

INTERNATIONAL JOURNAL OF SOFTWARE

ENGINEERING (IJSE)

VOLUME 2, ISSUE 4, 2011

EDITED BY

DR. NABEEL TAHIR

ISSN (Online): 2180-1320

I International Journal of Software Engineering (IJSE) is published both in traditional paper form

and in Internet. This journal is published at the website http://www.cscjournals.org, maintained by

Computer Science Journals (CSC Journals), Malaysia.

IJSE Journal is a part of CSC Publishers

Computer Science Journals

http://www.cscjournals.org

INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING

(IJSE)

Book: Volume 2, Issue 4, October 2011

Publishing Date: 05 – 10 - 2011

ISSN (Online): 2180-1320

This work is subjected to copyright. All rights are reserved whether the whole or

part of the material is concerned, specifically the rights of translation, reprinting,

re-use of illusions, recitation, broadcasting, reproduction on microfilms or in any

other way, and storage in data banks. Duplication of this publication of parts

thereof is permitted only under the provision of the copyright law 1965, in its

current version, and permission of use must always be obtained from CSC

Publishers.

IJSE Journal is a part of CSC Publishers

http://www.cscjournals.org

© IJSE Journal

Published in Malaysia

Typesetting: Camera-ready by author, data conversation by CSC Publishing Services – CSC Journals,

Malaysia

CSC Publishers, 2011

EDITORIAL PREFACE

The International Journal of Software Engineering (IJSE) provides a forum for software
engineering research that publishes empirical results relevant to both researchers and
practitioners. It is the fourth issue of First volume of IJSE and it is published bi-monthly, with
papers being peer reviewed to high international standards.

The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal.
Starting with volume 2, 2011, IJSE appears in more focused issues. Besides normal publications,
IJSE intend to organized special issues on more focused topics. Each special issue will have a
designated editor (editors) – either member of the editorial board or another recognized specialist
in the respective field.

IJSE encourage researchers, practitioners, and developers to submit research papers reporting
original research results, technology trend surveys reviewing an area of research in software
engineering, software science, theoretical software engineering, computational intelligence, and
knowledge engineering, survey articles surveying a broad area in software engineering and
knowledge engineering, tool reviews and book reviews. Some important topics covered by IJSE
usually involve the study on collection and analysis of data and experience that can be used to
characterize, evaluate and reveal relationships between software development deliverables,
practices, and technologies. IJSE is a refereed journal that promotes the publication of industry-
relevant research, to address the significant gap between research and practice.

IJSE give the opportunity to researchers and practitioners for presenting their research,
technological advances, practical problems and concerns to the software engineering.. IJSE is
not limited to a specific aspect of software engineering it cover all Software engineering topics. In
order to position IJSE amongst the most high quality journal on computer engineering sciences, a
group of highly professional scholars are serving on the editorial board. IJSE include empirical
studies, requirement engineering, software architecture, software testing, formal methods, and
verification.

International Editorial Board ensures that significant developments in software engineering from
around the world are reflected in IJSE. The submission and publication process of manuscript
done by efficient way. Readers of the IJSE will benefit from the papers presented in this issue in
order to aware the recent advances in the Software engineering. International Electronic editorial
and reviewer system allows for the fast publication of accepted manuscripts into issue publication
of IJSE. Because we know how important it is for authors to have their work published with a
minimum delay after submission of their manuscript. For that reason we continue to strive for fast
decision times and minimum delays in the publication processes. Papers are indexed &
abstracted with International indexers & abstractors.

EDITORIAL BOARD

EDITORIAL BOARD MEMBERS (EBMs)

Dr. Richard Millham
University of Bahamas
Bahamas

Dr. Vitus S.W. Lam
The University of Hong Kong
 Hong Kong

International Journal of Software Engineering (IJSE), Volume (2), Issue (4) : 2011

TABLE OF CONTENTS

Volume 2, Issue 4, October 2011

Pages

70 - 80

81 - 86

87 - 96

Different Software Testing Levels for Detecting Errors

Mohd. Ehmer Khan

Pareto Type II Based Software Reliability Growth Model

Satyaprasad, N.Geetha Rani, R.R.L Kantam

Software Effort Estimation Using Particle Swarm Optimization With Inertia Weight

CH V M K HARI, Prasad Reddy.P.V.G.D

Mohd. Ehmer Khan

International Journal of Software Engineering (IJSE), Volume (2) : Issue (4) : 2011 70

Different Software Testing Levels for Detecting Errors

Mohd. Ehmer Khan ehmerkhan@gmail.com
Lecturer
Department of Information Technology
Al Musanna College of Technology
P.O. Box-191, PC-314, Sultanate of Oman

Abstract

Software testing is the process to uncover requirement, design and coding errors in the program.
But software testing is not a “miracle” that can guarantee the production of high quality software
system, so to enhance the quality of a software and to do testing in a more unified way, the
testing process could be abstracted to different levels and each level of testing aims to test
different aspects of the system. In my paper, I have described different level of testing and these
different levels attempt to detect different types of defects. The goal here is to test the system
against requirement, and to test requirement themselves.

Keywords: Acceptance Testing, Integration Testing, Regression Testing, System Testing, Unit
Testing

1. INTRODUCTION
Software testing is the process of accessing the functionality and correctness of a software
through analysis. It also identifies most important defects, flaws, or errors in the application code
that must be fixed. The system must be tested in steps with the planned build and release
strategies. The key to successful testing strategies is selecting the right level of test at each stage
in a project.

The level of testing have a hierarchical structure which build up from the bottom-up where higher
level assume successful and satisfactory completion of lower level test. Each level of test is
characterized by an environment i.e. type of people, hardware, data etc. and these environmental
variables vary from project to project. [1] Each completed level represent a milestone on the
project plan and each stage represents a known level of physical integration and quality. These
integrated stages are known as level of testing.

The various levels of testing are:

1. Unit Testing
2. Integration Testing
3. System Testing
4. Acceptance Testing
5. Regression Testing

Mohd. Ehmer Khan

International Journal of Software Engineering (IJSE), Volume (2) : Issue (4) : 2011 71

CLIENT NEEDS ACCEPTANCE TESTING

SYSTEM TESTING
BUSINESS

REQUIREMNETS

INTEGRATION
TESTING

DESIGN

UNIT TESTING
OR

(COMPONENT
TESTING)

TECHNICAL
DESIGN AND

CODING

Represent relationship
among testing

Represent
work flow

REGRESSION
TESTING

Not included in the testing level because
it is only perform when some changes
are made to an existing system

2. LEVELS OF TESTING

FIGURE 1: Represent various levels of testing

2.1 Unit Testing
Unit testing is also known as component testing, is the first and the lowest level of testing. In this
level, individual units/components of software are tested and it is typically done by a programmer
of the unit or module (Unit is the smallest piece of software that can be tested). Unit testing help
to expose bugs that might appear to be hidden. Unit testing focuses on implementation and also
require thorough understanding of the systems functional specification. [1]

Approximate level of documentation is needed for unit testing and there are certain minimum
requirements for that documentation. They are as follows:

1. It must be reviewable
2. All the record must be archivable
3. Test can be repeatable

Two Types of unit testing
 Buddy Testing

Unit Testing
 Automated Unit Testing

Mohd. Ehmer Khan

International Journal of Software Engineering (IJSE), Volume (2) : Issue (4) : 2011 72

2.1.1 Buddy Testing
A better approach that has been encouraged is the use of a process called “Buddy Testing”. It
takes two-person team approach for code implementation and unit testing. Developer A writes the
test cases for developer B, while B performs the unit test and vice versa. There are certain
advantages of this team approach (buddy testing) – [1]

1. Models of the program specification requirements are served properly as the test cases
are created prior to coding

2. Buddy testing provide cross-training on application.
3. The testing process is more objective and productive.

The one disadvantage with buddy testing is the extra time required to write the test cases up front
and for the developer to familiarize themselves with each other specification and code.

2.1.2 Automating Unit Testing
Unit testing is usually automated and it is performed within the IDE of programmers. JUNIT (for
JAVA) is an example of automated unit testing. RUTE-J a randomized unit testing example of
JAVA is an effective and efficient method of testing.

2.2 Integration Testing
The level after unit testing is integration testing either the developer or an independent tester
performs integration testing. It involves combining and testing different units of the program. The
purpose of integration testing is to verify functional, performance and reliability requirements
placed on major design items. [2] Approximately 40% of software errors are revealed during
integration testing, so the need of integration testing must not be overlooked. The key purpose of
integration testing is to leverage the overall integration structure to allow rigorous testing at each
phase while minimizing duplication of efforts. Some different types of integration testing are

 Big Bang Integration

 Bottom-Up Integration

Integration Testing
 Top-Down Integration

 Sandwich Integration

2.2.1 Big Bang Integration Testing
Big bang is an approach to integration testing where almost all the units are combined together
and tested at one go. It is very effective for saving time in the integration testing process. Usage
model testing is a type of big-bang testing and can be used in both software and hardware
integration testing. [2]

There are certain disadvantages with big bang [3]

1. High cost of repair
2. Minimum observability, diagnosabilty, efficacy and feedback
3. Defects are identified at a very late stage.
4. High probability of missing critical defects.
5. Difficult to isolate the defect found.

2.2.2 Bottom-Up Integration Testing
In this approach, testing starts at the bottom of the tree. Bottom-Up integration uses test drivers to
drive and pass appropriate data to the lower level module. At each stage of bottom-up integration,
the units at the higher levels are replaced by drivers (drivers are throw away pieces of code that
are used to simulate procedure calls to child). [1]

Mohd. Ehmer Khan

International Journal of Software Engineering (IJSE), Volume (2) : Issue (4) : 2011 73

Driver for
X

Driver for
Y

X Y

Driver for
A

A B

X

Driver for
B

Y

Driver for
A

A

X Y

In this approach behaviour of interaction point are crystal clear. On the other hand, writing and
maintaining test drivers is more difficult than entering stub.

Separate drivers for
each module, No. of
tests are V(X) + V(Y)

Test a basis set of paths A
in integration units X and Y
using a driver, No. of tests
V(A)

Mohd. Ehmer Khan

International Journal of Software Engineering (IJSE), Volume (2) : Issue (4) : 2011 74

A B

X Y

Top

Integrated into single
subsystem (Complete Bottom
UP)

FIGURE 2: Represent complete bottom-up integration testing

2.2.3 Top-Down Integration Testing
Top-down integration testing starts from the top and then proceeds to its child units. Any other
lower level nodes that may be connected should be create as a stub. [4] As we add lower level
code, we will replace stubs with actual components. This testing can be performed either breadth
first or depth first. It is up to the tester to decide how many stubs should be replaced before the
next test is performed. As the system prototype can be developed early on in the project process,
this will make work easier and design defect can be found and corrected early. But one
disadvantage with top-down approach is that extra work is needed to be done to produce large
number of stubs.

Working from top level
towards bottom

Write stubs of used module
at each step in construction

Top

Stub X Stub Y

X Y

Stub A Stub B

Top

Mohd. Ehmer Khan

International Journal of Software Engineering (IJSE), Volume (2) : Issue (4) : 2011 75

Top down is complete,
and all functionality can
be tested

FIGURE 3: Represent complete top-down integration testing

2.2.4 Sandwich Integration Testing
This approach combines the functionality of both bottom-up and top-down approach. The lower
section unit are tested using bottom-up integration and higher section unit are tested by using
top-up integration.[1] Less throw away codes are used by sandwich testing as compare to top
down approach. [5]

Working from extremes
toward center

It is flexible but complex
to plan

FIGURE 4: Represent complete sandwich integration testing

X Y

A B

Top

Stub B

Top

D

A B

C D

Top

Mohd. Ehmer Khan

International Journal of Software Engineering (IJSE), Volume (2) : Issue (4) : 2011 76

2.3 System Testing
Major level of testing or we can say the core of testing comes in this level, it is called system
testing. This phase demands additional skills from a tester because various structural and
functional techniques are carried out in this phase. System testing occurs when the system has
been deployed onto a standard environment and all necessary components has been released
internally.

Besides functional testing, system testing may include testing configuration, security, optimal
utilization of resources and performance of the system. System testing is needed as:

1. It reduces cost
2. It increase productivity
3. It reduces commercial risk

The main goal of system testing is to evaluate the system as a whole and not its part. Various
forms of testing under system testing are [6]

 Stress Testing

 Recovery Testing

 Structural Techniques Operation Testing

 Compliance Testing

 Security Testing

System Testing
 Requirement Testing

 Regression Testing

 Functional Techniques Manual Support Testing

 Control Testing

 Parallel Testing

2.3.1 Structural Techniques

2.3.1.1 Stress Testing
It puts the program under heavy load or stress or we can also define stress testing as type of
performance testing conducted to evaluate a system or components at all beyond limits of its
specified work load. Stress testing may have a more specified meaning in certain industries, such
as fatigue testing for material. [7]

2.3.1.2 Recovery Testing
It is a process of testing to determine the recoverability of the software. Recovery testing is
executed to show that whether the recovery function of a system work in a correct manner or not.
It also handles how the system recovers from the failure and it handles corrupted data such as
data in DBMS and operating system.

2.3.1.3 Operation Testing
Testing conducted to evaluate a component or system in its operational environment. [8]
Operation testing also test how the system is fits in with existing operations and procedure in the
user organization.

Mohd. Ehmer Khan

International Journal of Software Engineering (IJSE), Volume (2) : Issue (4) : 2011 77

2.3.1.4 Compliance Testing
 It is usually done to determine the compliance of a system. It tests adherence to standards.

2.3.1.5 Security Testing
It helps to protect data and maintains the functionality of the system. The main concepts covered
by security testing are [7]

1. Confidentiality
2. Integrity
3. Authentication
4. Authorization
5. Availability
6. Non Duplication

Internet based application are good candidate for security testing due to the continuous growth in
the number of e-commerce applications.

2.3.2 Functional Techniques

2.3.2.1 Requirement Testing
It is the most fundamental form of testing and it checks and make sure that the system does what
it is required to do.

2.3.2.2 Regression Testing
It is performed to uncover new errors, in existing functionality after changes have been made to
the software. It assures that a change, such as a bugfix, did not introduce new bugs. [7]
Regression testing ensures that the unchanged functionality remains unchanged.

2.3.2.3 Manual Support Testing
It includes user documentation and tests whether the system can be used properly or not. [6]

2.3.2.4 Control Testing
It is the process of testing various required control mechanism for system.

2.3.2.5 Parallel Testing
In parallel testing the same input is feed into two different versions of the system to make sure
that both the versions of the system produces the same result. [6]

2.4 Acceptance Testing

FIGURE 5: Represent acceptance testing

System

Acceptance
Testing

Acceptable
for delivery

Check

Evaluate system
compliance

Mohd. Ehmer Khan

International Journal of Software Engineering (IJSE), Volume (2) : Issue (4) : 2011 78

In software engineering acceptance testing is a level of software testing where the system is
tested for user acceptability. Acceptance testing checks the system against requirement.

Acceptance testing is performed after system testing and before making the system available for
actual use. [9] Sometimes acceptance testing also involves compatibility testing, it happens when
a new system is developed to replace the old one.

Types of system testing

2.4.1 Internal Acceptance Testing
It is also known as alpha testing, which is simulated or actual operational testing and it is carried
out by the test team who are not directly involved in the project.

2.4.2 External Acceptance Testing
It is performed by the external (not employed in an organization that developed the system)

2.4.2.1 Customer Acceptance Testing
Testing is performed by the customers who asked the organization to develop the software for
them (software not being owned by the organization that developed it) [9]

2.4.2.2 User Acceptance Testing
It is also known as beta testing which is operational testing by potential and existing customer at
an external site not otherwise involved with the developer, to determine whether or not system
satisfies customer needs.

Hence the goal of acceptance testing should verify the overall quality, correct operation,
scalability, completeness, usability, portability and robustness of the functional component which
is supplied by software system [6]

2.5 Regression Testing
Regression testing is performed when the software or its environment is changed. It is testing of a
previously tested program following modification to ensure that defects have not been introduce
or uncovered in unchanged areas of software, as a result of the changes made. [8]

Another important reason for regression testing is that it is often extremely difficult for a
programmer to find out how the changes in one part of the software effects the other part. [10]
Regression testing is a very important aspect of the system maintenance.

Acceptance Testing

Internal
AT

External
AT

Customer
AT

User AT

Mohd. Ehmer Khan

International Journal of Software Engineering (IJSE), Volume (2) : Issue (4) : 2011 79

Two strategies of regression testing are [1]

 Adaptive Maintenance

Regression Testing

 Corrective Maintenance

2.5.1 Adaptive Maintenance
In adaptive maintenance the system specification are modified. Adaptive regression requires the
generation of new test cases to suit the new specification.

2.5.2 Corrective Maintenance
In corrective maintenance the system specification are not modified and its support the reuses of
test cases.

3. COMPARING DIFFERENT SOFTWARE TESTING LEVELS
Comparing different levels of testing that are done throughout the software development process
are outlined in the table below

Level Description Importance

Unit Testing
Verify the functionality of a specific section of code
at functional level.

White Box

Integration Testing
Tests the interfaces between component against a
software design.

White Box / Black Box

System testing
Test a completely integrated software system and
verifies that it satisfies the requirement.

Black Box

Acceptance Testing
It is performed as a part of hand-off process
between any two phases of software development
process.

Black Box

Regression Testing
Tests the defects that are occurred after a major
code change i.e. tests new functionality in a
program.

White Box

TABLE 1: Comparison between different software testing levels.

4. CONCLUSION
Software testing has the potential to save time and money by identifying errors early, and to
improve customer satisfaction by delivering a more error free product. Software testing normally
involves different levels of test case specification, test case generation, test execution, test
evaluation and regression testing. Each of these levels plays an important role in the production
of the program and meets their desired specification.

We have seen different level of testing so far. Starting from unit testing which is at the lowest level
and ensures that the implementation fits the functional specification. Integration testing is next to
unit testing and it tests the communication between different components of the system. After
integration testing, system testing comes which tests the functionality of software as a complete
system. The last level is acceptance testing and it verifies whether the end user is satisfy with the

Mohd. Ehmer Khan

International Journal of Software Engineering (IJSE), Volume (2) : Issue (4) : 2011 80

system or not. Lastly, the regression testing which ensures that the modification applied to a
system has not adversely change system behavior.

Irrespective of different levels of testing the testing should encompass the following

1. Cost of failure
2. Identify defect before customer finds them
3. Reduce the risk of releasing
4. Evaluation of product with an independent perspective

5. REFRENCES
[1] Levels of Testing written by Patrick Oladimeji supervised by Prof. Dr. Holger Schlingloff &

Dr. Markus Roggenbach published on 1/12/2007 available at
http://www.cs.swan.ac.uk/~csmarkus/CS339/dissertations/OladimejiP.pdf

[2] Integration testing available at http://en.wikipedia.org/wiki/Integration_testing

[3] Big bang integration available at http://www.testinggeek.com/big-bang-integration-testing

[4] Integration testing by Thomas Bradley (368100) published on February 8, 2008 available at

http://sucs.org/~tobeon/testing.pdf

[5] Integration testing & Component based software testing chapter # 21 by Mauro & Michal

Young, 2007 (c) available at http://ix.cs.uoregon.edu/~michal/book/slides/pdf/PezzeYoung-
Ch21-integration.pdf

[6] Cognizant Technology Solution available at pp 44, 50, 52 & 61 available at

http://www.scribd.com/doc/6749799/Software-Testing-COGNIZANT-Notes

[7] System testing available at http://en.wikipedia.org/wiki/System_testing

[8] Standard glossary of terms used in Software Testing (ISTQB) version 2.1 (dd. April 1st,

2010) by Erik van Veenendaal (The Netherlands) available at
http://istqb.org/download/attachments/2326555/ISTQB+Glossary+of+Testing+Terms+2+1.p
df

[9] Levels of software testing available at http://softwaretestingfundamentals.com/software-

testing-levels/

[10] Regression testing available at http://en.wikipedia.org/wiki/Regression_testing

Dr.R.Satya Prasad, N.Geetha Rani & Prof.R.R.L. Kantam

International Journal of Software Engineering (IJSE), Volume (2) : Issue (4) : 2011 81

Pareto Type II Based Software Reliability Growth Model

Dr.R.Satya Prasad profrsp@gmail.com
Associate Professor, Dept.of Computer Science & Engg.
Acharya Nagarjuna University,
Nagarjuna Nagar- 520510.
INDIA.

N.Geetha Rani geetha.neppala@gmail.com
Associate Professor, Department of Computer Science,
Abhinav Institute of Management & Tech.
Singaryakonda – INDIA

Prof.R.R.L.Kantam kantam_rrl@rediffmail.com
Professor, Department of Statistics
Acharya Nagarjuna University,
Nagarjuna Nagar- 520510.
INDIA.

Abstract

The past 4 decades have seen the formulation of several software reliability growth models to
predict the reliability and error content of software systems. This paper presents Pareto type II
model as a software reliability growth model, together with expressions for various reliability
performance measures. Theory of probability, distribution function, probability distributions plays
major role in software reliability model building. This paper presents estimation procedures to
access reliability of a software system using Pareto distribution, which is based on
Non Homogenous Poisson Process (NHPP).

Keywords: Software Reliability, NHPP, Pareto Type II Distribution, Parameter Estimation.

1. INTRODUCTION

Software reliability is the probability of failure free operation of software in a specified
environment during specified duration [Musa 1998]. Several models have been proposed during
the past 4 decades for accessing reliability of a software system for example Crow and
Basu(1988), Goel and Okumoto (1979,1984), Musa(1980), Pham(2005), Ramamurthy and
Bastani(1982), Zhang,Teng and Pham(2003), Malaiya, Karunanithi and Verma(1992) and
Wood(1996). The objective of such models is to improve software performance. These models
are concerned with forecasting future system operability from the failure data collected during the
testing phase of a software product. Most of the models assume that the time between failure
follows an exponential distribution with parameter that varies with the number of errors remaining
in the software system. A software system is a product of human work and is very likely to
contain faults. The accuracy of software reliability growth models when validated using the very
few available data sets varies significantly and thus despite the existence of numerous models,
none of them can be recommended unreservedly to potential users.

This paper presents a Pareto type II model to analyze the reliability of a software system. Our
objective is to develop a parsimonious model whose parameters have a physical interpretation
and which can yield quantitative measure for software performance assessment. The layout of
the paper is as follows: Section 2 describes the development and interpretation of the mean value
function for the underlying NHPP. Section 3 discusses parameter estimation of Pareto type II
model based on time between failure data. Section 4 describes the techniques used for software
failure data analysis for a live data and Section 5 contains conclusions.

Dr.R.Satya Prasad, N.Geetha Rani & Prof.R.R.L. Kantam

International Journal of Software Engineering (IJSE), Volume (2) : Issue (4) : 2011 82

2. PARETO MODEL DEVELOPMENT

Software reliability models can be classified according to probabilistic assumptions. When a
Markov process represents the failure process, the resultant model is called Markovian Model.
Second one is fault counting model which describes the failure phenomenon by stochastic
process like Homogeneous Poisson Process (HPP), Non Homogeneous Poisson Process
(NHPP) and Compound Poisson Process etc. A majority of failure count models are based upon
NHPP described in the following lines.

A software system is subject to failures at random times caused by errors present in the system.
Let {N(t), t >0} be a counting process representing the cumulative number of failures by time t.
Since there are no failures at t=0 we have

 N(0) = 0

It is to assume that the number of software failures during non overlapping time intervals do not
affect each other. In other words, for any finite collection of times t1<t2<….<tn the ‘n’ random
variables N(t1), {N(t2)-N(t1)}, ….. {N(tn) - N(tn-1)} are independent. This implies that the counting
process {N(t), t>0} has independent increments.

Let m(t) represent the expected number of software failures by time ‘t’. Since the expected
number of errors remaining in the system at any time is finite, m(t) is bounded, non decreasing
function of ‘t’ with the following boundary conditions.

 m(t) = 0, t = 0
 = a, t → ∞

where a is the expected number of software errors to be eventually detected.

Suppose N(t) is known to have a Poisson probability mass function with parameters m(t) i.e.

 , n=0,1,2,…∞

then N(t) is called an NHPP. Thus the stochastic behavior of software failure phenomena can be
described through the N(t) process. Various time domain models have appeared in the literature
(Kantam and Subbarao, 2009) which describe the stochastic failure process by an NHPP which
differ in the mean value functions m(t).

In this paper we consider m(t) as given by

 (2.1)

where [m(t)/a] is the cumulative distribution function of Pareto type II distribution (Johnson et al,
2004) for the present choice.

 =

 which is also a Poisson model with mean ‘a’.

Let N(t) be the number of errors remaining in the system at time ‘t’

Dr.R.Satya Prasad, N.Geetha Rani & Prof.R.R.L. Kantam

International Journal of Software Engineering (IJSE), Volume (2) : Issue (4) : 2011 83

 N(t) = N(∞) – N(t)
 E[N(t)] = E[N(∞)] - E[N(t)]
 = a - m(t)

 = a -

 =

Let be the time between (k-1)th and kth failure of the software product. Let be the time up to
the kth failure. Let us find out the probability that time between (k-1)th and kth failures, i.e.
exceeds a real number ‘s’ given that the total time up to the (k-1)th failure is equal to x, i.e. P[>
s / = x]

 R (s / x) = (2.2)

This Expression is called Software Reliability.

3. PARAMETER ESTIMATION OF PARETO TYPE II MODEL
In this section we develop expressions to estimate the parameters of the Pareto type II model
based on time between failure data. Expressions are now derived for estimating ‘a’, ‘b’ and ‘c’ for
the model.

Let …. be a sequence of times between successive software failures associated with an

NHPP N(t). Let be equal to

 , k = 1, 2, 3 ….

which represents the time to failure k. Suppose we are given ‘n’ software failure times

say , there are ‘n’ time instants at which the first, second, third … nth failures of a
software are observed. This is a special case of a life testing experiment in which only one
product is put to test and its successive failures are recorded alternatively separated by error
detections and debugging.

The mean value function of Pareto type II model is given by

 , t ≥ 0 (3.1)

The constants ‘a’ , ‘b’ and ‘c’ which appear in the mean value function and various other
expressions are called parameters of the model. In order to have an assessment of the software
reliability a, b and c are to be known or they are to be estimated from software failure data.
Expressions are now derived for estimating ‘a’, ‘b’ and ‘c’ for the model.

The required likelihood function is given by

 L= .) (3.2)

values of a, b and c that would maximize L are called maximum likelihood estimators (MLEs) and
the method is called maximum likelihood (ML) method of estimation.

L = . (3.3)

Dr.R.Satya Prasad, N.Geetha Rani & Prof.R.R.L. Kantam

International Journal of Software Engineering (IJSE), Volume (2) : Issue (4) : 2011 84

Then the log likelihood equation to estimate the unknown parameters a, b and c are given by

LogL=
()

() ()
1

1 log log log 1 log
b n

ib

i
n

c
a a b b c b x c

x c =

 
− − + + + − + +    

+  
∑ (3.4)

Accordingly parameters ‘a’, ‘b’ and ‘c’ would be solutions of the equations

, , ,

,

Substituting the expressions for m(t) (3.1) in the above equations, taking logarithms,
differentiating with respect to ‘a’, ‘b’, ‘c’ and equating to zero, after some joint simplications we get

 a = (3.5)

g(b)= + – (3.6)

Second order partial derivative of L with respect to the parameter ‘b’

g’(b) = -n log - (3.7)

g(c) = + - (3.8)

Second order partial derivative of L with respect to the parameter ‘c’

g’(c) = - - + (3.9)

The values of ‘b’ and ‘c’ in the above equations can be obtained using Newton Raphson Method.
Solving the above equations simultaneously, yields the point estimates of the parameters a, b
and c. These equations are to be solved iteratively and their solutions in turn when substituted in
the log likelihood equation of ‘a’ would give analytical solution for the MLE of ‘a’. However when
‘b’ is assumed to be known only one equation that of ‘c’ has to be solved by numerical methods to
proceed for further evaluation of reliability measures.

4. NTDS SOFTWARE FAILURE DATA ANALYSIS
In this Section, we present the analysis of NTDS software failure data, taken from Jelinski and
Mornda(1972). The data are originally from the U.S. Navy Fleet Computer Programming Centre,
and consists of the errors in the development of software for the real time, multi computer
complex which forms the core of the Naval Tactical Data Systems (NTDS). The NTDS software
consisted of some 38 different modules. Each module was supposed to follow three stages; the
production (development) phase, the test phase and the user phase. The data are based on the
trouble reports or ‘software anomaly reports’ for one of the larger modules denoted as A-module.
The times (days) between software failures and additional information for this module are
summarized in the below table.

Dr.R.Satya Prasad, N.Geetha Rani & Prof.R.R.L. Kantam

International Journal of Software Engineering (IJSE), Volume (2) : Issue (4) : 2011 85

Error

Number
n

Time

between
Errors

Sk days

Cumulative

Time

xn =
days

Production (Checkout) Phase
1 9 9

2 12 21

3 11 32

4 4 36

5 7 43

6 2 45

7 5 50

8 8 58

9 5 63

10 7 70

11 1 71

12 6 77

13 1 78

14 9 87

15 4 91

16 1 92

17 3 95

18 3 98

19 6 104

20 1 105

21 11 116

22 33 149

23 7 156

24 91 247

25 2 249

26 1 250

Test Phase

27 87 337

28 47 384

29 12 396

30 9 405

31 135 540

User Phase

32 258 798

Test Phase

33 16 814

34 35 849

TABLE 4.1 NTDS Data

The data set consists of 26 failures in 250 days. 26 software errors were found during production
phase and five additional errors during test phase. One error was observed during the user
phase and two more errors are noticed in a subsequent test phase indicating that a network of
the module had taken place after the user error was found.

Solving equations in section 3 by Newton Raphson Method (N-R) method for the NTDS software
failure data, the iterative solutions for MLEs of a, b and c are

a^ = 55.018710
b^ = 0.998899
c^ = 278.610091

Dr.R.Satya Prasad, N.Geetha Rani & Prof.R.R.L. Kantam

International Journal of Software Engineering (IJSE), Volume (2) : Issue (4) : 2011 86

Hence, we may accept these three values as MLEs of a, b, c. The estimator of the reliability
function from the equation (2.2) at any time x beyond 250 days is given by

 R (s / x) =

 R (250/50) =

 = 0.081677

5. CONCLUSION
In this paper we have presented Pareto software reliability growth model with a mean value
function. It provides a plausible description of the software failure phenomenon. This is called
Pareto Type II Model. This is a simple method for model validation and is very convenient for
practitioners of software reliability.

6. REFERENCES
[1] CROW, .H, and BASU, A.P. (1988). “Reliability growth estimation with missing data-II”,

Proceeding annual Reliability and Maintainability Symposium, 26-28.

[2] Goel, A.L., Okumoto, K., 1979. Time- dependent error-detection rate model for software

reliability and other performance measures. IEEE Trans. Reliab. R-28, 206-211.

[3] Jelinski, Z and Moranda, P.B (1972) “Software reliability research”, In:W.Freiberger,(Ed)

Statistical Computer Performance Evaluation, New York:Academic Press 465-497.

[4] Musa J.D, Software Reliability Engineering MCGraw-Hill, 1998.

[5] Musa,J.D. (1980) “The Measurement and Management of Software Reliability”, Proceeding

of the IEEE vol.68, No.9, 1131-1142.

[6] Pham. H (2005) “A Generalized Logistic Software Reliability Growth Model”, Opsearch,

Vol.42, No.4, 332-331.

[7] Ramamurthy, C.V., and Bastani, F.B.(1982). “Software Reliability Status and Perspectives”,

IEEE Transactions on Software Engineering, Vol.SE-8, 359-371.

[8] R.R.L.Kantam and R.Subbarao, 2009. “Pareto Distribution: A Software Reliability Growth

Model”. International Journal of Performability Engineering, Volume 5, Number 3, April
2009, Paper 9, PP: 275- 281.

[9] J.D.Musa and K.Okumoto,”A Logorithmic Poisson Execution time model for software

reliability measure-ment”, proceeding seventh international conference on software
engineering, orlando, pp.230-238,1984.

[10] ZHANG,X., TENG,X. and PHAM,H. CONSIDERING FAULT REMOVAL EFFICIENCY IN

SOFTWARE RELIABILITY ASSESSMENT, IEEE Transactions on Systems, Man and
Cybernetics-part A, Vol.33, No.1, 2003; 114-120.

[11] MALAIYA, Y.K., KARUNANITHI, N., and VERMA, P. PREDICTABILITY OF SOFTWARE

RELIABILITY MODELS, IEEE Transactions on Reliability, Vol, No.4. 1992; 539-546.

[12] WOOD, A. predicting software Reliability, IEEE Computer, 1996; 2253-2264.

Prasad Reddy.P.V.G.D & CH.V.M.K.Hari

International Journal of Software Engineering (IJSE), Volume (2) : Issue (4) : 2011 87

Software Effort Estimation Using Particle Swarm Optimization
With Inertia Weight

Prasad Reddy.P.V.G.D prasadreddy.vizag@gmail.com
Department of Computer Science & Systems Engineering
Andhra University
Visakhapatnam, 530003, India

CH.V.M.K.Hari kurmahari@gmail.com
Department of IT
GITAM University
Visakhapatnam, 530045, India

Abstract

Software is the most expensive element of virtually all computer based systems. For complex

custom systems, a large effort estimation error can make the difference between profit and loss.

Cost (Effort) Overruns can be disastrous for the developer. The basic input for the effort

estimation is size of project. A number of models have been proposed to construct a relation

between software size and Effort; however we still have problems for effort estimation because of

uncertainty existing in the input information. Accurate software effort estimation is a challenge in

Industry. In this paper we are proposing three software effort estimation models by using soft

computing techniques: Particle Swarm Optimization with inertia weight for tuning effort

parameters. The performance of the developed models was tested by NASA software project

dataset. The developed models were able to provide good estimation capabilities.

Keywords--PM- Person Months, KDLOC-Thousands of Delivered Lines of Code, PSO - Particle
Swarm Optimization, Software Cost Estimation.

1. INTRODUCTION
The modern day software industry is all about efficiency. With the increase in the expanse and
impact of modern day software projects, the need for accurate requirement analysis early in the
software development phase has become pivotal. The provident allocation of the available
resources and the judicious estimation of the essentials form the basis of any planning and
scheduling activity. For a given set of requirements, it is desirable to cognize the amount of time
and money required to deliver the project prolifically. The chief aim of software cost estimation is
to enable the client and the developer to perform a cost – benefit analysis. The software, the
hardware and the human resources involved add up to the cost of a project. The cost / effort
estimates are determined in terms of person-months (pm) which can be easily interchanged to
actual currency cost.
The basic input parameters for software cost estimation is size, measured in KDLOC (Kilo
Delivered Lines Of Code). A number of models have been evolved to establish the relation
between Size and Effort [13]. The parameters of the algorithms are tuned using Genetic
Algorithms [5] ,Fuzzy models[6][14], Soft-Computing Techniques[7][9][10][15], Computational
Intelligence Techniques[8],Heuristic Algorithms, Neural Networks, Radial Basis and Regression
[11][12] .

1.1 Basic Effort Model
A common approach to the estimation of the software effort is by expressing it as a single
variable function - project size. The equation of effort in terms of size is considered as follows:
Effort= a * (Size)

b
(1)

Prasad Reddy.P.V.G.D & CH.V.M.K.Hari

International Journal of Software Engineering (IJSE), Volume (2) : Issue (4) : 2011 88

Where a, b are constants. The constants are usually determined by regression analysis applied to
historical data.

1.2 Standard PSO with Inertia Weights
In order to meet the needs of modern day problems, several optimization techniques have been
introduced. When the search space is too large to search exhaustively, population based
searches may be a good alternative, however, population based search techniques cannot
guarantee you the optimal (best) solution. We will discuss a population based search technique,
Particle Swarm Optimization (PSO) with Inertia Weights [Shi and Eberhart 1998]. Particle Swarm
has two primary operators: Velocity update and Position update. During each generation each
particle is accelerated toward the particles previous best position and the global best position. At
each iteration a new velocity value for each particle is calculated based on its current velocity, the
distance from its previous best position, and the distance from the global best position. The new
velocity value is then used to calculate the next position of the particle in the search space. The
inertia weight is multiplied by the previous velocity in the standard velocity equation and is linearly
decreased throughout the run. This process is then iterated a set number of times or until a
minimum error is achieved.
The basic concept of PSO lies in accelerating each particle towards its Pbest and Gbest locations
with regard to a random weighted acceleration at each time. The modifications of the particle’s
positions can be mathematically modeled by making use of the following equations:
Vi

k+1
= w * Vi

k
+ c1 * rand()1 * (Pbest – Si

k
) + c2 * rand()2 * (Gbest – Si

k
) (2)

Si
k+1

= Si
k
 + Vi

k+1
(3)

 Where,
Si

k
is current search point,

Si
k+1

is modified search point,
Vi

k
is the current velocity,

V
k+1

 is the modified velocity,
Vpbest is the velocity based on Pbest ,
Vgbest = velocity based on Gbest,

 w is the weighting function,
 cj is the weighting factors,

 Rand() are uniformly distributed random numbers between 0 and 1.

2. THE STANDARD PSO WITH INERTIA WEIGHT FOR SOFTWARE EFFORT
ESTIMATION
The software effort is expressed as a function of a single variable as shown in equation-1. In this
parameters a, b are measured by using regression analysis applied to historical data. Now in
order to tune these parameters we use the standard PSO with inertia weights. A nonzero inertia
weight introduces a preference for the particle to continue moving in the same direction it was
going on the previous iteration. Decreasing the inertia over time introduces a shift from the
exploratory (global search) to the exploitative (local search) mode. The updating of weighting
function is done with the following formula.
Wnew

= [(Tmi – Tci) * (Wiv – W fv)] / Tmi + Wfv

 (4)

Where
Wnew

is new weight factor,

Tmi is the maxium numer of iteration specified,
Tci is the current iteration number,
Wiv is the initial value of the weight,
Wfv is the final value of the weight.

Empirical experiments have been performed with an inertia weight set to decrease linearly from
0.9 to 0.4 during the course of simulation. In the first experiment we keep the parameters c1 and
c2 (weighting factors) fixed, while for the following experiment we change c1 and c2 (weighting
factors) during subsequent iterations by employing the following equations [Rotnaweera, A.
Halgamog S.K. and Watson H.C, 2004].
 C1(t) = 2.5 – 2 * (t / max_iter), which is the cognitive learning factor. (5)

Prasad Reddy.P.V.G.D & CH.V.M.K.Hari

International Journal of Software Engineering (IJSE), Volume (2) : Issue (4) : 2011 89

 C2 (t) = 0.5 + 2* (t / max_iter), which is the social coefficient. (6)
The particles are initialized with random position and velocity vectors the fitness function is

evaluated and the Pbest and Gbest of all particles is found out. The particles adjust their velocity
according to their Pbest and Gbest values. This process is repeated until the particles exhaust or
some specified number of iterations takes place. The Gbest particle parameters at the end of the
process are the resultant parameters.

3. MODEL DESCRIPTION
In this model we have considered “The standard PSO with inertia weights” with /without changing
the weighting factors (c1, c2). PSO is a robust stochastic optimization technique based on the
movement of swarms. This swarm behavior is used for tuning the parameters of the Cost/Effort
estimation. As the PSO is a random weighted probabilistic model the previous benchmark data is
required to tune the parameters, based on that data, swarms develop their intelligence and
empower themselves to move towards the solution. The following is the methodology employed
to tune the parameters in each proposed models following it.

3.1 METHODOLOGY (ALOGORITHM)

Input: Size of Software Projects, Measured Efforts, Methodology (Effort Adjustment factor-EAF).
Output: Optimized Parameters for Estimating Effort.
The following is the methodology used to tune the parameters in the proposed models for
Software Effort Estimation.
Step 1: Initialize “n” particles with random positions Pi and velocity vectors Vi of tuning
parameters .We also need the range of velocity between [- Vmax,Vmax]. The Initial positions of
each particle are Personally Best for each Particle.
Step 2: Initialize the weight function value w with 0.5 and weightening parameters cognitive
learning factor c1, social coefficient c2 with 2.0.
Step 3: Repeat the following steps 4 to 9 until number of iterations specified by the user or
Particles Exhaust.
Step 4: for i = 1,2, ………, n do // For all the Particles
For each particle position with values of tuning parameters, evaluate the fitness function. The
fitness function here is Mean Absolute Relative Error (MARE). The objective in this method is to
minimize the MARE by selecting appropriate values from the ranges specified in step 1.
Step 5: Here the Pbest is determined for each particle by evaluating and comparing measured
effort and estimated effort values of the current and previous parameters values.
 If fitness (p) better than fitness (Pbest) then: Pbest = p.
Step 6: Set the best of ‘Pbests’ as global best – Gbest. The particle value for which the variation
between the estimated and measured effort is the least is chosen as the Gbest particle.
Step 7: Update the weightening function is done by the following formula
 Wnew

= [(Tmi – Tci) * (Wiv – W fv)] / Tmi + Wfv (7)

Step 8: Update the weightening factors is done with the following equations for faster
convergence.
 C1(t) = 2.5 – 2 * (Tci / Tmi) (8)
 C2 (t) = 0.5 + 2* (Tci / Tmi), (9)
Step 9: Update the velocity and positions of the tuning parameters with the following equations
 for j = 1, 2, …………m do // For number of Parameters, our case m is 2or 3 or 4
 begin
 Vji

k+1
= w * Vji

k
+ c1 * rand()1 * (Pbest – Sji

k
) + c2 * rand()2 * (Gbest – Sji

k
) (10)

 Sji
k+1

= Sji
k
 + Vji

k+1
 (11)

 end;
Step 10: Give the Gbest values as the optimal solution.
Step 11: Stop

3.2 PROPOSED MODELS

3.2.1 MODEL 1:

Prasad Reddy.P.V.G.D & CH.V.M.K.Hari

International Journal of Software Engineering (IJSE), Volume (2) : Issue (4) : 2011 90

A prefatory approach to estimating effort is to make it a function of a single variable , often this
variable is project size measure in KDLOC (kilo delivered lines of code) and the equation is given
as ,

Effort = a (size)
b

Now in our model the parameters are tuned using above PSO methodology.
The Update of velocity and positions of Parameter “a” is
Vai

k+1
= w * Vai

k
+ c1 * rand()1 * (Pbest – Sai

k
) + c2 * rand()2 * (Gbest – Sai

k
) (12)

 Sai
k+1

= Sai
k
 + Vai

k+1

The Update of velocity and positions of Parameter “b” is
Vbi

k+1
= w * Vbi

k
+ c1 * rand()1 * (Pbest – Sbi

k
) + c2 * rand()2 * (Gbest – Sbi

k
)

 Sbi
k+1

= Sbi
k
 + Vbi

k+1

TABLE 1: Effort Multipliers

3.2.2 MODEL 2
Instead of having resources estimates as a function of one variable, resources estimates can
depend on many different factors, giving rise to multivariable models. Such models are useful as
they take into account the subtle aspects of each project such as their complexity or other such
factors which usually create a non linearity. The cost factors considered are shown below. The
product of all the above cost factors is the Effort Adjustment Factor (EAF).A model of this
category starts with an initial estimate determined by using the strategic single variable model
equations and adjusting the estimates based on other variable which is methodology.
The equation is,

Effort = a *(size)
b
 + c* (ME).

Where ME is the methodology used in the project.
The parameters a, b, c are tuned by using above PSO methodology.

COST
FACTORS

 DESCRIPTION RATING

VERY
LOW

LOW NOMINAL HIGH
VERY
HIGH

 Product

RELY
Required software

reliability
0.75 0.88 1 1.15 1.4

DATA Database size - 0.94 1 1.08 1.16

CPLX Product complexity 0.7 0.85 1 1.15 1.3

 Computer

TIME Execution time constraint - - 1 1.11 1.3

STOR Main storage constraint - - 1 1.06 1.21

VIRT Virtual machine volatility - 0.87 1 1.15 1.3

TURN
Computer turnaround

time
- 0.87 1 1.07 1.15

 Personnel

ACAP Analyst capability 1.46 1.19 1 0.86 0.71

AEXP Application experience 1.29 1.13 1 0.91 0.82

PCAP Programmer capability 1.42 1.17 1 0.86 0.7

VEXP Virtual machine volatility 1.21 1.1 1 0.9 -

LEXP Language experience 1.14 1.07 1 0.95 -

 Project

MODP
Modern programming

practice
1.24 1.1 1 0.91 0.82

TOOL Software tools 1.24 1.1 1 0.91 0.83

SCED Development schedule 1.23 1.08 1 1.04 1.1

Prasad Reddy.P.V.G.D & CH.V.M.K.Hari

International Journal of Software Engineering (IJSE), Volume (2) : Issue (4) : 2011 91

The Update of velocity and positions of Parameter “a”, “b” are shown in Model 1 and Parameter
“c” is
Vci

k+1
= w * Vci

k
+ c1 * rand()1 * (Pbest – Sci

k
) + c2 * rand()2 * (Gbest – Sci

k
)

 Sci
k+1

= Sci
k
 + Vci

k+1

3.2.3 MODEL 3
There are a lot of factors causing uncertainty and non linearity in the input parameters. In some
projects the size is low while the methodology is high and the complexity is high, for other
projects size is huge but the complexity is low. As per the above two models size and effort are
directly proportional. But such a condition is not always satisfied giving rise to eccentric inputs.
This can be accounted for by introducing a biasing factor (d). So the effort estimation equation is:

Effort = a *(size)
b
 + c* (ME).+ d

a,b,c,d parameters are tuned by using above PSO methodology.
The Update of velocity and positions of Parameter “a”, “b”, “c” are shown in Model 1,2 and
Parameter “d” is
Vdi

k+1
= w * Vdi

k
+ c1 * rand()1 * (Pbest – Sdi

k
) + c2 * rand()2 * (Gbest – Sdi

k
)

 Sdi
k+1

= Sdi
k
 + Vdi

k+1

4. MODEL ANALYSIS

4.1 Implementation
We have implemented the above methodology for tuning parameters a,b,c and d in “C” language.
For the parameter’ a ‘the velocities and positions of the particles are updated by applying the
following equations:
Vai

k+1
= w * Vai

k
+ c1* rand1 * (Pbesta – Sai

k
) + c2* rand2* (Gbest – Sai

k
)

 Sai
k+1

= Sai
k
 + Vai

k+1
, w=0.5 , c1=c2=2.0.

and similarly for the parameters b,c and d the values are obtained for the first experiment and
weight factor w changed during the iteration and C1 and C2 are constant. For the second
experiment we changed the C1, C2 weighting factors by using equations 4 and 5.

4.2 Performance Measures
We consider three performance criterions:

1) Variance accounted – For(VAF)

2) Mean Absolute Relative Error

3) Variance Absolute Relative Error (VARE)

Where ME represents Measured Effort, EE represents Estimated Effort.

5. MODEL EXPERIMENTATION

EXPERIMENT – 1

For the study of these models we have taken data of 10 NASA [13]

Prasad Reddy.P.V.G.D & CH.V.M.K.Hari

International Journal of Software Engineering (IJSE), Volume (2) : Issue (4) : 2011 92

TABLE 2: NASA software projects data

By running the “C” implementation of the above methodology we obtain the following parameters
for the proposed models.
Model 1 : a=2.646251 and b=0.857612 .
 The range of a is [1, 10] and b is [-5,5] .
Model 2: a=2.771722, b=0.847952 and c= -0.007171.
 The range of a is [1, 10], b is [-5,5] and c is [-1,1].
Model 3: a =3.131606 , b=0.820175 , c=0.045208 and d= -2.020790.
 The ranges are a[1,10],b[-5,5], c[-1,1] and d[1,20].
EXPERIMENT -2:

The following are the results obtained by running the above PSO algorithm implemented in “C”
with changing weighting factors on each iteration.
Model 1: a=2.646251 and b=0.857612.
 The range of a is [1,10] and b is[-5,5]
Model 2: a=1.982430, b=0.917533 and c= 0.056668.
 The range of a , b, c is [1,10] , [-5,5] and [-1,1] respectively.
Model 3: a= 2.529550 , b= h0.867292 , c= -0.020757 and d=0.767248.

The ranges of a,b,c,d is [1,10] , [-5,5] , [-1,1] and [0,20] respectively.

6. RESULTS AND DISCUSSIONS
One of the objectives of the present work is to employ Particle Swarm Optimization for tuning the
effort parameters and test its suitability for software effort estimation. This methodology is then
tested using NASA dataset and COCOMO data set provided by Boehm. The results are then
compared with the models in the literature such as Baily-Basili, Alaa F. Sheta, TMF, Gbell and
Harish models. The Particle Swarm Optimization to tune parameters in Software Effort Estimation
has an advantage over the other models as the PSO process determines effective parameter
values which reduces the Mean Absolute Relative Error, which may easily be analyzed and the
implementation is also relatively easy. The following table shows estimated effort of our proposed
model:

EXPERIMENT -1:

Project No
Size In
KDLOC

Methodology
(ME)

Measured
Effort

13 2.1 28 5
10 3.1 26 7
11 4.2 19 9
17 12.5 27 23.9
3 46.5 19 79
4 54.5 20 90.8
6 67.5 29 98.4

15 78.6 35 98.7
1 90.2 30 115.8

18 100.8 34 138.3

Prasad Reddy.P.V.G.D & CH.V.M.K.Hari

International Journal of Software Engineering (IJSE), Volume (2) : Issue (4) : 2011 93

TABLE 3: Estimated Efforts of Proposed Models

SL.
NO

SIZE
MEASU

RED
EFFORT

METHODOLOGY

ESTIMATED EFFORTOF OUR
MODELS C1,C2 ARE CONSTANT

DURING THE ITERATION (CASE-I)

ESTIMATED EFFORTOF OUR
MODELS C1,C2 ARE CHANGED

DURING THE ITERATION(CASE-II)

MODEL-I MODEL-II MODEL-III MODEL-I MODEL-II MODEL-III

1 2.1 5 28 5.000002 4.998887 5.000007 5.000002 5.502722 5.000001

2 3.1 7 26 6.982786 7.047925 7.07543 6.982786 7.071439 6.975912

3 4.2 9 19 9.060186 9.222874 8.999259 9.060186 8.47359 9.154642

4 12.5 23.9 27 23.08629 23.40447 24.05549 23.08629 21.65101 22.82118

5 46.5 79 19 71.2293 71.75396 71.84614 71.2293 68.24138 71.03909

6 54.5 90.8 20 81.61792 82.10557 82.04368 81.61792 78.82941 81.44935

7 67.5 98.4 29 98.05368 98.39988 98.39998 98.05368 96.18965 97.79541

8 78.6 98.7 35 111.7296 111.9449 111.8526 111.7296 110.7037 111.4518

9 90.2 115.8 30 125.7302 125.8721 125.048 125.7302 125.0572 125.6834

10 100.8 138.3 34 138.3002 138.3003 137.2231 138.3002 138.523 138.2999

FIGURE 1: Measured Effort Vs Estimated Efforts of Proposed Models

COMPARISON WITH OTHER MODELS

TABLE 4: Measured Efforts of Various Models

Meas
ured
effort

Bailey –
Basili

Estimate

Alaa F.
ShetaG.
E.Model
Estimate

Alaa F.
Sheta

Model 2
Estimate

Harish
model1

Harish
model2

CASE-I
MODEL-I

CASE-I
MODEL-II

CASE-I
MODEL-III

CASE-II
MODEL-I

CASE-II
MODEL-II

CASE-II
MODEL-

III

5 7.226 8.44 11.271 6.357 4.257 5.000002 4.998887 5.000007 5.000002 5.502722 5.000001

7 8.212 11.22 14.457 8.664 7.664 6.982786 7.047925 7.07543 6.982786 7.071439 6.975912

9 9.357 14.01 19.976 11.03 13.88 9.060186 9.222874 8.999259 9.060186 8.47359 9.154642

23.9 19.16 31.098 31.686 26.252 24.702 23.08629 23.40447 24.05549 23.08629 21.65101 22.82118

79 68.243 81.257 85.007 74.602 77.452 71.2293 71.75396 71.84614 71.2293 68.24138 71.03909

90.8 80.929 91.257 94.977 84.638 86.938 81.61792 82.10557 82.04368 81.61792 78.82941 81.44935

98.4 102.175 106.707 107.254 100.329 97.679 98.05368 98.39988 98.39998 98.05368 96.18965 97.79541

98.7 120.848 119.27 118.03 113.237 107.288 111.7296 111.9449 111.8526 111.7296 110.7037 111.4518

Prasad Reddy.P.V.G.D & CH.V.M.K.Hari

International Journal of Software Engineering (IJSE), Volume (2) : Issue (4) : 2011 94

7. PERFORMANCE ANALYSIS

Model
VAF
(%)

Mean
Absolute
Relative
Error (%)

Variance
Absolute
Relative
Error (%)

Bailey –Basili Estimate 93.147 17.325 1.21

Alaa F. Sheta G.E.model I Estimate 98.41 26.488 6.079

Alaa F. Sheta Model II Estimate 98.929 44.745 23.804

Harish model1 98.5 12.17 80.859

Harish model2 99.15 10.803 2.25

CASE-I MODEL -I 98.92 4.6397 0.271

CASE-I MODEL-II 98.92 4.6122 0.255

CASE-I MODEL-III 98.9 4.4373 0.282

CASE-II MODEL -I 98.92 4.6397 0.271

CASE-II MODEL-II 98.89 7.5 0.253

CASE-II MODEL-III 98.95 4.9 0.257

TABLE 5: Performance Measures

FIGURE 2: Variance Accounted For %

115.8 140.82 131.898 134.011 126.334 123.134 125.7302 125.8721 125.048 125.7302 125.0572 125.6834

138.3 159.434 143.0604 144.448 138.001 132.601 138.3002 138.3003 137.2231 138.3002 138.523 138.2999

Prasad Reddy.P.V.G.D & CH.V.M.K.Hari

International Journal of Software Engineering (IJSE), Volume (2) : Issue (4) : 2011 95

FIGURE 3: Mean Absolute Relative Error (MARE)

FIGURE 4: Variance Absolute Relative Error %

8 . CONCLUSION
Software cost estimation is based on a probabilistic model and hence it does not generate exact
values. However if good historical data is provided and a systematic technique is employed we
can generate better results. Accuracy of the model is measured in terms of its error rate and it is
desirable to be as close to the actual values as possible. In this study we have proposed new
models to estimate the software effort. In order to tune the parameters we use particle swarm
optimization methodology algorithm. It is observed that PSO gives more accurate results when
juxtaposed with its other counterparts. On testing the performance of the model in terms of the
MARE, VARE and VAF the results were found to be futile. These techniques can be applied to
other software effort models.

Prasad Reddy.P.V.G.D & CH.V.M.K.Hari

International Journal of Software Engineering (IJSE), Volume (2) : Issue (4) : 2011 96

9. REFERENCES
[1] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-

Wesley, 1989.
[2] K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley and Sons,

2002.

[3] C.A. Coello Coello et al. Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer,
2002.

[4] Robert T. F. Ah King and Harry C. S. Rughooputh, “Elitist Multi evolutionary algorithm for
environmental/economic dispatch”, IEEE 2003.

[5] Alaa F. Sheta , “Estimation of the COCOMO Model Parameters Using Genetic Algorithms for
NASA Software Projects”, Journal of Computer Science 2 (2): 118-123, ISSN 1549-
36362006, 2006.

[6] Alaa Sheta, David Rine and Aladdin Ayesh,” Development of Software Effort and Schedule
Estimation Models Using Soft Computing Techniques”, 2008 IEEE Congress on Evolutionary
Computation (CEC 2008), DOI: 978-1-4244-1823-7/08, 2008

[7] Tad Gonsalves, Atsushi Ito, Ryo Kawabata and Kiyoshi Itoh, (2008), Swarm Intelligence in the
Optimization of Software Development Project Schedule, DOI 587
10.1109/COMPSAC.2008.179, PP: 587-592, 2008.

[8] J.S.Pahariya, V. Ravi, M. Carr (2009), Software Cost Estimation using Computational
Intelligence Techniques, IEEE Transaction, 978-1-4244-5612-3/09/PP: 849-854@2009 IEEE

[9] Parvinder S. Sandhu, Porush Bassi, and Amanpreet Singh Brar (2008), Software Effort
Estimation Using Soft Computing Techniques, PP: 488-491, 2008.

[10] Iman Attarzadeh and Siew Hock Ow (2010), Soft Computing Approach for Software Cost
Estimation, Int.J. of Software Engineering, IJSE Vol.3 No.1, PP: 1-10, January 2010.

[11] Xishi Huang, Danny Ho, Jing Ren, Luiz F. Capretz (2005), Improving the COCOMO model
using a neuro-fuzzy approach, doi:10.1016/j.asoc.2005.06.007, Applied Soft Computing 7
(2007) PP: 29–40, @2005 Elsevier.

[12] Alaa Sheta, David Rine and Aladdin Ayesh (2008), Development of Software Effort and
Schedule Estimation Models Using Soft Computing Techniques, IEEE Transaction, 978-1-
4244-1823-7/08/PP: 1283-1289@2008 IEEE.

[13] John w. Bailey and victor R.Basili,(1981) ”A meta model for software development resource
expenditures”, Fifth International conference on software Engineering, CH-1627-
9/81/0000/0107500.75@ 1981 IEEE, PP 107-129,1981.

[14] Anish M, Kamal P and Harish M, Software Cost Estimation using Fuzzy logic, ACM SIGSOFT
Software Engineering Notes,Vol.35 No.1, ,November 2010, pp.1-7

[15] Iman A and Siew H.O, Soft Computing Approach for Software Cost Estimation, Int.J. of
Software Engineering, IJSE Vol.3 No.1, January 2010, pp.1-10.

INSTRUCTIONS TO CONTRIBUTORS

The International Journal of Software Engineering (IJSE) provides a forum for software
engineering research that publish empirical results relevant to both researchers and practitioners.
IJSE encourage researchers, practitioners, and developers to submit research papers reporting
original research results, technology trend surveys reviewing an area of research in software
engineering and knowledge engineering, survey articles surveying a broad area in software
engineering and knowledge engineering, tool reviews and book reviews. The general topics
covered by IJSE usually involve the study on collection and analysis of data and experience that
can be used to characterize, evaluate and reveal relationships between software development
deliverables, practices, and technologies. IJSE is a refereed journal that promotes the publication
of industry-relevant research, to address the significant gap between research and practice.

The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal.
Starting with volume 2, 2011, IJSE appears in more focused issues. Besides normal publications,
IJSE intend to organized special issues on more focused topics. Each special issue will have a
designated editor (editors) – either member of the editorial board or another recognized specialist
in the respective field.

We are open to contributions, proposals for any topic as well as for editors and reviewers. We
understand that it is through the effort of volunteers that CSC Journals continues to grow and
flourish.

IJSE LIST OF TOPICS
The realm of International Journal of Software Engineering (IJSE) extends, but not limited, to the
following:

• Ambiguity in Software Development • Application of Object-Oriented Technology
to Engin

• Architecting an OO System for Size Clarity
Reuse E

• Composition and Extension

• Computer-Based Engineering Techniques • Data Modeling Techniques

• History of Software Engineering • IDEF

• Impact of CASE on Software Development Life
Cycle

• Intellectual Property

• Iterative Model • Knowledge Engineering Methods and
Practices

• Licensing • Modeling Languages

• Object-Oriented Systems • Project Management
• Quality Management • Rational Unified Processing

• SDLC • Software Components

• Software Deployment

•
•

• Software Design and applications in Various
Domain

• Software Engineering Demographics • Software Engineering Economics

• Software Engineering Methods and Practices • Software Engineering Professionalism

• Software Ergonomics • Software Maintenance and Evaluation
• Structured Analysis • Structuring (Large) OO Systems

• Systems Engineering • Test Driven Development

• UML •

CALL FOR PAPERS

Volume: 3 - Issue: 1 - February 2012

i. Paper Submission: November 30, 2011 ii. Author Notification: January 01, 2012

iii. Issue Publication: January / February 2012

CONTACT INFORMATION

Computer Science Journals Sdn BhD

B-5-8 Plaza Mont Kiara, Mont Kiara
50480, Kuala Lumpur, MALAYSIA

Phone: 006 03 6207 1607

006 03 2782 6991

Fax: 006 03 6207 1697

Email: cscpress@cscjournals.org

