


 
INTERNATIONAL JOURNAL OF SOFTWARE 

ENGINEERING (IJSE)  

 
 
 
 
 
 
 

VOLUME 2, ISSUE 1, 2011 

 
EDITED BY 

DR. NABEEL TAHIR 

 
 

 

 

 

 

 

 

ISSN (Online): 2180-1320 

I International Journal of Software Engineering (IJSE) is published both in traditional paper form 

and in Internet. This journal is published at the website http://www.cscjournals.org, maintained by 

Computer Science Journals (CSC Journals), Malaysia.  

 

 

IJSE Journal is a part of CSC Publishers 

Computer Science Journals 

http://www.cscjournals.org  

 

 

 



INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING 

(IJSE) 

Book: Volume 2, Issue 1, March 2011 

Publishing Date: 04-04-2011 

ISSN (Online): 2180-1320 

 

This work is subjected to copyright. All rights are reserved whether the whole or 

part of the material is concerned, specifically the rights of translation, reprinting, 

re-use of illusions, recitation, broadcasting, reproduction on microfilms or in any 

other way, and storage in data banks. Duplication of this publication of parts 

thereof is permitted only under the provision of the copyright law 1965, in its 

current version, and permission of use must always be obtained from CSC 

Publishers.  

 

 

 

IJSE Journal is a part of CSC Publishers 

http://www.cscjournals.org  

 

© IJSE Journal 

Published in Malaysia 

 

Typesetting: Camera-ready by author, data conversation by CSC Publishing Services – CSC Journals, 

Malaysia 

 

 

 

CSC Publishers, 2011 

 

                              



EDITORIAL PREFACE 

 
The International Journal of Software Engineering (IJSE) provides a forum for software 
engineering research that publishes empirical results relevant to both researchers and 
practitioners. It is the fourth issue of First volume of IJSE and it is published bi-monthly, with 
papers being peer reviewed to high international standards.   
 
The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal. 
Starting with volume 2, 2011, IJSE appears in more focused issues. Besides normal publications, 
IJSE intend to organized special issues on more focused topics. Each special issue will have a 
designated editor (editors) – either member of the editorial board or another recognized specialist 
in the respective field. 
 
IJSE encourage researchers, practitioners, and developers to submit research papers reporting 
original research results, technology trend surveys reviewing an area of research in software 
engineering, software science, theoretical software engineering, computational intelligence, and 
knowledge engineering, survey articles surveying a broad area in software engineering and 
knowledge engineering, tool reviews and book reviews. Some important topics covered by IJSE 
usually involve the study on collection and analysis of data and experience that can be used to 
characterize, evaluate and reveal relationships between software development deliverables, 
practices, and technologies. IJSE is a refereed journal that promotes the publication of industry-
relevant research, to address the significant gap between research and practice. 
 
IJSE give the opportunity to researchers and practitioners for presenting their research, 
technological advances, practical problems and concerns to the software engineering.. IJSE is 
not limited to a specific aspect of software engineering it cover all Software engineering topics. In 
order to position IJSE amongst the most high quality journal on computer engineering sciences, a 
group of highly professional scholars are serving on the editorial board. IJSE include empirical 
studies, requirement engineering, software architecture, software testing, formal methods, and 
verification.  
 
International Editorial Board ensures that significant developments in software engineering from 
around the world are reflected in IJSE. The submission and publication process of manuscript 
done by efficient way. Readers of the IJSE will benefit from the papers presented in this issue in 
order to aware the recent advances in the Software engineering. International Electronic editorial 
and reviewer system allows for the fast publication of accepted manuscripts into issue publication 
of IJSE.  Because we know how important it is for authors to have their work published with a 
minimum delay after submission of their manuscript. For that reason we continue to strive for fast 
decision times and minimum delays in the publication processes. Papers are indexed & 
abstracted with International indexers & abstractors.  
 
 
Editorial Board Members 
International Journal of Software Engineering (IJSE)



 

 
 
 
 
EDITORIAL BOARD MEMBERS (EBMs) 
 

 
Dr. Richard Millham  
University of Bahamas  
Bahamas 
 

Dr. Vitus S.W. Lam   
The University of Hong Kong  
 Hong Kong 

 
 

 



International Journal of Software Engineering (IJSE), Volume (2), Issue (1) 

TABLE OF CONTENTS 

 
 
 
 
Volume 2, Issue 1, March 2011 

 
 
Pages 

 

1 - 12 Next-Generation Search Engines for Information Retrieval   

Ranjeet Devarakonda, Les Hook, Giri Palanisamy, Jim Green 

 

  

  

  

  

  

  

  
 



Ranjeet Devarakonda, Les Hook, Giri Palanisamy & Jim Green 

International Journal of Software Engineering (IJSE), Volume (2) : Issue (1) : 2011 1 

Next-Generation Search Engines for Information Retrieval  
 
 
Ranjeet Devarakonda                         devarakondar@ornl.gov 
Oak Ridge National Laboratory 
Oak Ridge, 37831, USA 
 
Les Hook                                     hookla@ornl.gov 
Oak Ridge National Laboratory 
Oak Ridge, 37831, USA 
 

Giri Palanisamy                            palanisamyg@ornl.gov         
Oak Ridge National Laboratory 
Oak Ridge, 37831, USA 
 
Jim Green                                 jgreen@iiaweb.com 
Information International Associates 
Oak Ridge, 37831, USA 

 
Abstract 

 
In the recent years, there have been significant advancements in the areas of scientific data 
management and retrieval techniques, particularly in terms of standards and protocols for 
archiving data and metadata. Scientific data is rich, and spread across different places. In order 
to integrate these pieces together, a data archive and associated metadata should be generated. 
Data should be stored in a format that can be retrievable and more importantly it should be in a 
format that will continue to be accessible as technology changes, such as XML. While general-
purpose search engines (such as Google or Bing) are useful for finding many things on the 
Internet, they are often of limited usefulness for locating Earth Science data relevant (for 
example) to a specific spatiotemporal extent. By contrast, tools that search repositories of 
structured metadata can locate relevant datasets with fairly high precision, but the search is 
limited to that particular repository. Federated searches (such as Z39.50) have been used, but 
can be slow and the comprehensiveness can be limited by downtime in any search partner.  
  
An alternative approach to improve comprehensiveness is for a repository to harvest metadata 
from other repositories, possibly with limits based on subject matter or access permissions. 
Searches through harvested metadata can be extremely responsive, and the search tool can be 
customized with semantic augmentation appropriate to the community of practice being served. 
One such system, Mercury, a metadata harvesting, data discovery, and access system, built for 
researchers to search to, share and obtain spatiotemporal data used across a range of climate 
and ecological sciences. Mercury is open-source toolset, backend built on Java and search 
capability is supported by the some popular open source search libraries such as SOLR and 
LUCENE. Mercury harvests the structured metadata and key data from several data providing 
servers around the world and builds a centralized index. The harvested files are indexed against 
SOLR search API consistently, so that it can render search capabilities such as simple, fielded, 
spatial and temporal searches across a span of projects ranging from land, atmosphere, and 
ocean ecology. Mercury also provides data sharing capabilities using Open Archive Initiatives 
Protocol for Metadata Handling (OAI-PMH). In this paper we will discuss about the best practices 
for archiving data and metadata, new searching techniques, efficient ways of data retrieval and 
information display. 

 
Keywords: Scientific Data Indexing, Mercury Search, ORNL DAAC, NASA, U.S. DOE 

 



Ranjeet Devarakonda, Les Hook, Giri Palanisamy & Jim Green 

International Journal of Software Engineering (IJSE), Volume (2) : Issue (1) : 2011 2 

1. INTRODUCTION 

Scientific data, in its most general context across multiple disciplines, includes measurements 
and observations of natural phenomena for the purpose of explaining the behavior of or testing 
hypotheses about the natural systems.  This includes observational data captured in real-time by 
sensors, surveys, and imaging devices; experimental data from laboratory instruments, for 
example, gene sequences, chromatograms, and characterization of samples; simulation data 
generated from models where the model is equally important with the input and output data such 
as for climate and economic models; and derived or compiled data that are the result of text and 
data mining, and compiled and integrated databases from multiple sources. 
 
Remote sensing and high throughput scientific instruments and high spatial and temporal 
resolution model simulations are creating vast data repositories and as a result of increased 
investments in engineering research, disease research , and environmental monitoring, the 
volume of scientific data is approximately doubling each year [1]. Data volume requires new 
scientific methods to analyze and organize the data for fully exploiting the value of the data and 
beyond the original collection purpose.   
 
The data content can be collected in any format, most is digital by necessity and to be of greatest 
value for analyses.  Instrument platform and science program specific formats are often 
integrated into the data processing stream.  The data can be formatted as straightforward tabular 
ASCII files, spatially gridded files, Geotiff image formats or formatted to be consistent with 
programmatic repository needs such as Genomes-to-Life.  

 
What is metadata and why is it so useful? 
 
The digital data are not complete without descriptive information (meta) data to tell us what it 
means. Metadata are the descriptive information about data that explains the measured 
attributes, their names, units, precision, accuracy, data layout and ideally a great deal more. Most 
importantly, metadata includes the data lineage that describes how the data was measured, 
acquired, or computed [2].  Metadata in its simplest form, are those elements that concisely 
identify the "who, what, where, when, why, and how" of the data.   
 
Metadata enables data sharing and access. Sharing data with colleagues the broader scientific 
community and public is highly desirable and will result in greater advancement of science [1].     
 
We know data sharing is a good thing. Doesn't everyone else? 

� Open science and new research 
� Data longevity 
� Data reusability 
� Greater exposure to data 
� Generation of Value added products 
� Verification of published works 
� Possibility for future research collaborations 
� More value for the research investment 

 
 
The volume of scientific data, and the interconnectedness of the systems under study, makes 
integration of data a necessity. For example, life scientists must integrate data from across 
biology and chemistry to comprehend disease and discover cures, and climate change scientists 
must integrate data from wildly diverse disciplines to understand our current state and predict the 
impact of new policies [3].   
 
It is critical to begin to document your data at the very beginning of your research project, even 
before data collection begins; doing so will make data documentation easier and reduce the 
likelihood that you will forget aspects of your data later in the research project. 

 



Ranjeet Devarakonda, Les Hook, Giri Palanisamy & Jim Green 

International Journal of Software Engineering (IJSE), Volume (2) : Issue (1) : 2011 3 

 

2. BEST PRACTICES FOR CREATING METADATA 
 
2.1 Format Your Data 
The motivation behind this memorandum is storing data in an easily retrievable format. Several 
metadata standards have been developed to ensure compatibility and interoperability across 
multiple databases and clearinghouses, including FGDC, NetCDF Attribute Convention for 
Dataset Discovery, Ecological Metadata Language (EML), and ISO-19115.  The standard 
implemented by the archive for your data should be identified and values for any standard-
specific fields should be provided.  
 
According to California Digital Library, the file format in which you keep your data is a primary 
factor in one's ability to use your data in the future. As technology continually changes, 
researchers should plan for both hardware and software obsolescence [4]. How will your data be 
read if the software used to produce them becomes unavailable? 
 
Use of Open Source tools, APIs, and formats is mandated in order to remove obstacles to usage 
and sharing of both data products and tools. This helps to ensure continuity of the work, lessening 
the opportunity for the project becoming “orphaned”.  Some of the open source tools which the 
Mercury design makes use of  are SOLR (index creation &  maintenance), MYSQL(database), 
Eclipse( Integrated development environment) , Tomcat (Container), Apache(Web server), 
Spring(Java/J2EE application platform) and Hibernate (persistence framework). W3C standard 
XML is used as the open document standard. 
 
Data exchange is standardized with the use of UTF8 in order to assure compatibility across 
modern applications [5]. The use of the older ISO-8859 is discouraged. Approaches to 
incorporating this include, but are not limited to, providing editors, parsers and indexers which are 
compliant. 
  
Extensibility of the controlling schema is a design priority. SOLR uses a standard controlling API 
for specifying fields and processing instructions. Building on this methodology, XPATH is used to 
define data elements for extraction. As part of the indexing toolset, we create a set of parsing 
rules which allows for use of logical combinations, default values, lookups and transformations.  
Design of the Mercury parser is based upon use of the core Java Transformer classes. Parser 
configuration is accomplished via reading an XML file which is used to inject spring style beans 
with a list of data “types” to be processed.  Each type is a reference to either a bean containing a 
map of element names to XPATH definitions or a map associating a name to another bean 
definition.  
 
Operationally, objects built during parser initialization are used to construct a singleton containing 
maps of maps to the compiled XPATHEXPRESSION(s) needed to programmatically extract 
values from the metadata files.  The mapped fields correspond to ‘fields’ specified within the 
SOLR schema file. Values obtained are used to populate a SOLR document which is sent via http 
to the specified SOLR web application for inclusion in the index.  
 
     Flexibility and ease of expansion was a primary consideration in the choice of this technology. 
In the same way that XSLT can be expanded and enhanced, use of XPATH allows for expanding 
rules to accommodate new development without making changes to the compiled codebase. As 
an example, consider the need to extract information from an XML document which has arbitrary 
embedded business logic. In this case, consider the following XML snippet: 
 



Ranjeet Devarakonda, Les Hook, Giri Palanisamy & Jim Green 

International Journal of Software Engineering (IJSE), Volume (2) : Issue (1) : 2011 4 

 
 
 

FIGURE 1: Combination of Spatial Coordinates for indexing 
 

The compact logic available in XPATH allows us to construct the following, which would extract 
the minimum value from the embedded array of lattitude values: 
 
<entry key="southbc" value = “//PointLatitude[not(. >= ../preceding-sibling::Point/PointLatitude) 
and not(. >=../following-sibling::Point/PointLatitude)]”/>    
Assignment of this as an indexed (searchable) value is then possible, with the result that we can 
then provide exact or ranged searches within the collections. This is just one example of the type 
of operation possible with the combination of types defined in the compiled code and the use of 
injection to provide new behavior at run-time. This methodology allows for growth not just of the 
single use index, but extension of the tool to associated projects via use of multiple schema 
definitions allocated on a per source basis to index and serve up related content. 



Ranjeet Devarakonda, Les Hook, Giri Palanisamy & Jim Green 

International Journal of Software Engineering (IJSE), Volume (2) : Issue (1) : 2011 5 

 
2.2 Indexing Metadata 
It’s not uncommon to have millions of pages to index in a corporate and government circles. 
Normally, search engine creates the index and the database of documents that it accesses when 
processing a user query. Indexer engine sorts every word on every page and stores the resulting 
index in a huge database [6]. Example: Google. Query processor then compares the search 
query against the index and returns the documents that it considers most relevant. 
 
In Modern search indexers like Apache SOLR, Users can pass a number of optional Query 
parameters to the request handler to control what information is returned. Solrconfig.xml contains 
the default parameters values. Default parameters can be overridden during the request query-
time. Schema.xml specifies all the fields that can be indexed from the metadata documents and 
how those fields should be dealt with when adding documents to the index or querying those 
fields (SEE figure below).  
 

 
 

FIGURE 2: SOLR Fields 
 
Common SOLR Fields: 

• field name is the actual name of the file in the SOLR index 

• type is the data structure type the field is stored in 

• indexed is a Boolean type to enable the field for indexing, and hence for searching, 
sorting 

• stored is a Boolean, used for specifying if the field should be retrievable during a search, 
 Multivalve is used to specify if the field can accept multiple values per document.  

 
Depending on the data and required search capability, there could be a number of factors to 

consider while indexing. 
 

2.3 Factors Affecting Indexing 
The Indexing process as implemented for Mercury is comprised of the steps necessary to first 
identify the content and then construct the necessary controlling structures which will allow this 
data to be processed for inclusion within a SOLR (LUCENE) index file. Disparate sources and 
misapprehensions regarding content are the major issues affecting this indexing process. Impacts 
of these issues on accuracy and responsiveness of the search application are minimized by 
proper design strategy. 
   
     An XML schema/DTD/XSD commonly is constructed for and used to define the structure of a 
document, with editors and parsers dependent upon its completeness and applicability. Using this 
construct, the indexer process is built according to the defined structures and types. But, there is 
no universal enforcement via a standard editor or data logging mechanism. Metadata files might 



Ranjeet Devarakonda, Les Hook, Giri Palanisamy & Jim Green 

International Journal of Software Engineering (IJSE), Volume (2) : Issue (1) : 2011 6 

originate in the lab, at a field site, or be harvested from the web. As a result, varying degrees of 
adherence to the structures and content rules are found, with the “standard” treated as a loose 
guide.  These variances in the XML content can result in apparent errors and confusion with 
interpretations. There is a tradeoff to be made between use of strict standards for validation which 
can result in rules which result in a large rejection rate, and data volume processed. 
 
International character sets, translation errors with http formatting, obsolete web standards and 
the general evolution of the art present challenges which are best addressed in the Java parsing 
code. This normalization is part of the design process for individual parser objects, and includes 
handling for special or illegal characters, Character set issues (ISO 8859 variants -vs- UTF8) and 
foreign or extended character sets. Additionally, dealing with date format issues is a recurring 
problem.  
 
 Given that the parsing operation (Extraction of the facet data) can be computationally intensive, it 
makes sense to offload this process to a scheduled operation (the “harvested” model). Such 
harvesting serves to increase the apparent speed of the application, which is a critical concern as 
regards usability. 
 
Generation of a flexible schema for indexing and queries at design time allows translation to a 
common data language.  Having a fixed set of elements which are then populated based upon 
logic customized per data source minimizes time to stand-up a new instance and enhances 
content navigation. 
 

 
 

FIGURE 3: Metadata Indexing Flow 

 

 
3. OPERATING THE METADATA 
 

3.1 Requirements 
The goal of the Metadata is to make it easy for the users to learn, locate, and retrieve the desired 
data. Metadata must also be compatible to add new fields to the metadata, provide user support 



Ranjeet Devarakonda, Les Hook, Giri Palanisamy & Jim Green 

International Journal of Software Engineering (IJSE), Volume (2) : Issue (1) : 2011 7 

and maintain the computer system, including future upgrade of software, hardware, storage 
media and network connectivity. 

 
Why SOLR? 
 
Apache SOLR is an enterprise search server based on Lucene. It was originally developed by 
CNET Networks as an in-house search platform. It’s written in Java and runs on Application 
server [8]. See table below for its full list of features from Apache SOLR: 

 
� Advanced Full-Text Search Capabilities  
� Optimized for High Volume Web Traffic  
� Standards Based Open Interfaces - XML,JSON and HTTP  
� Comprehensive HTML Administration Interfaces  
� Server statistics exposed over JMX for monitoring  
� Flexible and Adaptable with XML configuration  

� Extensible Plug-in Architecture 

 

3.2 Data Retrieval 
Information retrieval has changed drastically in recent years with the expansion of World Wide 
Web and the advert of modern and inexpensive graphical user interfaces and mass storage 
devices [7]. User Interface is the entry point of the information retrieval process. This gives the 
users flexibility in specifying the text to be retrieved from specific terms. Modern GUI’s are largely 
based on the Cascading Style Sheets (CSS) and JavaScript (JS). CSS has been around for a 
long time, but how aggressively it has been utilized has been a factor of both browser 
compatibility and browser support. Modern Information retrieval revolves not only around simply 
retrieving the information, but also the presentation aspect. Faceted search is one of the new 
mechanisms for refining search results by filtering content using multiple taxonomy terms at the 
same. Faceted metadata representation has been found to be a better understandable data 
model for scientific search interfaces.     
 
Facets allow the users to easily shift between filtering and expanding their original searches. It 
also gives a hint to the users but displaying the range, helping in looking for item of interest that 
user originally haven’t thought about. A faceted search solution can be used to boost your 
business intelligence and data warehousing projects, giving your users a modern search engine 
based interface to your data. Many popular websites use facets to display search results. 



Ranjeet Devarakonda, Les Hook, Giri Palanisamy & Jim Green 

International Journal of Software Engineering (IJSE), Volume (2) : Issue (1) : 2011 8 

 

1
 

FIGURE 2: BestBuy using facetted results 

3.3 Querying Data 

Querying is the third part of the search engine. In this, user specified terms are searched and 
ranked against the millions of pages that are recorded in the index. SOLR provides many 
functionalities, including keyword searching, search terms highlighting, parsing of the results, 

                                                
1
 http://www.bestbuy.com 



Ranjeet Devarakonda, Les Hook, Giri Palanisamy & Jim Green 

International Journal of Software Engineering (IJSE), Volume (2) : Issue (1) : 2011 9 

filtering and facet-based browsing. Mercury’s GUI interacts with SOLR’s functions through HTTP, 
and the responses are retrieved in its own generic XML representation.   
 

 
FIGURE 3: SOLR search response 

 
In the above SOLR response example, Element <str name=”title”> represent the ‘Title’ of the 
metadata, which is of type ’String’. Element ‘Status’, Integer type, defines the success of the 
query, 0 being the successful. ‘QTime’ is specified in milliseconds, it is the time taken to process 
the entire query [8].  
 
Main search responses are captured in the result element. It specifies the total number of 
documents matched the search parameters by numFound. Offset of the returned results is 
specified by start.   
 
Parameters are passed to SOLR web application just like a simple HTTP GET form submission. 
User search terms are embed into the URL with some key required and other essential fields [8].  
 
Example: 
 
http://localhost:8080/project_solr/select/?q=soil+temperature&version=2.2&start=0&rows=10&ind
ent=on&fl=* 
 

• /solr/ is the web application running under  

• apache Tomcat or other Application Server 

• “q” is the actual query string. In the above example Soil temperature is search term. 
Operands such as and/or/andnot can be specified as q.op 

• As mentioned earlier start and rows defines the offset of elements to be displayed on the 
resulting page. Default values start: 0 and row: 10, meaning return first ten documents 
from the index, starting from zero position 

• “fl” is the field list, separated by commas and spaces. [*] refers to all the fields to be 
returned. Field list are the list of fields to be returned in the response 

 

 

 



Ranjeet Devarakonda, Les Hook, Giri Palanisamy & Jim Green 

International Journal of Software Engineering (IJSE), Volume (2) : Issue (1) : 2011 10 

 
3.4 Fielded Searches 
Many search engines categories their searches into: Simple or quick search, advanced search, 
and command search. Simple search is like a free text search. In this, search terms are not 
limited to any specific field; entire document is scanned for its occurrence. Example: Google’s 
simple search

2
.  

 
FIGURE 4: Google's simple search 

 
Advanced search, also called as fielded search, allows the user to limit the search to certain fields 
or elements in document. This gives the users more flexibility to narrow their results. Especially in 
scientific data, fielded searches can be useful as the data is extensively parameterized. Example: 
Users can search for ‘Carbon Emissions’ only limiting its occurrence in the’ Title’ field rather than 
an ‘Abstract’. 

 

Mercury’s advanced search
3
 allows users can do a search by Keyword, Spatial-coordinates, 

temporal data-range or by data providers [9]. In keywords search, searchable fields vary by 
project to project, but some common fields include: Data set Title, Project, Site, Parameter, 
Sensor, Source, Term, Topic, Keyword, Investigator, and Abstract. Mercury indexes all these 
fields into SOLR Index. 
 

Search Option Comments 

Keyword Search Allows to search for words or phrases within a specific 
metadata field, restricting the results to only a handful 

Spatial Coordinate Search Restricts data to certain location or region. A area can be 
defined by selecting a bounding box, this area will be 
compared with coordinates found in the metadata records, 
and information for all datasets that cover, intersect, or are 
covered by the defined area will be included in the results 

Temporal Search Allows to restrict data only from certain time periods 

 

Since Indexed Fields are searchable and sortable. You also can run a SOLR query on indexed 
Fields, which can alter the content to improve or change results. Mercury also provides data 

                                                
2
 http://www.google.com 

3
 http://mercury.ornl.gov/ornldaac 



Ranjeet Devarakonda, Les Hook, Giri Palanisamy & Jim Green 

International Journal of Software Engineering (IJSE), Volume (2) : Issue (1) : 2011 11 

sharing capabilities across data providers using Open Archive Initiatives Protocol for Metadata 
Handling (OAI-PMH) [10]. 
 

 

 
 

FIGURE 5: Mercury's advanced search 

 
4. CONCLUSION 
The volume of scientific data, and the interconnectedness of the systems under study, makes 
integration of data a necessity. Also, the file format in which we keep the data is a primary factor 

for data reusability. As technology continually changes, researchers should plan for both 
hardware and software obsolescence. SOLR is one of the popular OpenSource libraries for 
scientific data management, and is gaining recognition for its scalability and extendibility in 
handling varied combinations in XML. 

 

5. ACKNOLEDGEMENTS 
Oak Ridge National Laboratory is managed by the UT-Battelle, LLC, for the U.S. Department of 
Energy under contract DE-AC05-00OR22725.  

 
6. REFERENCES 
[1] Gray J. et al, “Scientific Data Management in the Coming Decade”, Technical Report, 

Microsoft Research, MSR-TR-2005-10, 2005 
 

[2] Mayernik, M.S., “Metadata Realities for Cyberinfrastructure: Data Authors as Metadata 
Creators”. In Proceedings of the iConference 2010 

 
[3] Creative Commons (last accessed February 2011) “Protocol for implementing open access 



Ranjeet Devarakonda, Les Hook, Giri Palanisamy & Jim Green 

International Journal of Software Engineering (IJSE), Volume (2) : Issue (1) : 2011 12 

data”. http://sciencecommons.org/projects/publishing/open-access-data-protocol/ 
 

[4] UC3: Data Management Guidelines, “Organizing your data” 
http://www.cdlib.org/services/uc3/datamanagement/organizing.html (last accessed February 
2011) 

 
[5] Markus Scherer, “UTF-16 FOR PROCESSING” Technical Note #12 Unicode, Inc., 2004 

 
[6] Blachman, N. and Peek, J. “How Google Works”  Retrieved Feb 2011 from Googleguide Web 

site: http://www.googleguide.com/google_works.html 
 

[7] Ricardo Baeza- Yates and Bethier Ribeiro- Neto,”Modern Information Retrieval” ACM pp. 73 
– 108, 1999 

 
[8] David Smiley and Eric Pugh, “Solr 1.4 Enterprise Search Server” PACKT Publishing Ltd., 

Birmigham, UK, ISBN 978-1-847195-88-3, pp. 89 – 156, 2009 
 

[9] Devarakonda R, Palanisamy G, Wison B, Green J “Mercury: reusable metadata 
management, data discovery and access system”, Earth Science Informatics, 3(1):87-94, 
2010 

 
[10]  Devarakonda R, Palanisamy G, Green J, Wison B, (2010) “Data sharing and retrieval using 

OAI-PMH”, Earth Science Informatics, 4(1):1-5, 2010 



INSTRUCTIONS TO CONTRIBUTORS 
 
The International Journal of Software Engineering (IJSE) provides a forum for software 
engineering research that publish empirical results relevant to both researchers and practitioners. 
IJSE encourage researchers, practitioners, and developers to submit research papers reporting 
original research results, technology trend surveys reviewing an area of research in software 
engineering and knowledge engineering, survey articles surveying a broad area in software 
engineering and knowledge engineering, tool reviews and book reviews. The general topics 
covered by IJSE usually involve the study on collection and analysis of data and experience that 
can be used to characterize, evaluate and reveal relationships between software development 
deliverables, practices, and technologies. IJSE is a refereed journal that promotes the publication 
of industry-relevant research, to address the significant gap between research and practice. 
 
The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal. 
Starting with volume 2, 2011, IJSE appears in more focused issues. Besides normal publications, 
IJSE intend to organized special issues on more focused topics. Each special issue will have a 
designated editor (editors) – either member of the editorial board or another recognized specialist 
in the respective field. 
 
We are open to contributions, proposals for any topic as well as for editors and reviewers. We 
understand that it is through the effort of volunteers that CSC Journals continues to grow and 
flourish. 

 
IJSE LIST OF TOPICS 
The realm of International Journal of Software Engineering (IJSE) extends, but not limited, to the 
following: 
 

• Ambiguity in Software Development • Application of Object-Oriented Technology 
to Engin 

• Architecting an OO System for Size Clarity 
Reuse E 

• Composition and Extension 

• Computer-Based Engineering Techniques • Data Modeling Techniques 

• History of Software Engineering   • IDEF 

• Impact of CASE on Software Development Life 
Cycle 

• Intellectual Property 

• Iterative Model • Knowledge Engineering Methods and 
Practices 

• Licensing • Modeling Languages 

• Object-Oriented Systems • Project Management 
• Quality Management   • Rational Unified Processing 

• SDLC • Software Components 

• Software Deployment 

•  
•  

• Software Design and applications in Various 
Domain 

• Software Engineering Demographics • Software Engineering Economics 

• Software Engineering Methods and Practices • Software Engineering Professionalism 

• Software Ergonomics • Software Maintenance and Evaluation 
• Structured Analysis • Structuring (Large) OO Systems 

• Systems Engineering • Test Driven Development   

• UML •  
 
 
 
 



 
 
 
 
CALL FOR PAPERS 
 
Volume: 2 - Issue: 3 - May 2011 
 
i. Paper Submission: May 31, 2011  ii. Author Notification: July 01, 2011 
 

iii. Issue Publication: July /August 2011 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



CONTACT INFORMATION 

 
Computer Science Journals Sdn BhD 

M-3-19, Plaza Damas Sri Hartamas 
50480, Kuala Lumpur MALAYSIA 

 
Phone: 006 03 6207 1607 

006 03 2782 6991 
 

Fax:     006 03 6207 1697 

 
Email: cscpress@cscjournals.org 

 






