourceMerge
can collect them into a single location and generate all required libraries and packages and use
Java compiler to generate a single, standalone Java application.

3.1 Design Considerations
Java is selected as the target language in SourceMerge. Java’s object-oriented paradigm is much
more suitable for large-scale applications due to its capability for abstraction, inheritance and
polymorphism, easy-to-use language interface and its portability to any system that runs a Java
Virtual Machine. Java’s strength in describing real world objects and their behaviors with class
structure makes it natural to represent the concepts and actions to be carried in other paradigms
(such as functions in functional paradigm and predicate logic in logic paradigm). Java’s
sandboxing provides a security blanket that can protect a user from system crashes caused by
errors in translated code.

We choose logic and functional paradigms as the two candidate paradigms in SourceMerge.
However, as can be seen from Figure 1, the design of SourceMerge allows the inclusion of a
new paradigm to the system can be done easily (as demonstrated by the dashed line portion in
Figure 1) since the translation process for each paradigm is independent from the rest of the
system. SourceMerge acts as an adapter to translate multiple paradigms into a single target
paradigm. As long as a language translator follows the rules for generating output defined by
SourceMerge, it can be easily integrated into the system.

FIGURE 1: SourceMerge’s Select, Translate, Merge and Compile Process.

Figure 2 show the GUI of SourceMerge application. Three major tasks can be completed on this
interface: selection of source files, translation of the source code and merging of the final
executable. The execution status of translation and compilation is also displayed on the interface.

Source Code Selection

(Select all source files for the application)

Java Code Prolog Code Lisp Code

Prolog Cafe Linj

Merge Generated Java Code

Code in paradigm A

Translator A

Xiaohong (Sophie) Wang

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 35

FIGURE 2: SourceMerge Main Interface.

3.2 Translation Tools
Due to the time constraint for this study, we decided to use existing open source Lisp and Prolog
translators. After a thorough research over the Internet, we find that Prolog Cafe [9] and Linj [10]
are the only two freely available tools exist today that specifically meet the needs of translating
the Prolog and Lisp languages to Java.

The Prolog to Java translator Prolog Cafe is built on the de facto standard for Prolog compilers,
the Warren Abstract Machine (WAM) ([5], [11]). After translating Prolog sources to Java, the
execution model of the generated Java classes are also based on the WAM. Though this
produces difficult-to-read code and layers of terms to sort through, the translated output executes
cleanly and, in the Prolog aspect, quickly. Prolog Cafe is written in Java and therefore portable to
any platform with Java compiler and runtime environment. The generated source code requires
the inclusion of the Prolog Cafe Java libraries that implement the WAM algorithms. Additionally,
the compiled program still depends on a standalone interpreter within Prolog Cafe. This makes it
unsuitable to be embedded into other Java programs and we will address this development issue
further later.

Linj, the Lisp to Java translator, is open source and it translates from one source paradigm to
Java. To make the translation algorithm efficient and allow the programmer to follow the Lisp
programming conventions and still have the translated source follow all of Java’s rules, Linj
comes with its own language, respectively named Linj ([10]). The Linj language is syntactically
the same as Common Lisp except for packages, something that is ignored for this study, and the
existence of a null-term as opposed to an empty list. The Linj translator is written in Common Lisp
and the translated source code is purposed to be human-readable and efficient. There are no
specially required Java libraries to include so the individual classes generated can be compiled
as standalone programs, or embedded into other Java applications.

3.3 Encountered Issues
A major hindrance towards the research for this project is that: both of the translators, Prolog
Cafe and Linj, are no longer supported by their creator. Also, due to the limited user base of the
tools, community support and resources are scarce, if not nonexistent.

The first obstacle is that Prolog Cafe generates Java source code as a standalone application
running through a command-line interpreter that comes with Prolog Cafe. This execution model
does not fit into our design of the centralized environment that merges Java classes generated

select
source code

merge

code

add

source code

output

Xiaohong (Sophie) Wang

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 36

from different paradigms and compiles them into a single Java application. Since the command-
line interpreter for Prolog Cafe is also open source, and it also includes the same Java libraries
that are required to be included in the generated source code, this became the starting point of
tackling this issue. After stripping away the bells and whistles of the command-line interface of the
interpreter, it became visible that the same procedures are called to execute any translated code
each time. Therefore, for each Prolog source code, a specially defined template class, which gets
dynamically modified by SourceMerge, is used to produce the source suitable for integration with
other Java classes.

Along with no longer being supported, the documentation for Linj was never completed. There are
also no instructions as to how to install Linj nor the system requirements for installation. The Linj
translator uses direct Linux commands and the translation process must be performed under a
Linux system. This information is missing from the unfinished documentation. Another challenge
is that all required Lisp packages are not specified in the document either. So significant amount
of effort were made to determine the system requirements, write a parser to search through the
Linj translator to identify all packages used before the final Linj to Java translator running Linux
with the Steel Bank Common Lisp compiler was installed successfully.

Two similar issues affected both the Prolog Cafe and Linj translators from producing usable code
and neither were ever hinted at in documentation or other sources. The required Java libraries by
the source generated from Prolog Cafe don’t exist, until one translates them from Prolog to Java.
Since the interpreter provided with Prolog Cafe has a set of pre-compiled libraries required,
initially no errors were encountered when it was used alone. However, to include them into other
sources, they needed to be in their raw source and the errors started to show up. With Linj, the
translator successfully translates all basic Lisp programs to Java without an issue. However,
whenever non-basic expressions were used, such as a built-in function, compilation would silently
fail without any error messages. After significant time and effort spent on debugging, we found
that Linj requires a Lisp-package for each of the types being translated (such as mathematical
expressions, or vectors). Both of the issues were resolved eventually by letting SourceMerge
automatically supply the required Java libraries during translation.

3.4 Application Development Demonstration
To demonstrate the functionalities of SourceMerge, an arithmetic calculator program was created
under the SourceMerge environment. The Calculator application was written using all three
distinct paradigms allowed by SourceMerge: functional, logic, and object-oriented. Each paradigm
was used to write the part of the application that highlights the best features of this paradigm.

The Calculator can perform input validation and evaluate arithmetic expression. Java, the object-
oriented paradigm with rich GUI libraries, was used to create the Calculator’s GUI (see Figure 3-
4).

Xiaohong (Sophie) Wang

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 37

FIGURE 3: Expression Validation.
During the development of the Calculator, Prolog, the logic paradigm language, was used to
implement the validation function for the Calculator (Figure 3). Using predicate logic, the
validation of a proper arithmetic expression can be achieved by the following block of Prolog
code:

expr(L) :- num(L).
expr(L) :- append(L1, [+|L2], L), num(L1), expr(L2).
expr(L) :- append(L1, [-|L2], L), num(L1), expr(L2).
expr(L) :- append(L1, [*|L2], L), num(L1), expr(L2).
expr(L) :- append(L1, [/|L2], L), num(L1), expr(L2).
num([D]) :- number(D).

FIGURE 4: Expression Evaluation.

The expression evaluation of the Calculator was implemented using Lisp, the functional paradigm
language (Figure 4). Avoiding the easy-way of using Lisp’s eval, the source was designed to use
the prefix notation to operate on two numbers. The used method is as follows:

 (defun expression(x/float operator/string y/float)
 (cond ((string-equal operator "+") (+ x y))
 ((string-equal operator "-") (- x y))
 ((string-equal operator "*") (* x y))
 ((string-equal operator "/") (/ x y))
 (t 0)))

As discussed earlier, during the implementation of the Calculator, each of the three involved
paradigms was used to implement a component that showcases the paradigm’s features most
suitable for the functionality of the component. The three kinds of source files were sent into
SourceMerge (see Figure 2) and the Prolog and Lisp files were successfully translated into Java
classes; these Java class files were all merged together; and a compiled Calculator application
was presented.

4. SUMMARY AND DISCUSSIONS
The Java-centered multi-paradigm software development environment SourceMerge built in this
study confirms that translator-based multi-paradigm software development approach is,
theoretically feasible for producing good quality software efficiently. SourceMerge demonstrates a
way to take source code from Prolog and/or Lisp, translates them into Java classes and has them
merge together to form a single application. This is an important and exciting step. What is even
important is to know what factors make this approach deployable in real world software
development. The experience in this study has shed some lights in answering these questions.

Xiaohong (Sophie) Wang

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 38

First of all, our experience shows that a centralized development similar to SourceMerge is
crucial to the success of translator-based multi-paradigm programming. It would be very difficult
and frustrating if a user has to go through many complex processes to accomplish the translation
and deal with the inconsistent behaviors and interfaces of the generated code. All the productivity
increase and quality improvement promised by the translator-based multi-paradigm programming
will be diminished by this difficulty.

Secondly, when building a centralized environment for multi-paradigm software development,
many important factors should be taken into considered. Multi-paradigm means not just one, two
or three paradigms to be used. It means that a centralized environment should be scalable
enough to accommodate as many paradigms as possible. To achieve this goal, the design of the
system should follow the Open-Closed design pattern, i.e., a new paradigm should be added to
the system easily and the update on the current paradigm translation process should not affect
other translation processes at all.

Thirdly, the selection of translators is the key to building a centralized multi-paradigm system. In
this study, two open source translators were selected. This decision was made due to our time
constraint. During our development process, we have encountered many unforeseen obstacles,
such as limited documentation, unknown system requirements and missing features. Another
obvious drawback with using existing translators is that the output code generated by the
translators of different paradigm may not be consistent. This will definitely make the integration of
the final executable very different if not impossible. We recommend that standards for the
translated code should be established and the design for each translator should base on the pre-
defined standards so that they can have consistent behaviors and interfaces. Although this
approach requires an upfront investment to build the translators, this will make the integration of
translated sources and the future extension of the system easier.

5. REFERENCES
1. R. Horspool and M. Levy. “Translator-Based Multiparadigm Programming”. Journal of

Systems and Software, 25, 39-49, 1993.

2. T. Budd and R. Pandey. “Never Mind the Paradigm, What About Multiparadigm Languages?”
SIGCSE Bulletin, 27, (2), 25-30, 1995.

3. D. Spinellis. “Programming Paradigms as Objective Classes: A Structuring Mechanism for
Multiparadigm Programming,” Ph.D. Thesis, University of London, 1994.

4. M. Carlsson et al. “SICStus Prolog User’s Manual”. Swedish Institute of Computer Science,
2011.

5. H. Ait-Kaci. “Warren’s Abstract Machine: A Tutorial Reconstruction”. MIT Press Cambridge,
1991.

6. P. Codognet and D. Diaz. “wamcc: Compiling Prolog to C”. In 12
th
 International Conference

on Logic Programming, MIT Press, 317 – 331, 1995.

7. M. Levy and R. Horspool. “Translating Prolog to C: a WAM-based approach”. In Proceedings

of the Second Computing Network Area Meeting on Programming Languages, and the
Workshop on Logic Languages, 1993.

8. X. Wang, “Compiling Functional Programming Languages Using Class Hierarchies”. M.Sc.

Thesis, Department. of Computer Science, University of Victoria, 1992.

Xiaohong (Sophie) Wang

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 39

9. M Banbara, N. Tamura, and K. Inoue. “Prolog Cafe: A Prolog to Java Translator System”.
INAP, 45-54, 2005.

10. A. Leitão. “Migration of Common Lisp Programs to the Java Platform -The Linj Approach

Linj”. 11
th
 European Conference on Software Maintenance and Reengineering, 243 – 251,

2007.

11. D. Warren. “An abstract Prolog Instruction Set”. Technical Note 309, SRI International,

Menlo Park, CA, 1983.

Nardjess Dehimi & Allaoua Chaoui

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 40

Using Meta-modeling Graph Grammars and R-Maude to
Process and Simulate LRN Models

Nardjess Dehimi ndehimi@yahoo.fr
Computer Science Department/MISC Laboratory
University Mentouri Constantine
Constantine, 25000, Algeria

Allaoua Chaoui a_chaoui2001@yahoo.com
Computer Science Department/MISC Laboratory
University Mentouri Constantine
Constantine, 25000, Algeria

Abstract

Currently, code mobility technology is one of the most attractive research areas. Numerous
domains are concerned, many platforms are developed and interest applications are realized.
However, the poorness of modeling languages to deal with code mobility at requirement
phase has motivated researchers to suggest new formalisms. Among these, we find Labeled
Reconfigurable Nets (LRN) [9], This new formalism allows explicit modeling of computational
environments and processes mobility between them and It allows, in a simple and an intuitive
approach, modeling mobile code paradigms (mobile agent, code on demand, remote
evaluation). In this paper, we propose an approach based on the combined use of Meta-
modeling and Graph Grammars to automatically generate a visual modeling tool for LRN for
analysis and simulation purposes. In our approach, the UML Class diagram formalism is used
to define a meta-model of LRN. The meta-modeling tool ATOM3 is used to generate a visual
modeling tool according to the proposed LRN meta-model. We have also proposed a graph
grammar to generate R-Maude [22] specification of the graphically specified LRN models.
Then the reconfigurable rewriting logic language R-Maude is used to perform the simulation
of the resulted R-Maude specification. Our approach is illustrated through examples.

Keywords: Code Mobility, Modeling Mobility, Labeled Reconfigurable Nets, Mobile Agent, Graph
Transformation, R-Maude, ATOM3 Tool, Maude.

1. INTRODUCTION
Indeed, the formal tools which have been used to model and analyze classical systems are
unable to deal with code mobility system properties [8]. Many studies on formal tools have
attempted to extend classical tools to deal with code mobility properties. Among these studies
we can mention process algebra based models (π-calculus [13], join-calculus [7], HOπ-
calculus [16], for example) and state transition based models such as Petri nets. Different
works tend to propose methodologies and approaches ([6], [14], [17]…), to prevent ad-hoc
development for code mobility software. In effect, these approaches are mostly informal, to
deal with this problem, some high level Petri Nets have been proposed. The most known are
Mobile Nets (variant of colored Petri nets) [1]. To fit mobile Petri nets to specific mobile
systems, various extensions have been proposed such as Elementary Object Nets [18],
labeled reconfigurable nets [9], Nested Petri Nets [10] [11], HyperPetriNets [4], … In [3], the
authors proposed an approach for transforming mobile UML Statechart diagrams to Nested
nets models for analysis purposes. It produces highly-structured, graphical, and rigorously-
analyzable models that facilitate early detection of errors like deadlock, livelock, etc … Their
approach is based on graph transformation since the input and output of the transformation
process are graphs. the meta-modeling tool ATOM3 is used. In this study we will deal with the
transformation of LRN models into their equivalent R-Maude specification for analysis
purpose.

Nardjess Dehimi & Allaoua Chaoui

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 41

The rest of the paper is organized as follows. In section 2, we introduce the key concepts that
are dealt with in our research. In section 3 we describe our approach which consists of
transforming labeled reconfigurable nets models into their equivalent R-Maude specifications.
In section 4, we illustrate our approach using examples. Section 5 presents the prototype R-
Maude using one of the 2 examples given in section 4. In section 6, we will round off our
paper by suggesting some concluding remarks and putting forward the future perspectives for
further research.

2. Background
In the following subsections we consider the main concepts and tools used in this paper and
give further references for the reader.

2.1 Labeled Reconfigurable Nets
The formalism “labeled reconfigurable net” [9] is dedicated to model code mobility systems
[8]. The authors proposed to model mobility in an intuitive and explicit way. Mobility of code (a
process or an agent) will be directly modeled through a reconfiguration of the net. The
formalism allows adding and deleting places, arcs, and transitions at run time. For more
details, the reader can refer to [9].

2.2 Rewriting Logic and Maude
Rewriting logic [12] has been introduced by José Meseguer as logic for describing concurrent
systems. It is implemented by several languages such as Maude [12]. The latter is a
specification and programming language. It is simple, expressive and has a high-performance
implementation. Maude offers three types of modules: Functional modules, System modules
and Object-Oriented modules. It offers full Maude to support that; furthermore, it has its own
model-checker that is used in checking system’s properties. For more details the reader can
refer to [12].

2.3 Graph Transformation and ATOM3
Graph grammars [15] can be used to describe graph transformation or to generate sets of
valid graphs or to specify operations on them. Graph grammars are composed of production
rules, each of them, having graphs in their left and right hand sides (LHS and RHS). Several
tools for graph transformation have been proposed in the literature. Among these tools, we
can cite ATOM3 “A Tool for Multi-formalism and Meta-Modeling" [2]. The two main tasks of
ATOM3 are meta-modeling and model transformation. For more details, the reader can refer
to [15].

2.4 Reconfigurable Maude
Maude [19] is a high-level language and high performance system supporting executable
specifications and declarative programming in rewriting logic [20].

Maude has been extended to deal with some aspects not considered in former version.
Maude [21] is a system to specify and analyze real time and hybrid systems. Mobile Maude
[6] is an extension of Maude for mobile systems specification.

An encoding of Labeled Reconfigurable Nets in a Maude-based language has been proposed
[22]. The inspired language is called “Reconfigurable Maude” (R-Maude). It profits from the
power of Maude (as a meta-language). Maude was extended to support the translation of
LRN and their simulation. R-Maude enriches Maude with new kind of rewriting rules. These
rules are called Reconfigurable rules (R Rules). The semantic of these rules is similar to that
of Reconfigurable transition in LRN. When a rule is executed, the R-Maude specification will
be updated in different ways, this will depend on the label associated with this rule.

A specification in R-Maude is a set of Reconfigurable rewrite theories (R-theories). An R-
Theory RT is a triple (Ω, E, R) as like a rewrite theory. The difference resides in the set R. R
will contain two kinds of rules: standard Rules S-Rules (well known rules of Maude) and
Reconfigurable rules R-Rules. An R-Rule rλ is composed of a label λ=<d, RT1, RT2, S> and
a rule t�t’. In the label λ, RT1 and RT2 are two R-Theories; S is a segment of a theory, and d
a specific parameter. The segment S can be a set of sorts, rules, variables, operators that can
be an R-theory or not. When rλ is fired, the specification can be updated in several ways.

Nardjess Dehimi & Allaoua Chaoui

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 42

Updating specification means that their R-theories will be changed. This change depends on
λ. In general, when rλ is fired, the segment S will move from RT1 to RT2 or the inverse. The d
parameter can be used to express direction of this move. For more details the reader can
refer to [22].

3. OUR APPROACH
The steps of our approach are as follows.

3.1 Meta-Modeling Of LRN (Labeled Reconfigurable Nets)
To build models of LRN formalism in AToM3, we have to define a meta-model for LRN. The
meta-formalism used in our work is the UML Class Diagrams and the constraints are
expressed in Python code. Since LRN consists of places, transitions, and arcs from places to
transitions and from transitions to places, we have proposed to meta-model LRN two Classes
to describe Places and Transitions, and two associations for arc-in and arc-out as shown in
FIGURE 1. We have also specified the visual representation of each class or association.
Given our meta-model, we have used AToM3 tool to generate a visual modeling environment
for LRN models. FIGURE 2 shows the generated LRN tool and a dialog box to edit a
transition. Each transition has two attributes (label and nom, the attribute label is defined in
the case of reconfigurable transition).

FIGURE 1: LRN Meta-Model

Nardjess Dehimi & Allaoua Chaoui

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 43

FIGURE 2: Tool bar of the Generated tool to process LRN models

3.2 The Graph Grammar Generating R-Maude Specifications from LRN Models
In order to simulate LRN models, we translate them into their equivalent representations in R-
Maude syntax. In this section we show how to use the modeling environment generated in the
previous section to generate R-Maude specification. We do this by defining a Graph Grammar
to traverse the LRN model and generates the corresponding code in R-Maude. The graph
grammar has an initial Action that is used to create the file where the code will be generated.
This action decorates also all the Transition and Place elements in the model with temporary
attribute according to the conditions specified in the rules. In Transition elements, we use two
attributes: current and visited. The current attribute is used to identify the transition in the
model whose code has to be generated, whereas the visited attribute is used to indicate
whether code for the transition has been generated or not. In Place elements, two attributes
are used: fromVisited and toVisited. The fromVisited attribute is used to indicate whether this
place is processed as input place whereas the toVisited attribute is used to indicate if this
place is processed as output place.

In our graph grammar, we have proposed seven rules (see FIGURE 3) which will be applied
in ascending order by the rewriting system until no more rules are applicable. We are
concerned here by code generation, so the grammar rules will not change the LRN models.
These rules are described as follows:

Rule1: lefthandside (priority 1): is applied to locate a place (not previously processed) related
to current transition with an input arc, and generates the corresponding R-Maude
specification.
Rule2: separate (priority 2): is applied to generate R-Maude code which separates LHS and
RHS of the equivalent rewriting rule.
Rule3: righthandside (priority 3): is applied to locate a place (not previously processed) which
is related to current transition with an output arc, and generate the corresponding R-Maude
specification.
Rule4: condition (priority 4): is applied to generate the appropriate R-Maude code depending
on the condition of the transition, and decorates the transition as visited.
Rule5: InitPlace (priority 5): is applied to locate and initialize temporary attributes in places for
processing the next transition.
Rule6: SelectTransition (priority 6): is applied to select an LRN transition not previously
processed and generates its equivalent rewriting rule in R-Maude.

Nardjess Dehimi & Allaoua Chaoui

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 44

Rule7: terminate (priority 7): is applied to perform the writing of the generated
R-Maude file and closes it.

The graph grammar has also a final action that erases the temporary attributes from the
entities and closes the output file.

FIGURE 3: The graph grammar rules

4. Examples

4.1 Example 1: LRN With a Static Agent

This example is about a computational environment E1. E1 contains a unique static agent
SA1 that execute infinite loop. SA1 requires a non-transferable resource bound by type PNR2

<ANY>

<ANY>

<ANY>

<ANY>

<ANY>

<ANY>

2

3

1

LHS

RHS

current = = 1

visited = = 0

current = = 1

visited = = 0

fromVisited = = 0

fromVisited = 1

<COPIED>

<COPIED>

<COPIED>

<COPIED>

<COPIED>

<COPIED>

2

3

1

::====

 1: . Priority.lefthandside1

LHS RHS

current = = 2

visited = = 0

current = 0

visited = 1

::====

: 4 . Prioritycondition-4.

<ANY>

<ANY>

1
<COPIED>

<COPIED>

1

LHS RHS

current = = 2

visited = = 0

current = = 2

visited = = 0
toVisited = = 0

 toVisited = 1

::====

: 3 . Priorityrighthandside-3.

<ANY>

<ANY>

<ANY>

<ANY>

<ANY>

3

2 1

<COPIED>

<COPIED>

<COPIED>

<COPIED>

<COPIED>

3

2

1

LHS RHS

current = = 0

visited = = 0

current = 1

visited = = 0

::====

: 6 Transition. Priority -6.

<ANY>

<ANY>

1
<COPIED>

<COPIED>

1

LHS RHS

current = = 1

visited = = 0

current = 2

visited = = 0

::====

: 2 . Priorityseparate -.2

<ANY>

<ANY>

1
<COPIED>

<COPIED>

1

LHS RHS

fromVisited = = 1

or

toVisited = = 1

fromVisited = 0

toVisited = 0

::====

: 5 InitPlace. Priority -5.

<ANY>

<ANY>

1
<COPIED>

<COPIED>

1

Final==0

::====

<ANY>

<ANY>

1
<COPIED>

<COPIED>

1

:7 . Priorityeattermin -7.

RHS RHS LHS

Final==1

RHS LHS

Nardjess Dehimi & Allaoua Chaoui

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 45

to execute a32. The system will be modeled as a labeled reconfigurable net LRN. FIGURE 4
presents the graphical model of this example created in our tool.

FIGURE 4: The LRN model of the example

Translating LRN Model to R-Maude Specification
This step has graphical representation of an LRN model as input. It consists of translating this
graphical representation into its equivalent R-Maude specification using the graph grammar
defined in the previous section. To realise this translation, the user have to execute the graph
grammar previously defined.

The result of this translation given in FIGURE 5, is the file env2-system.Maude which contains
the specification of the LRN model of FIGURE 4.

FIGURE 5: Generated R-Maude specification env2-system.maude

Nardjess Dehimi & Allaoua Chaoui

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 46

4.2 Example 2: LRN With a Mobile Agent

In this example, E1 and E2 are two computational environments. E1 contains two agents, a
mobile agent MA and a static agent SA1; E2 contains a unique static agent SA2. The three
agents execute infinite loops. MA executes actions {a11, a12, a13 }, SA1 executes actions
{a21, a22, a23}, and SA2 executes actions {a33, a32}. To be executed, a11 require a
transferable resource TR1 and a nontransferable resource bound by type PNR1 which is
shared with a21. a12 and a22 share a transferable resource bound by value, and a13 and
a23 share a non-transferable resource NR1. In E2, SA2 requires a non-transferable resource
bound by type PNR2 to execute a32. PNR2 has the same type of PNR1. The system will be
modeled as a labeled reconfigurable net LRN. LRN contains two environments E1 and E2
that model the two computational environments. In this case the unit A that models the mobile
agent A will contain a reconfigure transition rt < A, E1, E2, ψ, β >; such that:

1. E1 =(RP1, GP1, U1, A1); RP1 contains at least four places that model the four resources.
Let TR1, NR1, PNR1 and VTR1 be these places. GP1 contains at least a free place PA1
modeling that A can be received, and U1={A}.
2. E2=(RP2,GP2, U2, A2); RP2={PNR2}, GP2={PA2}.
3. ψr={TR1}, ψc={VTR1};
4. β={(PA2, str1), (PNR2, a11), (NR1, a13)}.

FIGURE 6: LRN MA-model before firing rt

Nardjess Dehimi & Allaoua Chaoui

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 47

FIGURE 7: LRN MA-model after firing rt

Translating LRN Model to R-Maude Specification
The model of the LRN associated to E1 of FIGURE 6 is too huge in ATOM3, so because of
the lack of space, only its R-Maude specification generated by the execution of the graph
grammar on the ATOM3 tool and saved in the file env1-system.Maude,is given by FIGURE 8.

FIGURE 8: Generated R-Maude specification env1-system.maude

Nardjess Dehimi & Allaoua Chaoui

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 48

5. PROTOTYPING R-MAUDE
R-Maude has been prototyped [22]. The prototype is a system composed from a text editor
and an interpreter. The editor is used to enter the specification and commands which have
been automatically generated by the execution of the graph grammar on the models to
experiment, using ATOM3 tool. The interpreter executes commands and updates
specifications. The system was experimented on a LAN (Local Area Network), consisting of a
few machines. The system is installed on all hosts. So the specifications are edited
everywhere. On every host, commands can be executed. The execution of commands will
create the system dynamic. This dynamic can be shown as migration of specification’s part
(or else the whole) through the LAN.

The specifications (or their parts) are transferred in messages between machines, using
UDP protocol. The interpreter realized for R-Maude can be used to interpret Maude
specifications. The major different is that in this newest interpreter, the interpretation of R-
Rules is added. The label of an R-Rule precedes the rule, and it has the form [MT|L| IP@| S].
Semantics of these parameters is : MT: mobility type (MA, COD, REV, …), L: a multi-set of
operations and rules to be moved, cloned or removed from or to the local host, IP@: IP
address of distant host, S: sources to move or to remove from or to the local host. When
specifications (or part of them) are moved, some resources (R) necessary to firing some rules
become far (on another host). IP address of the far host appears with the concerned resource
in the form: R[IP@].

The newest is that R-transition will be translated in R-Rules.
We consider that the two environments E1, E2 are specified as two specifications on two
hosts (Host1 and Host2). Host1 has the IP address: 192.168.0.1, and Host2 has the IP
address: 192.168.0.2.
On Host1, the specification is given by FIGURE 8.
and on Host2, we have the specification :
mod E2
sort Place Marking .
subsort Place << Marking .
op _,_ : Marking Marking ->Marking .
ops PA1,PA2,P31,P32,PNR2 : -> Place.
rl [str3] : PA2=>P31 .
rl [a31] : P31=>P32 .
rl [a32] : P32, PNR2=>PA2 .
endmod
As an example of a command, we have “rw PA1” on Host1. The execution of this command
will produce respectively on Host1, and Host2 the two specifications:
mod E1
sort Place Marking .
subsort Place << Marking .
op _,_ : Marking Marking ->Marking .
ops PA1,PA2,P21,P22,P23,VTR1,PNR1,NR1:->Place.
rl [str2]: PA2=>P21 .
rl [a21] : P21, PNR1=>P22 .
rl [a22] : P22, VTR1=>P23 .
rl [a23] : P23, NR1=>PA2 .
endmod.

Nardjess Dehimi & Allaoua Chaoui

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 49

And in Host2 the produced specification s
mod E2
sort Place Marking .
subsort Place << Marking .
op _,_ : Marking Marking ->Marking .
ops PA1,PA2,P31,P32,PNR2 : -> Place.
ops VTR1, TR1:-> Place.
ops P11,P12,P13,P14:->Place.
rl [str3] : PA2=>P31 .
rl [a31] : P31=>P32 .
rl [a32] : P32, PNR2=>PA2 .
rl [str1] : PA1=>P11 .
rl [rt][MA|192.186.0.2|{{P11-P14},{str1-a13}}|{TR1,VTR1}] :P11=>P12 .
rl [a11] : P12, TR1, PNR2=>P13 .
rl [a12] : P13, VTR1=>P14 .
rl [a13]: P14,NR1[192.168.0.1]=>PA1.
Endmod
Finally, the state of the marking will be : “P12” on the Host2. At this point, the two
specifications continue their execution on the two hosts where they reside.

6. CONCLUSION

In this paper, we have proposed an approach and a tool in dealing with the transformation of
LRN models to their equivalent R-Maude specifications automatically. This transformation
aims to make it possible to achieve the verification of properties of systems modeled using
LRN, since the latter do not have tools for analysis and verification. Our approach is based on
the combined use of meta-modeling and graph grammars wherein ATOM3 is used as a graph
transformation tool.

This study opens up new perspectives for future research. In our forthcoming studies, we plan
to hide the steps of the Simulation and thereby spare the user from invoking R-Maude
language manually and manipulating the textual version of the simulation result. Thus, the
latter will be returned in graphical way to LRN model structure. We plan also, to focus on
modeling and analyzing aspects. In the modeling aspects, our concern will be much more on
handling problems such as those of modeling multi-hops mobility, process states during
travel, birth places and locations. As for the analysis aspect, we are currently working on a
denotational semantics for LRN. It is to be underlined that the current R-Maude can be used
only to simulate Models. Future works will handle specification analyzing, so we plan to
integrate the LTL Maude Model checker in our tool to perform some verification of mobile
systems properties, so that Maude model-checker will be adapted to reconfigurable Maude.
For LRN, many extensions have been proposed, in [23], authors have proposed “Temporal
LRN” and in [24] they have suggested “Coloured LRN”. In line with these suggestions, we
focus on using R-Maude to simulate models of these extensions,

7. REFERENCES

[1] A. Asperti, N. Busi. “Mobile Petri Nets”. Technical Report UBLCS-96-10, Department of
Computer Science University of Bologna, May 1996.

[2] AToM3 Home page, version 3.00, http://atom3.cs.mcgill.ca.

Nardjess Dehimi & Allaoua Chaoui

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 50

[3] M. R. Bahri, A. Hettab, A. Chaoui, E. Kerkouche. “Transforming Mobile UML
Statecharts Models to Nested Nets Models using Graph Grammars: An Approach for
Modeling and Analysis of Mobile Agent-Based Software Systems“. In Proccedings of
IEEE SEEFM2009, the 2009 Fourth South-East European Workshop on Formal
Methods. Thessaloniki, Greece,

[4] Dec 5th, 2009. pp. 33-39,

[5] M.A. Bednarczyk, L. Bernardinello, W. Pawlowski, L. Pomello. “Modeling Mobility with

Petri Hypernets”. 17th Int. Conf. on Recent Trends in Algebraic Development
Techniques, WADT’04. LNCS vol. 3423, Springer-Verlag, 2004.

[6] D. Xu, Y. Deng. “Modeling Mobile Agent Systems with High Level Petri Nets”. 0-7803-

6583-6/00/ © 2000 IEEE.

[7] F. Dur, N. Steven, E. P. Lincoln, J. Meseguer. “principles of mobile maude”. In D.Kotz

and F.Mattern, editors, Agent systems, mobile agents and applications, second
international symposium on agent systems and applications and fourth international
symposium on mobile agents, ASA/MA 2000 LNCS 1882, Springer Verlag. Sep 2000.

[8] C. Fournet, G. Gonthier. “The Join Calculus: a Language for Distributed Mobile

Programming”. In Applied Semantics. International Summer School, APPSEM 2000,
Caminha, Portugal, Sep00, LNCS 2395, Springer-Verlag. Aug 2002, pp. 268-332.

[9] A. Fuggetta, G. P. Picco, G. Vigna. “Understanding Code Mobility”. IEEE transactions

on software engineering, vol. 24, no. 5, may 1998.

[10] L. Kahloul, A. Chaoui. “Labeled reconfigurable nets For modeling code mobility“. In

proceedings of ACIT 2007, Lattakia, Syria.

[11] K. M. van Hee, I. A. Lomazova, O. Oanea, A. Serebrenik, N. Sidorova, M. Voorhoeve.

“Nested Nets for Adaptive Systems”. 14 EE. ICATPN, 2006, pp. 241-260.

[12] 11, I.A. Lomazova. “Nested Petri Nets”; Multilevel and Recursive Systems. Fundamenta

Informaticae vol.47, pp.283-293. IOS Press, 2002.

[13] J. Meseguer. “A Logical Theory of Concurrent Objects and its Realization in the Maude

Language”. Agha G., Wegner P. and Yonezawa A., Editors, Research Directions in
Object-Based Concurrency. MIT Press, 1992, pp. 314-390.

[14] R. Milner, J. Parrow, D. Walker. “A calculus of mobile processes”. Information and

Computation, 100:1–77, 1992.

[15] R. Berger, I. Dori, S. Katz.”Modeling code mobility and migration: an OPM/Web

approach”, Int. J. Web Engineering and Technology, Vol. 2, No. 1, pp.6–28, 2005

[16] G. Rozengerg, "Handbook of Graph Grammar and computing Graph Transformation",

World Scientific, 1999.

[17] D. Sangiorgi, D. Walker. “The π-Calculus: A Theory of Mobile Processes”. Cambridge

University Press, 2001.

Nardjess Dehimi & Allaoua Chaoui

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 51

[18] L. Athie, S. A. DeLoach. “Designing and Specifying Mobility within the Multiagent
Systems Engineering methodology ” Special Track on Agents, Interactions, Mobility,
and Systems (AIMS) at the 18th ACM Symposium on Applied Computing (SAC 2003).
Melbourne, Florida, USA, 2003.

[19] R. Valk. “Petri Nets as Token Objects: An Introduction to Elementary Object Nets”.

Applications and Theory of Petri Nets, LNCS vol.1420, pp.1-25, Springer-Verlag, 1998.

[20] M. Clavel, F.Durán, S.Eker, P.Lincoln, N. Marti-Oliet, J.Meseguer, J. Quesada.

“Maude:specification and programming in rewriting logic”.SRI International,
http://maude,.csl.sri.com, Januray 1999.

[21] J. Meseguer: “Conditional rewriting logic as a unified model of concurrency”.

Theoretical Computer Science, 96 (1):73-155, 1992.

[22] P. C. Ölveczky, J. Meseguer:” Real-Time Maude : A tool for simulating and analyzing

real-time and hybrid systems”. In K. Futatsugi, editor, Third International Workshop on
Rewriting Logic and its Applications, volume 36 of Electronic Notes in Theoretical
Computer Science. Elsevier, 2000.

[23] http://www.elsevier.nl/locate.entcs/volume36.html.

[24] L. Kahloul, Allaoua Chaoui. ”LRN/R-Maude Based Approach For Modeling And

Simulation Of Mobile Code Systems”. Ubiquitous Computing and Communication
Journal, vol. 3, No. 6, Dec. 2008.

[25] L. Kahloul, Allaoua Chaoui. ”Temporal Labeled Reconfigurable Nets for Code Mobility

Modeling”. The International Workshop on (Trustworthy Ubiquitous Computing (TwUC
2007)

[26] associated to the iiWAS2007 conference.

[27] L. Kahloul, Allaoua Chaoui. “Coloured reconfigurable nets for code mobility modeling”.

In Proc World Academy of Science, Engineering and Technology. Vol. 25, International
Conference Venice, Italy. Nov 2007.

INSTRUCTIONS TO CONTRIBUTORS

The International Journal of Software Engineering (IJSE) provides a forum for software
engineering research that publishes empirical results relevant to both researchers and
practitioners. IJSE encourage researchers, practitioners, and developers to submit research
papers reporting original research results, technology trend surveys reviewing an area of
research in software engineering and knowledge engineering, survey articles surveying a broad
area in software engineering and knowledge engineering, tool reviews and book reviews. The
general topics covered by IJSE usually involve the study on collection and analysis of data and
experience that can be used to characterize, evaluate and reveal relationships between software
development deliverables, practices, and technologies. IJSE is a refereed journal that promotes
the publication of industry-relevant research, to address the significant gap between research and
practice.

The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal.
Starting with volume 3, 2012, IJSE appears in more focused issues. Besides normal publications,
IJSE intend to organized special issues on more focused topics. Each special issue will have a
designated editor (editors) – either member of the editorial board or another recognized specialist
in the respective field.

We are open to contributions, proposals for any topic as well as for editors and reviewers. We
understand that it is through the effort of volunteers that CSC Journals continues to grow and
flourish.

IJSE LIST OF TOPICS
The realm of International Journal of Software Engineering (IJSE) extends, but not limited, to the
following:

• Ambiguity in Software Development • Application of Object-Oriented Technology
to Engin

• Architecting an OO System for Size Clarity
Reuse E

• Composition and Extension

• Computer-Based Engineering Techniques • Data Modeling Techniques

• History of Software Engineering • IDEF

• Impact of CASE on Software Development Life
Cycle

• Intellectual Property

• Iterative Model • Knowledge Engineering Methods and
Practices

• Licensing • Modeling Languages

• Object-Oriented Systems • Project Management
• Quality Management • Rational Unified Processing

• SDLC • Software Components

• Software Deployment

•
•

• Software Design and applications in Various
Domain

• Software Engineering Demographics • Software Engineering Economics

• Software Engineering Methods and Practices • Software Engineering Professionalism
• Software Ergonomics • Software Maintenance and Evaluation

• Structured Analysis • Structuring (Large) OO Systems

• Systems Engineering • Test Driven Development

• UML •

CALL FOR PAPERS

Volume: 3 - Issue: 4 - August 2012

i. Paper Submission: May 31, 2012 ii. Author Notification: July 15, 2012

iii. Issue Publication: August 2012

CONTACT INFORMATION

Computer Science Journals Sdn BhD

B-5-8 Plaza Mont Kiara, Mont Kiara
50480, Kuala Lumpur, MALAYSIA

Phone: 006 03 6207 1607

006 03 2782 6991

Fax: 006 03 6207 1697

Email: cscpress@cscjournals.org

