

International Journal of

Software Engineering (IJSE)

Volume 1, Issue 5, 2011

Edited By
Computer Science Journals

www.cscjournals.org

International Journal of Software Engineering

(IJSE)

Book: 2011 Volume 1, Issue 5

Publishing Date: 08-02-2011

Proceedings

ISSN (Online): 2180-1320

This work is subjected to copyright. All rights are reserved whether the whole or

part of the material is concerned, specifically the rights of translation, reprinting,

re-use of illusions, recitation, broadcasting, reproduction on microfilms or in any

other way, and storage in data banks. Duplication of this publication of parts

thereof is permitted only under the provision of the copyright law 1965, in its

current version, and permission of use must always be obtained from CSC

Publishers. Violations are liable to prosecution under the copyright law.

IJSE Journal is a part of CSC Publishers

http://www.cscjournals.org

© IJSE Journal

Published in Malaysia

Typesetting: Camera-ready by author, data conversation by CSC Publishing

Services – CSC Journals, Malaysia

CSC Publishers

 Editorial Preface

The International Journal of Software Engineering (IJSE) provides a forum for software

engineering research that publishes empirical results relevant to both researchers and

practitioners. It is the fourth issue of First volume of IJSE and it is published bi-monthly,

with papers being peer reviewed to high international standards.

IJSE encourage researchers, practitioners, and developers to submit research papers

reporting original research results, technology trend surveys reviewing an area of

research in software engineering, software science, theoretical software engineering,

computational intelligence, and knowledge engineering, survey articles surveying a broad

area in software engineering and knowledge engineering, tool reviews and book reviews.

Some important topics covered by IJSE usually involve the study on collection and

analysis of data and experience that can be used to characterize, evaluate and reveal

relationships between software development deliverables, practices, and technologies.

IJSE is a refereed journal that promotes the publication of industry-relevant research, to

address the significant gap between research and practice.

IJSE give the opportunity to researchers and practitioners for presenting their research,

technological advances, practical problems and concerns to the software engineering..

IJSE is not limited to a specific aspect of software engineering it cover all Software

engineering topics. In order to position IJSE amongst the most high quality journal on

computer engineering sciences, a group of highly professional scholars are serving on the

editorial board. IJSE include empirical studies, requirement engineering, software

architecture, software testing, formal methods, and verification.

International Editorial Board ensures that significant developments in software

engineering from around the world are reflected in IJSE. The submission and publication

process of manuscript done by efficient way. Readers of the IJSE will benefit from the

papers presented in this issue in order to aware the recent advances in the Software

engineering. International Electronic editorial and reviewer system allows for the fast

publication of accepted manuscripts into issue publication of IJSE. Because we know

how important it is for authors to have their work published with a minimum delay after

submission of their manuscript. For that reason we continue to strive for fast decision

times and minimum delays in the publication processes. Papers are indexed & abstracted

with International indexers & abstractors

Editorial Board Members

International Journal of Software Engineering (IJSE)

Editorial Board

Editorial Board Members (EBMs)
Dr. Basel Dayyani
American University in Dubai (United Arab Emirates)

Dr. Richard Millham
University of Bahamas (Bahamas)

Dr. Vitus S.W. Lam
The University of Hong Kong (Hong Kong)

International Journal of Software Engineering (IJSE) Volume (1) Issue (5)

Table of Content

Volume 1, Issue 5, December 2011

Pages

73-90 Evaluation of QoS based Web- Service Selection Techniques for

Service Composition

M. Sathya, M. Swarnamugi, P. Dhavachelvan , G. Sureshkumar

91-104 ANP-GP Approach for Selection of Software Architecture Styles

K. Delhi Babu, P. Govindarajulu, A. Ramamohana Reddy, A.N.

Aruna Kumari

105-124 Defect Management Practices and Problems in Free/Open Source

Software Projects

Anu Gupta, R.K. Singla

125-131 Department of Computer Science and Applications

Panjab University,Chandigarh, 160014, India.

Shelbi Joseph, Shouri P.V, Jagathy Raj V. P

M. Sathya, M. Swarnamugi, P. Dhavachelvan & G. Sureshkumar

International Journal of Software Engineering (IJSE), Volume (1): Issue (5) 73

Evaluation of QoS Based Web- Service Selection Techniques for
Service Composition

M. Sathya satsubithra@gmail.com
Department of Computer Science
School of Engineering Pondicherry University
Puducherry- 605014 India

M. Swarnamugi swathidevan@gmail.com
Department of Computer Science
School of Engineering Pondicherry University
Puducherry- 605014 India

P. Dhavachelvan dhavachelvan@gmail.com
Department of Computer Science
School of Engineering Pondicherry University
Puducherry- 605014 India

G. Sureshkumar mgsureshkumar@gmail.com
Department of Computer Science
Pondicherry University Karaikal Centre, Karaikal
Puducherry- 609605 India

Abstract

In service oriented computing, services are the basic construct that aims to
facilitate building of business application in a more flexible and interoperable
manner for enterprise collaboration. To satisfy the needs of clients and to adapt
to changing needs, service composition is performed to compose the various
capabilities of available services. With the proliferation of services offering similar
functionalities around the web, the task of service selection for service
composition is complicated. It is vital to provide service consumers with facilities
for selecting required web services according to their non-functional
characteristics or quality of service (QoS). The objective of this paper presents
the exploration of various techniques of Quality of Service based Service
Selection (QSS) approach in the literature. To evaluate the service selection
process, a number of criteria for QSS approach have been identified and
presented in this paper.

Keywords: Web Service Selection, Service Composition, Web Semantics, Quality of Service.

1. INTRODUCTION

Service-Oriented Computing (SOC) is an upcoming organizational model that allows assembling
independent distributed services into complex ones. Services are autonomous, platform-
independent computational entities that can be used in a platform independent and programming
language independent way. The application functionality of SOC as services relies on its
dynamism. That is, it has the capability to dynamically assemble complex services for developing

M. Sathya, M. Swarnamugi, P. Dhavachelvan & G. Sureshkumar

International Journal of Software Engineering (IJSE), Volume (1): Issue (5) 74

massively distributed, interoperable, evolvable systems. Services are most often built in a way
that is independent of the context in which they are used. This means that the service provider
and the consumers are loosely coupled. Key to this concept is the service-oriented architecture
(SOA).

The Service Oriented Architecture (SOA) is a type of “software architecture that represents
software functionality as services over the network” [1]. Web Services are the predominant
implementation platform for SOA and it uses a set of standards, SOAP, UDDI, WSDL, which
enable a flexible way for applications to interact with each other over networks. Simple Object
Access Protocol (SOAP) is a standard protocol that allows network communication between
services. The easiest way to publish a web service is to use a SOAP container. When a software
component is published as a web service, any SOAP-enabled client that knows the network
address of the web service can send a SOAP request and get a SOAP response. To get the
message information, SOAP- enabled clients read a WSDL file that describes the web service.
Once the Web Services Description Languages (WSDL) file is read, the client can start sending
SOAP messages to the web service. WSDL describes what a web service can actually do, where
it resides, and how to invoke it. Universal Description Discovery and Integration (UDDI) is a
standard that allows information about businesses and services to be electronically published,
queried and stored. Published information is stored into one or more UDDI registries, which can
be accessed through SOAP.

All these standards are XML-based (Extensible Markup Language), which allows applications to
interact with each other over networks, no matter what languages and platforms they are using.
The two features, self-description and language-platform-independence, distinguish web services
from other distributed computing technologies, like CORBA (Common Object Request Broker
Architecture) and DCOM (Distributed Component Object Model).

Research in web services includes many challenging areas starting from service publication to
service mining. The most vital among them is web service composition. Web service composition
is needed when a client’s complex request cannot be answered by single service, but by
combining or composing various functionalities of available services or more than one services.
Composition involves three different issues [2]. The first, called selection of service is concerned
with selecting suitable services to composite that satisfy the user requirement. The second, called
composition synthesis is concerned with synthesizing a specification of how to coordinate the
component services to fulfill the client request. The third issue, called as orchestration is
concerned with achieving the coordination among services by executing the specification
produced by the composition synthesis.

This paper presents a study of one service selection approach called QoS based service
selection for service composition. The paper is organized as follows: Section II describes the
overview of service selection approaches. In Section III, the specifications of QoS based service
selection and the various techniques of QSS are presented. Section IV analysis the evaluation
criteria of QoS based service selection approach and compare the various techniques of QSS.
Finally section V concludes with discussion and highlights new challenges need to be addressed.

2. OVERVIEW OF SERVICE SELECTION APPROACHES

The current semantic web services architecture focus on solving the issues of service discovery,
service selection and service composition. Service discovery is the process of finding or locating
service implementations that meet a specified condition. In the same way, service selection is a
process that deals with choosing a service implementation from the located services. From this, it
is clearly seen that service discovery is a prerequisite requirement for selection process, but
selection is the main problem that needs to be addressed for retrieving Web services
successfully. For any service selection approaches the basic requirements include: Customer

M. Sathya, M. Swarnamugi, P. Dhavachelvan & G. Sureshkumar

International Journal of Software Engineering (IJSE), Volume (1): Issue (5) 75

service requirement, Service offerings by the service provider and aggregating the evaluation
results.

2.1 Customer-Service Requirement
The customer service requirement may be simple or complex. Simple requirement may not look
for composite services to satisfy the user query. Whereas, complex requirements may have both
functional and non-functional aspects which needs to be satisfied. For this kind of complex
requirement, the services need to be composite. The composite service is a service formed by a
composition of other available services. Google research application is accepted as a web
service and integrated with other services, such as Gmail, AdWords, Picasa, Orkut, You Tube
and Google Maps service, to provide an integrated environment for service consumers. The other
known example for service composition is a tour booking service that can be formed as a web
service and integrated with other services such as hotel booking, sight seeing, flight booking or
car-rental in order to provide a collaborated environment for user. However, there may exist huge
number of (tour booking) services which provide similarly functional characteristics. Service
consumers not only expect the service to meet functional aspects but they also require services
to meet non-functional aspects properties that is, quality of services (QoS) such as service
reliability, security, trust and execution cost, etc. Thus the selection of services based on non
functional qualities gain more advantages nowadays.

2.2 Provider-Service Offerings
The services offered by service provider are concerned about functional and non-functional
qualities of services. The functional properties make use of domain ontology. To provide
consumer the requested service with non-functional properties makes use of QOS ontology. The
problem that arises here is how to map the quality preferences offered by consumer with the
quality categorization in QOS ontology. This can be solved by labeling the qualities (eg.
performance, security) in QoS ontology with the service Identification.

2.3 Service Selection Process
This involves matching the customer required service with the offered service. The dynamic
selection of web services involves getting user requirements, the provider of service need to
publish or register their services using service description language, finally the matcher will match
the user requirements with the registered service description. The requirements specified by the
user or customer may vary from description of service and Quality of service (QoS). To overcome
this problem, domain ontology and QoS ontology may be used. The registered service
descriptions by the service provider contain the semantic profile and QoS parameters. The
provider of the service is also required to specify the location of a WSDL document describing a
web service. A query processor may be used to analyze the requirement specified by the user
with the domain ontology and QoS ontology. The semantic matcher will match the user request
with service description and locate available services matching with requirements. The
discovered services are then taken as input to the selection process to select the best service
that satisfies the user requirement. In basic form, service selection involves mapping a set of
services to a service—this can be thought of as the best service; in a more general form, service
selections maps a set of services to a ranking of the services in that set [6]. Multitude of service
selection techniques and algorithms are proposed in the literature such as Use of optimization
algorithm [3] for service selection, integer linear programming [4], broker-based architecture [5],
negotiation model for service selection etc [29] [31]. With the thorough study of service selection
process in the literature, the following approaches are identified.

1. Functional based service selection approach
2. Non-Functional based service selection approach
3. User based service selection approach

The Web Service Selection process is broadly classified as Functional based approach, Non-
functional based approach and User based approach. Functional based service selection
approach represents the Static and Dynamic semantics. Selecting an appropriate service is

M. Sathya, M. Swarnamugi, P. Dhavachelvan & G. Sureshkumar

International Journal of Software Engineering (IJSE), Volume (1): Issue (5) 76

concerned with retrieving functional descriptions from service repositories and then ensuring that
the described and required interfaces match with each other. Static semantics represents the
properties of messages and operation semantics. The properties of messages include parameter
passed (Data type, language, unit and business role) and message types (Serviceability, provider
type, purpose, consumer type). Dynamic semantics represents the properties of behavior and
operation logic. With dynamic semantics in the service selection process of Web service, the
resultant contains more than one service provider offering similar services.

With the rapidly growing number of available services, customers are presented with a choice of
functionally similar services. This choice allows customer to select services that match other
criteria, often referred to as non-functional attributes. Two fundamental questions arise because
of this: How can these extra attributes be described and how can one select the most appropriate
service. These questions should address both the selection of isolated services as well as the
selection of services within the context of other services. The non-functional based service
selection represents the QoS and Context in semantic web service selection. The properties of
QoS may be (security, reliability, response time, call cost etc.), the properties of Context may
include context of customer (location, intention, consumer’s name, application, e-mail, termination
of hardware and software) and context of service (provider’s details, service descriptions etc,).
User based approach represents the selection of best service among numerous discovered
services based on customers’ feedback, trust and reputation.

Approach I. Functional Based Service Selection

Today, the advancement in Web services requires growth in the areas of service interoperation,
discovery, selection, composition, choreography, orchestration and mining. A possible solution to
all these problems can be provided by converting Web services to Semantic Web [23]. Semantic
Web services (SWS) can provide a solution to the integration problem like composition. In
general, the semantics to be added to a Web service may be called as functional semantics. In
Web services, functional semantic is taken into consideration thereby avoiding unsatisfied results
which are not of customer interest. Functional property is the functional semantics of a service
that describes what a service actually does.

Web Service Selection is related to the process of evaluating and ranking the discovered web
services to identify the ones that fulfill a set of functional and non-functional properties requested
by the service customer. Most of the existing techniques rely on syntactic descriptions of service
interfaces to find web services with disregard to semantic service parameters. This generates
major problems in the service selection mechanism. To solve these problems, Web service
descriptions are enhanced with annotations of ontological concepts, semantic matching and by
considering non-functional properties.

Approach II. Non - Functional Based Service Selection

In a Web environment, multiple WSs may provide similar functionalities with different Non-
functional property values (e.g., different prices). Such Web services will typically be grouped
together in a single community. To differentiate the members of a community during service
selection, their non-functional properties need to be considered. These properties are
characterized as quality of service (QoS) and context based services. Both are highly important
and are to be taken into account during the WS selection.

The W3C working group (2003) defined various QoS attributes for web services (WS) in their
25th November 2003 publication. This include: performance, reliability, scalability, capacity,
robustness, exception handling, accuracy, integrity, accessibility, availability, interoperability,
security, network-related QoS requirements etc. Although regular QoS attributes are listed, it
remains some issues on selection of web services according to the user desired. First, there
exists some web services provided with similar functional requirements which, might lead to the
problem of differentiating the services with QoS. Second, the perception on QoS of web services

M. Sathya, M. Swarnamugi, P. Dhavachelvan & G. Sureshkumar

International Journal of Software Engineering (IJSE), Volume (1): Issue (5) 77

distinct between the customer and provider. There also exist a number of other issues which
need to be considered on QoS based service selection process.

Approach III. User Based Service Selection

A User based methodology is a mechanism using consumers’ feedbacks to identify good services
from bad ones. It has advantages in solving the selection problem for Web services. The service
consumer would like to choose a service that is trusted or a service with a high reputation. Trust
and reputation play an important role in a service selection process of user based service
selection. With this approach, web service selection may be customized according to users’
different constrains and preferences. Most approaches proposed in the literature about
personalized selection concentrate on how to rank web services according to users’ preferences
on various QoS metrics. A trust based methodology [7] for service selection is proposed. QoS-
based semantic web service selection solution with the application of a trust and reputation
management method is presented. This work is based on Virtual Internet Service Provider.

This paper focuses on one of the non – functional property known as QoS based Service
Selection approach, its specification [20], techniques and criteria for evaluating techniques of
QSS approach.

3. QoS BASED SERVICE SELECTION

A QoS property can be static or dynamic [24]. A static QoS property value is defined at the time it
is described whereas the dynamic QoS property value requires measuring and updating its value
periodically. The QoS value from the service consumer’s perspective can be positive, negative,
close, or exact. For example, consumers expect to buy a service with low price and expect to
retrieve the service in a low response time. Whereas performance, integrity etc., have positive
trend in which the consumer expects the positives values are better.

3.1 Specification of Service Selection Approaches
The specification or description for non functional based service selection approaches
concentrates on many factors. These factors are separately identified and presented by analyzing
various techniques of non functional based service selection approach. Table 1 depicts the QSS
Specification and Description.

Spec.

No.

Specification. Descriptions

S(1) QoS Modeling Specify the modeling language used.

Such as WSML and its variants WSML –

Core, WSML – Flight, WSML – Rule,

WSML – DL and WSML – Full

S (2) QoS

Categorization

Describe the Ontology of QoS

categorization with its identification value.

S (3) User

Preferences

Describe the varying preferences for the

non-functional criteria specified by the

service consumer

S (4) QoS Evaluation Specify the evaluation criteria used to

evaluate the non – functional properties.

S (5) Aggregating the

evaluation of

This deals with aggregating individual
scores to gain a final score for the service.

M. Sathya, M. Swarnamugi, P. Dhavachelvan & G. Sureshkumar

International Journal of Software Engineering (IJSE), Volume (1): Issue (5) 78

TABLE 1: QSS Specification and Description

(a) QoS Modeling
Service requestors need to distinguish services based on their non-functional criteria to make the
most appropriate choice amongst a number of services with equal or similar functionality.
Therefore, a QoS modeling is needed. That can be used in service descriptions as well as service
requests. Due to the adaptability of non-functional properties (the new ones might be required at
any time) it is unlikely that a complete standard set can be identified. The criteria differ depending
on the domain. For example the E-Learning domain service should consider the accuracy,
reputation, and cost. In contrast E-Publishing service should consider the security, price, quality
properties. Therefore it is desirable that the model for delivering non-functional properties is
designed in a simple way.

WSMO with its associated language, the WSML (Web Service Modeling Language) provides a
formal syntax and semantics to describe the QoS characteristics of services. The Web Service
Modeling Ontology (WSMO) defines four main elements as the main concepts of semantic Web
service. This includes Ontologies, Web Services, Goals and Mediators [25]. Ontology’s are formal
explicit specifications of a shared conceptualization [21]. They define a common agreed
terminology by providing concepts and relationships between the concepts. Goals are
descriptions of web services that satisfy the user desires when confer with a service in terms of
functional specification, behavior and quality of service. Web Services are description about
services. The description consist of functional, non-functional and the behavioral aspects of web
services. Mediators address the heterogeneity issues between different WSMO elements. The
Web Service Modeling Language is a formal language for describing ontologies, goals, web
services and mediators. It is based on logical formalisms of WSMO namely description logics,
first – order logic, and logic programming [22]. These formalisms are the basic point to describe
the variants of WSML. The variants includes, WSML – Core, WSML – Flight, WSML – Rule,
WSML – DL and WSML – Full.

(b) QoS Categorization

QoS

S (6) QoS Properties List the number of non –functional

properties considered.

S (7) Level of

Automation

States the level of automation

mechanisms. A – Fully automated, SA –

Semi automated, NA – Not applicable.

S (8) Coordination

Distribution

Describes how individual web service can

interact in order to accomplish an

application task. C – Centralized, CO –

Coordination, GCO – Global coordination.

S(9) Agent

Involvement

State whether agent participation is

involved in the process of service

selection mechanism.

 S (10) Ranking

Algorithm

A service rank is a quantitative metric that
shows the “importance” of a service within
the process of service selection
mechanism to rank the services.

M. Sathya, M. Swarnamugi, P. Dhavachelvan & G. Sureshkumar

International Journal of Software Engineering (IJSE), Volume (1): Issue (5) 79

QoS properties are designed in hierarchical way. This involves grouping properties by domains
such as environment, performance or safety. Speed quality and response time on performance
aspects while security, privacy and authentication are safety aspects. If such hierarchical
structure exists then users should be able to express preferences at a higher level, while service
provides will express their offerings in a fine way. Using WSML [26], the simplest way of modeling
is done by assigning a simple value to non functional properties of WSMO elements. The data
value assigned to non functional properties is used as an identifier during service publication. To
specify QoS characteristics in particular it can be modeled separately with the use of building and
defining QoS Ontology. Figure 1 depicts the QoS ontology with the assumed identifier value.
W3C defines various QoS attributes such as performance, reliability, scalability, capacity, and so
on. Here the figure 1 covers ontology of characteristics such as interoperability, capacity,
integrity, environment, performance, reliability, security, business and availability. When a new
service is published, the value of QoS characteristics in service description is matched with the
value assigned in QoS ontology. By this way, the newly published services are aligned. Upon
receiving the request from the customer, the system extract the services require and QoS
characteristics specified and match with the QoS ontology to locate it.

1. QoS Characteristics
1.1 Interoperability
1.2 Capacity
1.3 Integrity
1.4 Scalability
1.5 Accuracy
1.6 Accessibility
1.7 Environment

1.7.1 Temporal
1.7.2 Location

1.8 Performance
1.8.1 Latency
1.8.2 Response Time
1.8.3 Throughput
1.8.4 Error Rate

1.9 Reliability
1.9.1 Recover

1.9.1.1 Failure
1.9.1.2 Disaster

1.9.2 Consistency
1.9.3 MTBF (Mean Time Between Failures)

1.10 Security
1.10.1 Encryption

1.10.1.1 Data
1.10.1.2 Messages

1.10.2 Authentication
1.10.3 Authorization
1.10.4 Auditability
1.10.5 Accountability
1.10.6 Non – Repudiation
1.10.7 Traceability

1.11 Business
1.11.1 Cost
1.11.2 Reputation
1.11.3 Monitoring

1.12 Availability
1.12.1 MTTR (Mean Time To Recovery)
1.12.2 Load Balancing

M. Sathya, M. Swarnamugi, P. Dhavachelvan & G. Sureshkumar

International Journal of Software Engineering (IJSE), Volume (1): Issue (5) 80

1.12.3 Up Time
1.13 Network related

1.13.1 Bandwidth
1.14 Stability

1.14.1 Method Stability

1.14.2 Interface Stability

 FIGURE 1: QoS Categorization

(c) User Preferences
Depending on the situation service requestors may have varying preferences for the non-
functional criteria. In the same way, different requestors will have different preferences. A good
mechanism should not only allow expressing values for each property, but preferably also
represent the relations among the preferences. For example, a customer may consider the
security property as more important than privacy when requesting a financial service. Hence, the
selection approach needs to provide for mechanisms for users to specify their preferences, that is
which of the non-functional properties they feel more strongly about and also relations between
these properties.

(d) QoS Evaluation
It is difficult to predict how many non-functional properties will be available, and the type of these
properties for a customer requested service. For example, the evaluation function to compute the
speed criteria will be different from the function to calculate the location criteria. It is not easy to
define a Universal evaluation function for all kinds of non-functional properties. Hence, the
evaluation function for one property adapt to varying numbers of criteria, but should also
automatically identify the measurement methods to be used to evaluate each criteria.

(e) Aggregating the Evaluation of QoS
After evaluation the next step is to aggregate individual scores to gain a final score for the
service. In this step a suitable aggregation method needs to be selected. Global optimization or
local optimization may be used [27]. Using arithmetic or geometric means to aggregate QoS
properties results in complex situations.

(f) Level of Automation
Level of automation states the automation mechanisms like manual process of selection
mechanism, or semi-automatic service selection mechanism or fully automated service selection
mechanism involved in web service selection and composition. Most research contributions
handling the service selection for service composition focus on automatic process without human
intervention. For example human intervention may involve selecting QoS parameters used for
selection, and changing preferences etc. Semi – automatic process involves little human
intervention, the major task such as corrections and composing are done by the system [28].
Fully automated service selection approach may also use agents in the web service selection
process [32].

(f.1) Agent Involvement
 State whether agent participation is involved in the process of service selection
mechanism. A software agent is a piece of software that acts for service consumer or provider in
semantic web service to make the process of service selection automatic. Agents work
cooperatively to evaluate either service providers or service consumers.

(g) Coordination – Service Composition
This describes how individual web service can interact in order to accomplish composite service
selection process. The WS-Coordination defines how the coordination among the services need
to take place, how the data items are to be exchanged in order to complete successful
composition as part of business process defined in a Business Process Execution Language
(BPEL) [30]. The composition algorithms may be centraily cooperated or globally cooperated.

M. Sathya, M. Swarnamugi, P. Dhavachelvan & G. Sureshkumar

International Journal of Software Engineering (IJSE), Volume (1): Issue (5) 81

(h) Ranking Algorithm
A service rank is a quantitative metric that shows the importance of a service within the process
of service selection mechanism. It is known that semantic based service discovery concerns on
the matchmaking process between customer’s requirement and service profile or description. Its
semantic matchmaking process plays a role as a ranking mechanism in service selection
process. However ranking based on semantic similarity does not suit for efficient service
selection. Because, from customers perspective, it is always not true that a web service with high
semantic similarity is suitable than a web service with lower similarity. The other difficulty with
semantic similarity is that the users find it hard to distinct which service is better suitable between
a pool of similar services [17]. To achieve better ranking performance many ranking algorithms
have been proposed in the literature. One such approach is to integrate more information besides
semantic information. The information may range from time, place, location [18], customer and
providers situation [19] etc. The limitation with this approach is that the system becomes more
complicated when new constraints are added. To overcome this, the authors [33] have proposed
a method a social collaborative filtering method for ranking. This method makes use of learning
other user’s previous experiences. This method is used most successfully in all kinds of
recommendation systems but the limitations with this method are information distortion and
independence of service selection.

3.2 QSS Service Selection Techniques
The various techniques of QoS based service selection identified from the literature are
discussed in this section. Figure 2 portraits the various QSS techniques identified.

FIGURE 2: QSS Service Selection Techniques

3.2.1 Service Adaptation Evaluation Based QSS Technique
Baopeng et al [8] proposed a QoS model and used hierarchy policy approach to capture goals of
users, applications, environment and resources to form rational service composition and
adaptation action. The authors have proposed a Service adaptation evaluation (SAE) algorithm to
handle service adaptation problem and service composition decision problem in pervasive
computing environment. The system model consists of property primitives for policy hierarchy
such as Control Construct, InterpretedAs, BelongTo, ExistIn, and Commit. The proposed
multidimensional QoS model is focused not only on the traditional QoS properties but also
Requirements of functional QoS parameters and Environmental QoS. The QoS model is

Service Adaptation

Evaluation

based

QoS Constraints

based

Quality Dependency
Graph based

Ordered Weighted

Averaging Operators

based

QoS Normalization

based

Entrophy Decision

based

Fuzzy Linear

Programming based

Non –Functional (QSS)

 Service

Selection

Techniques

M. Sathya, M. Swarnamugi, P. Dhavachelvan & G. Sureshkumar

International Journal of Software Engineering (IJSE), Volume (1): Issue (5) 82

designed with four layers namely Resource layer, Environment layer, Application layer and User
layer. Each layer describes its own QoS properties. The use of policies at different layers triggers
the service adaptation and provides better service composition performance. A policy driven
service selection algorithm is proposed by the authors to make selection mechanism semantic-
aware and QoS-aware. It is said semantic-aware because, the algorithm performs well even if the
composite service semantic logic changes to form new semantic logic. QoS-aware represents the
input, output QoS parameter consistency, and end-to-end QoS properties such as delay etc. A
policy description language defined in this technique consists of three symbols namely primitive
symbols, action symbols and function symbols.

3.2.2 QoS Normalization Based QSS Technique
In order to enable quality-driven web service selection, Yutu Liu et al [9] proposed a dynamic and
secure framework to evaluate the QoS of a number of web services. The three key aspects that
are developed in this technique include Extensible QoS model, Preference-oriented service
ranking, fair and open QoS computation. The QoS model in this technique is designed to
evaluate the QoS of web services without changing the computational model. In service ranking,
this technique concentrates on representing QoS from the service requestor’s preference
perspective. The QoS computation aspects ensure that the information is collected in a fair
manner. For QoS based service selection modeling, three quality parameter or properties is
measured for generic quality services namely execution price, duration and reputation. It
considers transaction, compensation rate, penalty rate for business related quality criteria. In
order to rank the web services, this technique prefer normalization. The purposes of
normalization are: one to allow for a uniform measurement of service qualities independent of
units. Two, to provide a uniform index to represent service qualities for each provider. Three, to
allow setting a threshold regarding the qualities. The number of normalizations performed
depends on how the quality criteria are grouped. The authors have proposed a prototype model
to implement the QoS registry with hypothetical phone service. They have analyzed collecting
service quality information, collecting quality information from active execution monitoring and
collecting quality information from user feedback. In their proposed framework, the authors have
defined deterministic and non-deterministic criterion to indicate the value of QoS quality and when
a service is invoked. The non-deterministic indicate for QoS quality that is uncertain when web
service is invoked. The advantage of this technique is, it lessens the overhead of QoS registry,
and it dose not need expensive middleware to select the service provider.

3.2.3 Fuzzy Linear Programming Based QSS Technique
Ping et al [10] proposed a QoS-aware service selection model based on fuzzy linear
programming (FLP) technologies, to identify their dissimilarity on service alternatives and assist
service consumers in selecting most suitable services with needs and preferences of customers.
The proposed model has key aspects such as vague reference, weighting of QoS attributes, and
service ranking. In the process of selecting web services, the vague preference of QoS by service
consumer is handled by the proposed model. Weighting of QoS attributes is designed to explore
the optimal solution. Service ranking deals with ranking on web services. A fuzzy group
consensus aware service selection algorithm is proposed based on LINMAP (Linear
Programming techniques for Multidimensional Analysis of Preferences) model to find the optimal
QoS weighting attribute for web services. For the proposed service selection algorithm, the
authors have represented arithmetic operations on fuzzy numbers. This includes representation
for Triangular Fuzzy number, Fuzzy arithmetic operations for addition, subtraction, multiplication
and division. The normalized Euclidean distance between two triangular fuzzy numbers, and the
weighted square distance from positive ideal solution. Further, the authors have addressed the
consistence and inconsistence measurement of service customers by aggregating difference
between fuzzy performance rating and FIPS. The square distance defined is used for accessing
QoS attributes weights.

3.2.4 QoS Constraints Based QSS Technique
Tao yu et al [11] proposed the service selection problem in two models the combinatorial model
and the graph model. A QoS service broker acts as an external, independent broker entity that

M. Sathya, M. Swarnamugi, P. Dhavachelvan & G. Sureshkumar

International Journal of Software Engineering (IJSE), Volume (1): Issue (5) 83

can help users construct composite services. To conduct service selection for the general flow
structure the combinatorial model is used. The combinatorial model reflects the service selection
problem as multidimensional multichoice 0-1 knapsack problem. The graph model sees the
selection problem as a multiconstraint optimal path problem. To provide end – to – end QoS
constraint for distributed services, the authors have proposed a broker based architecture. This
architecture includes, service discovery, planning, selection and adaptation as its main function.
The service selection algorithm proposed in this technique is designed with different composition
structure. An efficient algorithm designed for quality driven web service composition ensures that
the services selected satisfies the QoS requirements of users. Four different algorithms have
been proposed by the authors and the algorithms does the task of service selection, algorithm for
designing QoS constraints, heuristic algorithm to find the near optimal solutions, and algorithm to
handle composition structures namely sequential, parallel, conditional, and loops. The QoS
service broker called QBroker help customers to select the best service for the process of
composite service before invocation. The authors have proposed different stages of process for
service composition namely: Process plan, Function graph, and Service candidate graph. This
technique supports constructs for composition model such as Sequential, AND split, XOR split,
Loop, AND join, and XOR join. The QoS service selection problem as MMKP is designed in such
a way that it ensures to select one service candidate from each service class to build composite
service that meets the QoS constraints. To find optimal solution, BBLP (branch and bound)
algorithm is used with MMKP. WS_HEU algorithm is used in this technique to find feasible
solution in polynomial time. It has three main important steps namely: To find an initial feasible
solution, Improve the solution by feasible upgrades, and to improve the solution by infeasible
upgrades.

3.2.5 Entrophy Decision Model Based QSS Technique
A fuzzy entropy decision model, called Linguistic Entropy Method is proposed [12] to assign
linguistic weights of QoS attributes and prioritizes the ranking order of service alternatives. To
overcome the issue of measuring the QoS criteria in web service selection process, the authors
have evaluated fuzzy weights of QoS attributes and rank the web services. The proposed
technique is composed of enhanced version of Linguistic Entropy Method (LEM) and Fuzzy
Synthetic Evaluation Method (FSEM). The Shannon entropy method uses probability function
estimate uncertainty of object based on information theory. The weights for linguistic terms are
evaluated with the use of triangular fuzzy number. The ratings to linguistic terms is provided by
decision maker and designed by triangular fuzzy number. The algorithm Linguistic Entropy
Method has accomplished a set of procedures to assign weights to QoS attributes in the web
service selection process. First step is to organize the evaluation framework. That is, the QoS
attributes are classified and taxonomy of QoS attributes is prepared. The next procedure is
weighting the QoS attributes. This is performed by the decision maker. The third procedure is to
select QoS attributes using fuzzy entropy weights assigned. Next procedure is to evaluate the
score for each QoS attributes. The next procedure deals with constructing the fuzzy decision
matrix by applying fuzzy weighting rules. Final procedure is about ranking the attributes and the
services are selected.

3.2.6 Quality Dependency Graph Based QSS Technique
Chao Lv et al [13] proposed a technique for service selection mechanism to utilize “serve, be
served” relationship and to evaluate the quality of services in business environment to select the
enterprise to collaborate with. Quality Dependency Graph (QDG) method is used to model the
relationship among enterprises. An Analytic Hierarchy Process (AHP) model is used to calculate
the evaluation result of each candidate organization. The authors have presented Quality
Dependency graph based on the characteristics of enterprise collaboration technique namely
Dependency and Diversity. This QDC is used to evaluate the candidate enterprises in the service
selection process. And an AHP model is used to weights the QoS attributes. The authors have
proposed two algorithms to do the service selection task. First algorithm to create QDC from
business specification. The second algorithm is used to get the service guideline for business
role.

M. Sathya, M. Swarnamugi, P. Dhavachelvan & G. Sureshkumar

International Journal of Software Engineering (IJSE), Volume (1): Issue (5) 84

3.2.7 Ordered Weighted Averaging Operator Based QSS Technique
Hong Qing et al [14] proposed a novel non functional property-based service selection method by
modifying the Logic Scoring Preference (LSP) method with Ordered Weighted Averaging (OWA)
Operators to automate the service selection process. The authors have focused on two main
issues of service selection process. They are Service automation and Dynamic aggregation
function. Service automation deals with the automated ranking of QoS attributes. In order to make
the selection process automatic, the ranking problem is transformed into OWA problem to
automatically calculate the LSP orness degree. To evaluate the aggregation function, a method
is used which combines LSP metrics with OWA operators. An algorithm is proposed to show the
modified LSP method. Two new operators called Conjunction and Disjunction is introduced by the
authors in the new LSP algorithm to represent relation between criteria such as replaceability,
simultaneity etc. This LSP algorithm evaluates quantitative features for the different entities. The
four main steps or procedure of this algorithm includes, specifying the evaluation variables,
defining the elementary criteria, analyzing the degree decision and analyzing the preference. To
overcome the change of criteria and preferences in the dynamic environment of service selection,
a type based evaluation matrix is proposed and defined three types of criteria. They are
Numerical type, Boolean type and Set overlap type. The advantage of this technique is that, this
addresses both the issues of service selection process by assigning a proper quantitative
aggregation metrics. And provided an automatic mechanism to facilitate the dynamic metric
invocation and aggregation.

3.2.8 Summary of QSS Based Service Selection Process
QoS based service selection plays an important role in the process of service composition. Table
2 shows the comparative study of QSS techniques with the specification discussed. QoS aware
service selection for compositing the services overcomes the problem faced in functional based
service selection in which they provide only similar functional semantic properties, which might
lead to the problem of differentiating available services. The techniques discussed above have
advanced the process of QoS-aware service selection. However, the issues that need to address
includes:

• Representation of QoS characteristics and QoS modeling.

• Assigning the QoS weightings.

• The fuzzy view on the QoS parameters between service consumers and service
providers.

• The universal metric for evaluating the QoS parameters.

T QSST

(1)
QSST

(2)
QSST

(3)
QSST

(4)
QSST

(5)
QSST

(6)
QSST

(7)

S (1)

Yes.
Multidime
nsional

QoS
model

Yes. Extensible
QoS model

Yes. QoS
model

based on
LINMAP

Yes

Not
applicable

Yes

No

S (2)

Average

Yes

Yes

Yes

Yes

Yes

Not

applicable

S (3)

M. Sathya, M. Swarnamugi, P. Dhavachelvan & G. Sureshkumar

International Journal of Software Engineering (IJSE), Volume (1): Issue (5) 85

Yes Yes Yes No Not

applicable

No Not

applicable

S (4)

No

Yes

Yes

Yes

Yes

Not

applicable

Yes

S (5)

No

Yes

Yes

Yes

Yes

Not

applicable

Not

applicable

S (6)

Availabilit

y of

resources

Execution price,

duration,

reputation

Not given

specifically

Not

given

specific

ally

Runtime,

Transacti

on, Cost,

Security,

Network

Not

applicable

Yes

S (7)

Semi -

automate

d

Automated

Automated

Automa

ted

Automate

d

Semi

automated

Semi

automated

S (8)

Centralize

d

Centralized

Centralized

Centrali

zed

Peer -

Peer

Not

applicable

Peer - peer

S (9)

No

No

No

No

No

No

No

S (10 Yes.

Policy

driven

ranking

algorithm

Yes. Using

normalization

matrix

Yes.

Consensual

ranking

BBLP

algorith

m and

WS_H

EU

algorith

m

No Yes(QDG,

AHP)

Yes(Logic

scoring

preference

s)

TABLE 2: Comparison of QSS Techniques.

M. Sathya, M. Swarnamugi, P. Dhavachelvan & G. Sureshkumar

International Journal of Software Engineering (IJSE), Volume (1): Issue (5) 86

4. ANALYSIS OF QSS APPROACH

The techniques of QSS approach have their advantages and disadvantages when compared with
each other. There are many issues related to QSS approach that need to be addressed.
Researchers all over the world are currently working on various aspects of QSS issues such as
achieving consensus achievement, QoS modeling, etc. The analysis of QSS approach evaluates
each technique based on evaluation criteria to identify which technique suits well for certain kind
of application development. This section describes the various possible evaluation criteria for
QSS approach.

To say whether a technique is good or bad for certain application development, they need to be
evaluated based on some parameters. This process is like testing a program or software. The
general parameters that are to be addressed for Non - functional based service selection
approach include, Accuracy of the technique, Performance of the technique, Service availability,
Complexity of Time, Complexity of cost, Scalability, Supportability, Failure rate, Threats to
validity, Selection rate, Effectiveness, Information Retrieval metrics like precision and recall,
Efficiency, F – measure, Mean average precision, Geometric mean average precision,
Interpolated precision, Interpolated recall. The following are the evaluation metrics used for
information retrieval system [15] [16]. The same set of metrics can be applied for evaluating QSS
techniques.

TABLE 3: Notations for True Positive and True Negatives

Precision (P): It is the fraction of retrieved documents that are relevant to the user’s need.

Where tp and fp are specified in Table 3.

Recall (R): It is the fraction of relevant documents that are retrieved to the user’s need.

Where tp and fn are specified in Table 3.

Accuracy (A): It specifies the fraction of classifications that are correct.

Where tp, fp, tn and fn are specified in Table 3.

F-measure: A measure that trades off precision versus recall is the F-measure. It is the harmonic
mean of precision and recall.

Notations Relevant Non relevant

Retrieved true positives (tp) false positives (fp)

Not retrieved false negatives (fn) true negatives (tn)

M. Sathya, M. Swarnamugi, P. Dhavachelvan & G. Sureshkumar

International Journal of Software Engineering (IJSE), Volume (1): Issue (5) 87

A new evaluation criteria is applied to [8] evaluate the adaptation of service selection
assessment. Considering the user and environment requirements the criteria is proposed. [9]
Conducted a series of experiment to investigate the relationship between QoS value and
business criteria, study of effectiveness of price and the sensitivity factors in QoS computation. In
[10], the approach not only deals with the decision maker’s imprecise perceptions under
incomplete information, but also objectively determines the importance weights of QoS criteria.
The computational time is evaluated for this. The performances of algorithms for sequential and
general flow structure are evaluated in [11]. This study includes two parts: the comparison of
optimal and heuristic algorithms where runtime, approximation ratio, memory usage as metrics
are used and the comparison of combinatorial and graph models where the provisioning success
rate as a metric is used. The performance rating of each service alternative and the score of each
alternative service is evaluated in [12]. The evaluation parameters for evaluating the QSS
techniques are depicted in Table 4.

TABLE 4: QSS Evaluation Metrics for Web Service Selection.

Spec. No. Specification. Descriptions

E(1)

Accuracy

Accurate gives many results in many

senses. In service selection, accuracy

defined as how relevant services are

acquired that satisfy the user requirement

E (2) Service
availability

Service availability defines the existence

of services in the registry.

E (3) Computational

Time

Time to retrieve the related or best

relevant services that satisfy the customer

need.

E (4) Computational

Cost

The total amount of cost required to get or

select the services from the register which

is been already registered by the service

provider.

E (5) Scalability The possibility to register or select more

services in the future.

E (6) Information

Retrieval

metric

The kind of metrics used to measure the

retrieved services.

E (7)q Supportability Support to modify or replace the services

in the registry by the service provider.

E (8) Security States the security measure defined in the

technique proposed.

E(9) Usability States how usable and efficient the
retrieved services are.

M. Sathya, M. Swarnamugi, P. Dhavachelvan & G. Sureshkumar

International Journal of Software Engineering (IJSE), Volume (1): Issue (5) 88

5. DISCUSSION AND CONCLUSION

With the increasing availability of Web services as a solution to enterprise application
integration, the QoS parameters offered by Web services are becoming the chief priority for
service providers and their service consumers. This paper have outlined the approach of non –
functional (QoS) Web service selection based on requirements and specification identified from
the thorough study from the literature. This paper reviewed a number of techniques in the
context of the QoS based approach and have presented a summary of QoS parameters involved
in the techniques identified and also the evaluation metrics that can be applied to obtain and
test how the techniques perform against the specification criteria.

Due to the agile and dynamic nature of the web, providing the suitable QoS for enterprise
business application is really a challenging task. In addition to this, modelling the QoS parameters
also relies on the consensus between service consumer and service provider. To achieve the
consensus among the service holders, their fuzzy view on QoS parameters have to be modelled
and weighted in universal manner. This may cause service providers and consumers to better
understand about QoS characteristics. The measurement process for each QoS parameters is
very complex since it should consider what and how to measure, who does the measuring and
where the measurements are taken. This raises the issue of conflicts on QoS characteristics
metrics between service consumer and provider.

It can be concluded that most approaches contribute specific aspects to the overall picture of
service selection, which requires methods for expressing user requirements, expressing service
offerings and also the actual service selection method. Approaches tend to concentrate on
specific of these areas and employ a variety of techniques to do that. It is more appropriate to
make some suggestions for future developments in the area of selection approaches.

Important aspects that need addressing are powerful mechanisms to capture user requirements
that are both user friendly and also expressive enough to capture large numbers of preferences
and the logical relations between preferences. One aspect that falls into this area is the
measuring of weights. Also, in the process of capturing the needs of users, their preference of
data, research has to show interest and capability to automatically capture this, to reduce the
burden on the user part, and to react to changes in circumstances automatically.

6. REFERENCES

[1] Matthias Klusch, Patrick Kapahnke. “Semantic Web Service Selection with SAWSDL-MX”.
German Research Center for Artificial Intelligence, 2008.

[2] Roy Grønmo, Michael C. Jaeger. “Model-Driven Methodology for Building QoS-Optimised
Web Service Compositions”. In Proceedings of the fifth IFIP International Conference on
Distributed Applications and Interoperable Systems (DAIS’05), pp. 68–82, Athens, Greece, May
2005. Springer Press.

[3] Matteo Baldon, Cristina Baroglio, Alberto Martelli, Viviana Patti. “Reasoning about interaction
protocols for customizing web service selection and composition”. The Journal of Logic and
Algebraic Programming, Elsevier, No. 70, pp. 53 – 73, 2007.

[4] Hassina Nacer Talantikite, Djamil Aissani, Nacer Boudjlida.“ Semantic annotations for web
services discovery and composition”. Journal of Computer Standards & Interfaces, Elsevier, pp. 1
– 10, 2008.

[5] Dong-Hoon Shin, Kyong-Ho Lee, Tatsuya Suda. “Automated generation of composite web
services based on functional semantics”. Journal of Web Semantics: Science, Services and
Agents on the World Wide Web, vol:7, pp. 332 – 343, Science Direct 2009.

M. Sathya, M. Swarnamugi, P. Dhavachelvan & G. Sureshkumar

International Journal of Software Engineering (IJSE), Volume (1): Issue (5) 89

[6] Matthias Klusch, Patrick Kapahnke. “Semantic Web Service Selection with SAWSDL-MX”.
German Research Center for Artificial Intelligence, 2008.

[7] Galizia, S. Gugliotta ,A. Domingue, J. Milton Keynes. “A Trust Based Methodology for Web
Service Selection”. In Proceedings of the IEEE International Conference on Semantic Computing,
pp. 193 – 200, CA, 2007.

[8] Baopeng Zhang, Yuanchun Shi and Xin Xiao. “A Policy-Driven Service Composition Method
for Adaptation in Pervasive Computing Environment”. First International Symposium on Pervasive
Computing and Applications, pp. 619 – 624, 2006.

[9] Yutu Liu, Anne H. Ngu, Liang Z. Zeng. “QoS computation and policing in dynamic web service
selection”. In Proceedings of the thirteenth international World Wide Web conference on
Alternate track papers & posters , pp. 66 - 73 , 2004.

[10] Ping Wang, Kuo-Ming Chao, Chi-Chun Lo, Chun-Lung Huang, Yinsheng Li. "A Fuzzy Model
for Selection of QoS-Aware Web Services”. In Proceedings of the IEEE International Conference
on e-Business Engineering (ICEBE'06), ICEBE, pp.585-593, 2006.

[11] Tao Yu and Kwei-Jay Lin. “Service Selection Algorithms forWeb Services with End - to- End
QoS Constraints”. In Proceedings of the 2005 IEEE International Conference on e-Technology,
e-Commerce and e-Service , pp. 129–136, Hong Kong, China, March 2005.

[12] Ping Wang. “An Entropy Decision Model for Selection of QoS-Aware Services Provisioning”.
Department of MIS, Kun Shan University, Taiwan, 2006.

[13] Chao Lv, Wanchun Dou, Jinjun Chen. “QoS-Aware Service Selection Using QDG for B2B
Collaboration”. In Proceedings of the fourteenth IEEE International Conference on Parallel and
Distributed Systems, pp. 336 – 343, 2008.

[14] Hong Qing Yu, Stephan Reiff-Marganiec. “A Method for Automated Web Service Selection”.
Interaction and Context Based Technologies for Collaborative Teams, project. IST-2006-034718,
2007.

[15] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. “An Introduction to
Information Retrieval”. Cambridge University Press Cambridge, England, 2009.

[16] “Common Evaluation Measures”. In Proceedings of the Text Retrieval Conference (TREC)
Appendices, 2006.

[17] Wenge Rong, Kecheng Liu and Lin Liang. “Personalized Web Service Ranking via User
Group combining Association Rule”. In Proceedings of the IEEE International Conference on
Web services, pp. 445 – 452, 2009.

[18] J. Kuck, and M. Gnasa. “Context-Sensitive Service Discovery meets Information Retrieval”.
In Proceedings of fifth IEEE International Conference on Pervasive Computing and
Communications Workshops, pp. 601-605, 2007.

[19] Z. Maamar, S. Mostéfaoui, and Q. Mahmoud. “Context for Personalized Web Services”. In
Proceedings of the 38th Annual Hawaii International Conference on System Sciences, Hawaii,
USA, 2005.

[20] Swarnamugi .M, Sathya .M. “Specification Criteria for Web Service Selection Approaches”.
International Journal on Computer Engineering and Information Technology, pp. 29 – 38, vol(23),
Issue No: 01, ISSN 0974-2034, May 2010.

M. Sathya, M. Swarnamugi, P. Dhavachelvan & G. Sureshkumar

International Journal of Software Engineering (IJSE), Volume (1): Issue (5) 90

[21] T. R. Gruber. “A translation approach to portable ontology specifications”. International
Journal on Knowledge Acquisition, vol: 5(2), pp. 199–220, 1993.

[22] Ioan Toma, Douglas Foxvog, Michael C. Jaeger. “Modeling QoS characteristics in WSMO”.
In Proceedings of the first workshop on Middleware for Service Oriented Computing, pp. 42 – 47,
2006.

[23] Gennady Agre, Tatiana Atanasova, Joachim Nern. “Migrating from Web Services To
Semantic Web Services: InfraWebs Approach”. EU Project INFRAWEBS - IST
FP62003/IST/2.3.2.3 Research Project No. 511723.

[24] Vuong Xuan Tran, Hidekazu Tsuji

,Ryosuke Masuda. “A new QoS ontology and its QoS-

based ranking algorithm for Web services”. Journal on Simulation Modelling Practice and Theory,
ScienceDirect, vol(17), Issue No: 8, pp. 1378-1398. September 2009.

[25] Web Service Modeling Ontology (WSMO) - http://www.wsmo.org/TR/d2/v1.3/20061021/

[26] The Web Service Modeling Language WSML -
http://www.wsmo.org/TR/d16/d16.1/v0.21/20051005/

[27] Mohammad Alrifai, Thomas Risse. “Combining global optimization with local selection for
efficient QoS-aware service composition”. In Proceedings of the 18th international conference on
World Wide Web, ACM, ISBN: 978-1-60558-487-4, pp. 881- 890, 2009.

[28] Miguel Angel Corella, Pablo Castells. “Semi-automatic Semantic-Based Web Service
Classification”. In Proceedings of Business Process Management Workshops, LNCS, pp. 459 –
470, 2006.

[29] Sathya M, Dhavachelvan P, Swarnamugi M, Sureshkumar G. “A Negotiation Model for
Context-Aware Web Service Selection”. In Proceedings of the International Conference on
Advanced Computing and Communication, pp. 38 – 44, Kerala, India, May 2010.

[30] IBM Business Process Execution Language for Web Services.
http://www.ibm.com/developerworks/library/specification/ws-bpel/

[31] Swarnamugi M, Sathya M, Dhavachelvan P. “A Negotiation Model for Web Service
Selection”. In Proceedings of International Conference on Recent Trends in Soft Computing and
Information Technology, pp. 251 – 256, Bhopal, India, Jan 2010.

[32] Yijun Chen, Abdolreza Abhari. “An Agent-based Framework for Dynamic Web Service
Selection”. In Proceedings of the 2008 Spring simulation multiconference, ACM, pp. 13 – 16,
2008.

[33] U.S. Manikrao, and T.V. Prabhakar. “Dynamic Selection of Web Services with
Recommendation System”. In Proceedings of 2005 International Conference on Next Generation
Web Services Practices, pp. 117-121, 2005.

K. Delhi Babu, P. Govindarajulu, A. Ramamohana Reddy, A.N. Aruna Kumari

International Journal of Software Engineering (IJSE), Volume (1): Issue (5) 91

ANP-GP Approach for Selection of Software Architecture Styles

K. Delhi Babu kdb_babu@yahoo.com
Department of Computer Science and Engineering
Sri Vidyanikethan Engineering College, Tirupati,
Andhra Pradesh, India -517102

P. Govindarajulu pgovindarajulu@yahoo.com
Department Computer Science
S.V. University, Tirupati,
Andhra Pradesh, India -517502

A. Ramamohana Reddy aramamohanareddy@yahoo.com
Department Computer Science
S.V. University, Tirupati,
Andhra Pradesh, India -517502

A.N. Aruna Kumari kolla_aruna@yahoo.com
Department of Computer Science and Engineering
Sri Vidyanikethan Engineering College
Tirupati, Andhra Pradesh, India -517102

Abstract

Selection of Software Architecture for any system is a difficult task as many different
stake holders are involved in the selection process. Stakeholders view on quality
requirements is different and at times they may also be conflicting in nature. Also
selecting appropriate styles for the software architecture is important as styles impact
characteristics of software (e.g. reliability, performance). Moreover, styles influence how
software is built as they determine architectural elements (e.g. components, connectors)
and rules on how to integrate these elements in the architecture. Selecting the best style
is difficult because there are multiple factors such as project risk, corporate goals, limited
availability of resources, etc. Therefore this study presents a method, called SSAS, for
the selection of software architecture styles. Moreover, this selection is a multi-criteria
decision-making problem in which different goals and objectives must be taken into
consideration. In this paper, we suggest an improved selection methodology, which
reflects interdependencies among evaluation criteria and alternatives using analytic
network process (ANP) within a zero-one goal programming (ZOGP) model.

Keywords: Software Architecture; Selection of Software Architecture Styles; Multi-Criteria Decision Making;
Interdependence; Analytic Network Process (ANP); Zero-One Goal Programming (ZOGP)

1. INTRODUCTION

Software architectures significantly impact software project success [1]. However, creating
architectures is one of the most complex activities during software development [2]. When
creating architectures, architecture styles narrow the solution space: First, styles define what
elements can exist in architecture (e.g. components, connectors). Second, they define rules on
how to integrate these elements in the architecture. Moreover, styles address non-functional
issues (e.g. performance) [3]. Selecting the best style is difficult because there are multiple
criteria and factors such as project risk, budget, limited availability of resources, etc. Moreover,

K. Delhi Babu, P. Govindarajulu, A. Ramamohana Reddy, A.N. Aruna Kumari

International Journal of Software Engineering (IJSE), Volume (1): Issue (5) 92













































=

nnnn

2n

n

WWW

WWW

WWW

W

21

2221

11211

L

MMMM

L

L

M

M

M

M

M

M

nnm

n

n

m

m

n

e

e

e

e

e

e

e

e

e

C

C

C

2

1

2

22

21

1

12

11

2

1

2

1

1
11211

1

m
eee

C

L
1m

eee

C

22221

2

L
121 nmnn

n

eee

C

LL

L

Figure 1. Supermatrix

this selection is a multi-criteria decision-making problem in which different goals and objectives
must be taken into consideration. When we evaluate, we need to collect group opinion in order to
know the interdependence relationship among criteria.

The contributions of this paper are as follows:
1. This paper presents a method called SSAS (Selection of Software Architecture Styles).
2. It uses analytic network process (ANP) to determine the degree of interdependence

relationship among the alternatives and criteria.
3. It provides a way of collecting expert group opinion along with stakeholders interests (e.g.

reliability, performance)
4. It uses a systematic procedure to determine the following factors in constructing the GP

model through a group discussion: (i) objectives, (ii) desired level of attainment for each
objective, (iii) a degree of interdependence relationship, and (iv) penalty weights for over or
under achievement of each goal [4]

Therefore, the information obtained from ANP is then used to formulate zero-one goal
programming (ZOGP) model [5]. The objective of this paper is to describe an integrated
approach of style selection using ANP and GP. Thus, in this paper, we suggest an improved
selection methodology, which reflects interdependencies among evaluation criteria using analytic
network process within a zero-one goal programming model. Thus a systematic approach is
adopted to set priorities among multi-criteria and also among alternatives.

2. ANP-GP APPROACH FOR SSAS

2.1. Analytic Network Process

The initial study identified the multi-criteria decision technique known as the Analytic Hierarchy
Process (AHP) to be the most appropriate for solving complicated problems. Many decision
problems cannot be structured hierarchically because they involve the interaction and
dependence of higher-level elements on a lower-level element [6]. Also he suggested the use of
AHP to solve the problem of independence on alternatives or criteria and the use of ANP to solve
the problem of dependence among alternatives or criteria [7].
The ANP addresses how to determine the relative importance of a set of activities in a multi-criteria
decision problem. The process utilizes pairwise comparisons of the style alternatives as well as
pairwise comparisons of the multiple criteria [8]. Figure 1 is a standard form of a ‘supermatrix’
introduced by Saaty to deal with the interdependence characteristics among elements and
components. He suggested Supermatrix for solving network structure [7]. The supermatrix is column
stochastic as all its columns sum to unity [9]. This matrix means that any column of the limiting

power
12lim +

∞→

k

k
A gives the outcome of the cyclic interaction of the alternatives and the criteria.

K. Delhi Babu, P. Govindarajulu, A. Ramamohana Reddy, A.N. Aruna Kumari

International Journal of Software Engineering (IJSE), Volume (1): Issue (5) 93

Figure 2 depicts the difference of structures and corresponding supermatrix between a hierarchy

and a network. A node represents a component with elements inside it; a straight line/or an arc

denotes the interactions between two components; and a loop indicates the inner dependence of

elements within a component. When the elements of a component Node1 depend on another

component Node2, we represent this relation with an arrow from component Node1 to Node2.

The corresponding supermatrix of the hierarchy with three levels of clusters is also shown: where

w21 is a vector that represents the impact of the Node1 on the Node2; W32 is a matrix that

represents the impact of the Node2 on each element of the Node3; and I is the identity matrix. It

is observed that a hierarchy is a simple and special case of a network.

The process of solving interdependence problem is summarized as follows: In order to consider
interdependence, the first step is to identify the multiple criteria of merit consideration and then
draw a relationship between the criteria that show the degree of interdependence among the
criteria. Next step is determining the degree of impact or influence between the criteria or
alternatives. When comparing the alternatives for each criterion, the decision maker will respond
to questions such as: “In comparing style 1 and style2, on the basis of performance, which style is
preferred?” When there is interdependence, the same decision maker answers the following kind
of question (pairwise comparisons): “Given an alternative and an attribute, which of the two
alternatives influences the given alternatives more with respect to the attribute? and how much
more than the other alternative?” The responses are presented numerically, scaled on the basis
of Saaty's proposed 1-9 scale with reciprocals, in a style comparison matrix. The final step is to
determine the overall prioritization.

2.2. Goal programming
The information obtained from the ANP is then used to formulate a zero-one goal programming
(ZOGP) model as a weight. The solution to ZOGP will provide a pattern by which weights will be
allocated among architecture styles [10, 11].
The ZOGP model for architecture style selection can be stated as follows:

Minimize),(−+
= ijijK dwdwPZ (1)

Subject to iiijij bddxa ≤−+
+−

FIGURE 2: (a) Linear hierarchy and (b) Nonlinear network

32W

21w

Node1

Node2

Node3

















=

IW

W

32

21

0

00

000

 3

 2

 1

w

Node

Node

Node

h

Node1 Node2 Node3

Node1

Node2

Node3

22W

21w

32W

13W

23W

















=

IW

WW

W

W

32

232221

13

0

00

 3

 2

 1

w

Node

Node

Node

n

Node1 Node2 Node3

(a) A hierarchy (b) A network

K. Delhi Babu, P. Govindarajulu, A. Ramamohana Reddy, A.N. Aruna Kumari

International Journal of Software Engineering (IJSE), Volume (1): Issue (5) 94

for i = 1, 2, …, m, j = 1, 2, …, n (2)

 1=+
−

ij dx

for i = m+1, m+2, …m+n, j = 1, 2, …, n (3)

jx = 0 or 1

for j∀ (4)

where m = the number of goals to be considered in the model, n = the pool of architecture styles

from which the optimal set will be selected, jw = the ANP mathematical weight on the j =1, 2,…,

n architecture style, KP = some k priority preemptive priority)(21 k
PPP >>> L , for i =1, 2,…,

m goals,
−+

ii
dd , = the ith positive and negative deviation variables for i = 1, 2,…, m goals, jx = a

zero-one variable, where j = 1, 2,…, n possible projects to choose from and where jx = 1, then

select the jth architecture style or when
j

x =0, then do not select the jth architecture style, ija =

the jth parameter of the ith resources, and
i

b = the ith available resource or limitation factors that

must be considered in the selection decision.

The ZOGP model selects the best architectural style jx for which the weight wj is derived

from ANP which has maximum value and minimum deviation dj.

3. A CASE-STUDY FOR SELECTION OF SOFTWARE ARCHITECTURE STYLE

A case study to illustrate the advantages of the integrated ANP and ZOGP based on the expert

opinion of an organization is taken [10, 11]. The problem consisted of prioritizing three

architectures styles [1] on the basis of seven criteria deemed to be important for an organization.

The criteria used are (1) Efficiency (E), (2) Scalability (S), (3) Evolvability (Ev), (4) Portability (P),

(5) Reliability (R), (6) Performance (Pe) and (7) Configurability (C). It should be noted that, the

traditional AHP is applied to the problem without considering interdependence property among

the criteria.

However, we are of the opinion that there is an existence of interdependence relationship among

these seven criteria. The attribute of criteria P influence criteria C, the attribute of criteria Ev

influence criteria R, E, S, Pe, C and P, and criteria R influence criteria C, Pe, Ev, E and S and so

on. In order to check network structure or relationship of criteria or alternative, we need to have

group discussion because the type of network or relationship depends on the stakeholders' judgment.

The relationship having interdependence among the criteria is shown in Figure 3.

FIGURE 3: Interdependent relationship among the criteria.

K. Delhi Babu, P. Govindarajulu, A. Ramamohana Reddy, A.N. Aruna Kumari

International Journal of Software Engineering (IJSE), Volume (1): Issue (5) 95

In order to find the weight of the degree of influence among the criteria, we will show the

procedure using the matrix manipulation based on Saaty's supermatrix. The procedure is shown

as follows:

Step 1: Compare the criteria, through the question: “Which criteria should be emphasized, and

how much more?”. Then by pairwise comparison of all pairs with respect to the three architecture

styles (LS, PF, BB) [16], we will get the following data via AHP method (E, S, Ev, P, R, Pe, C) =

(0.383, 0.163, 0.098, 0.022, 0.223, 0.072, 0.040). Assume that there is no interdependence

among criteria and architecture styles [15]. The weight matrix criteria 1W = (E, S, Ev, P, R, Pe, C)

= (0.383, 0.163, 0.098, 0.022, 0.223, 0.072, 0.040).

Step 2: Again assume that there is no interdependence among the three architecture styles

with respect to each criterion yielding the each column normalized to one, as shown in Table 1.

Table 1. Data of three architecture styles to seven criteria (E, S, Ev, P, R, Pe, C)

2
W E S Ev P R Pe C

LS 7 7 7 5 9 7 9

PF 7 9 5 7 7 9 7

BB 5 7 9 3 5 7 5

LS 0.368 0.304 0.333 0.333 0.429 0.304 0.429

PF 0.368 0.391 0.238 0.467 0.333 0.391 0.333

BB 0.263 0.304 0.429 0.200 0.238 0.304 0.238

 21
W

22
W 23W 24W 25W 26W 27W

The second row of data in Table 1 gives the degree of relative importance for each criterion, and

the data of third row sum is normalized to one, for each criteria. We defined the weight matrix of

three styles for criteria E as

21w =

















263.0

368.0

368.0

Step 3: Next, we considered the interdependence among the criteria. When we select the

architecture style, we cannot concentrate only on one criterion, but we must consider the other

criteria also. Therefore, we need to examine the impact of one criterion on all other criteria by

using pairwise comparisons and so on [12]. In Table 2, we obtain the seven sets of weights

through expert opinion. The data of Table 2 shows seven criteria’s degree of relative impact for

each seven criteria. For example, the E's degree of relative impact for Ev is 0.291, the Ev's

degree of relative impact for C is 0.059, and the R's degree of relative impact for Pe is 0.168.

Table 2. Data among seven criteria

3W E S Ev P R Pe C

E 0.564 0.093 0.291 0 0.093 0.256 0.022

S 0 0.422 0.085 0.118 0.268 0.053 0.156

Ev 0.055 0.047 0.402 0.263 0.025 0.090 0.059

P 0 0 0 0.564 0 0 0.270

R 0.118 0.244 0.049 0 0.398 0.168 0.037

Pe 0.263 0.169 0.146 0 0.047 0.402 0.088

C 0 0.025 0.027 0.055 0.169 0.033 0.369

K. Delhi Babu, P. Govindarajulu, A. Ramamohana Reddy, A.N. Aruna Kumari

International Journal of Software Engineering (IJSE), Volume (1): Issue (5) 96

We defined the interdependence weight matrix of criteria as





























=

0.3690.0330.1690.0550.0270.0250

0.0880.4020.04700.1460.1690.263

0.0370.1680.39800.0490.2440.118

0.270000.564000

0.0590.0900.0250.2630.4020.0470.055

0.1560.0530.2680.1180.0850.4220

0.0220.2560.09300.2910.0930.564

3
W

Table 3 to Table 9 shows the data interdependence among criteria's degree of relative impact for

each criteria individually.

Table 3. Data among four interdependent criteria's degree of relative impact for criteria 1 (E)

31W E P R Pe

E 1 7 5 3

P 1/7 1 1/3 1/5

R 1/5 3 1 1/3
Pe 1/3 5 3 1

The interdependence weight of the criteria
31

W = (0.564, 0.055, 0.118, 0.263).

Table 4. Data among six interdependent criteria's degree of relative impact for criteria 2 (S)

32W E S Ev R Pe C

E 1 1/5 3 1/3 1/3 5

S 5 1 7 3 3 9
Ev 1/3 1/7 1 1/5 1/5 3

R 3 1/3 5 1 3 7

Pe 3 1/3 5 1/3 1 7
C 1/5 1/9 1/3 1/7 1/7 1

The interdependence weight of the criteria 32W = (0.093, 0.422, 0.047, 0.244, 0.169, 0.025).

Table 5. Data among six interdependent criteria's degree of relative impact for criteria 3 (Ev)

33W E S Ev R Pe C

E 1 5 1/3 7 3 9

S 1/5 1 1/5 3 1/3 5
Ev 3 5 1 7 3 7

R 1/7 1/3 1/7 1 1/3 3

Pe 1/3 3 1/3 3 1 5
C 1/9 1/5 1/7 1/3 1/5 1

The interdependence weight of the criteria
33W = (0.291, 0.085, 0.402, 0.049, 0.146, 0.027).

Table 6. Data among four interdependent criteria's degree of relative impact for criteria 4 (P)

34W S Ev P C

S 1 1/3 1/5 3
Ev 3 1 1/3 5
P 5 3 1 7
C 1/3 1/5 1/7 1

The interdependence weight of the criteria 34W = (0.118, 0.263, 0.564, 0.055).

K. Delhi Babu, P. Govindarajulu, A. Ramamohana Reddy, A.N. Aruna Kumari

International Journal of Software Engineering (IJSE), Volume (1): Issue (5) 97

Table 7. Data among six interdependent criteria's degree of relative impact for criteria 5 (R)

35W E S Ev R Pe C

E 1 1/3 5 1/5 3 1/3
S 3 1 9 1/3 7 3
Ev 1/5 1/9 1 1/9 1/3 1/7
R 5 3 9 1 5 3
Pe 1/3 1/7 3 1/5 1 1/5
C 3 1/3 7 1/3 5 1

The interdependence weight of the criteria 35W = (0.093, 0.268, 0.025, 0.398, 0.047, 0.169).

Table 8. Data among six interdependent criteria's degree of relative impact for criteria 6 (Pe)

36W E S Ev R Pe C

E 1 5 3 3 1/3 7
S 1/5 1 1/3 1/5 1/5 3
Ev 1/3 3 1 1/3 1/5 3
R 1/3 5 3 1 1/3 5
Pe 3 5 5 3 1 7
C 1/7 1/3 1/3 1/5 1/7 1

The interdependence weight of the criteria 36W = (0.256, 0.053, 0.090, 0.168, 0.402, 0.033).

Table 9. Data among seven interdependent criteria's degree of relative impact for criteria 7 (C)

37W E S Ev P R Pe C

E 1 1/7 1/3 1/9 1/3 1/5 1/9
S 7 1 3 1/3 5 3 1/3
Ev 3 1/3 1 1/5 3 1/3 1/5
P 9 3 5 1 7 5 1/3
R 3 1/5 1/3 1/7 1 1/3 1/7
Pe 5 1/3 3 1/5 3 1 1/5
C 9 3 5 3 7 5 1

The interdependence weight of the criteria 37W = (0.022, 0.156, 0.059, 0.270, 0.037, 0.088,

0.369).

Step 4: Next, we dealt with the interdependence among the architecture styles with respect to

each criterion [14]. To satisfy the criteria, “which style contributes more and how much more?”

The stake holder response for each criterion is tabulated as shown from Table 10 to Table 16.

Table 10. Data among three architecture styles for criteria 1 (E)

41W LS PF BB

LS 1 1/3 5
PF 3 1 5
BB 1/5 1/5 1
LS 0.238 0.217 0.455
PF 0.714 0.652 0.455
BB 0.048 0.130 0.091

In Table 10, the data of second row is obtained from stake holders (Saaty's nine scale),

which shows the degree of interdependence among the alternatives with respect to each style

and the column sum is normalized to one. The project interdependence weight matrix for criteria

E is
41W .

K. Delhi Babu, P. Govindarajulu, A. Ramamohana Reddy, A.N. Aruna Kumari

International Journal of Software Engineering (IJSE), Volume (1): Issue (5) 98

Table 11. Data among three architecture styles for criteria 2 (S)

42W LS PF BB

LS 1 1/5 1/3

PF 5 1 3

BB 3 1/3 1

LS 0.111 0.130 0.077

PF 0.556 0.652 0.692

BB 0.333 0.217 0.231

Table 12. Data among three architecture styles for criteria 3 (Ev)

43W LS PF BB

LS 1 7 3

PF 1/7 1 1/5

BB 1/3 5 1

LS 0.678 0.538 0.714

PF 0.097 0.077 0.048

BB 0.226 0.385 0.238

Table 13. Data among three architecture styles for criteria 4 (P)

44W LS PF BB

LS 1 1/3 5

PF 3 1 5

BB 1/5 1/5 1

LS 0.238 0.217 0.455

PF 0.714 0.652 0.455

BB 0.048 0.130 0.091

Table 14. Data among three architecture styles for criteria 5 (R)

45W LS PF BB

LS 1 3 5

PF 1/3 1 3

BB 1/5 1/3 1

LS 0.652 0.692 0.556

PF 0.217 0.231 0.333

BB 0.130 0.077 0.111

Table 15. Data among three architecture styles for criteria 6 (Pe)

46W LS PF BB

LS 1 1/7 1/7

PF 7 1 3

BB 7 1/3 1

LS 0.067 0.097 0.035

PF 0.467 0.678 0.724

BB 0.467 0.226 0.241

K. Delhi Babu, P. Govindarajulu, A. Ramamohana Reddy, A.N. Aruna Kumari

International Journal of Software Engineering (IJSE), Volume (1): Issue (5) 99

Table 16. Data among three architecture styles for criteria 7 (C)

47W LS PF BB

LS 1 3 5
PF 1/3 1 5
BB 1/5 1/5 1
LS 0.652 0.714 0.455
PF 0.217 0.238 0.455
BB 0.130 0.048 0.091

Step 5: The interdependence priorities of the criteria by synthesizing the results from Step 1 to
Step 3 as:

=×= 13 WWW
c





























=





























×





























0.063

0.186

0.192

0.023

0.088

0.150

0.300

0.040

0.072

0.223

0.022

0.098

0.163

0.383

0.3690.0330.1690.0550.0270.0250

0.0880.4020.04700.1460.1690.263

0.0370.1680.39800.0490.2440.118

0.270000.564000

0.0590.0900.0250.2630.4020.0470.055

0.1560.0530.2680.1180.0850.4220

0.0220.2560.09300.2910.0930.564

c
W = (E, S, Ev, P, R, Pe, C) = (0.300, 0.150, 0.088, 0.023, 0.192, 0.186, 0.063).

Step 6: The priorities of the architecture styles pW with respect to each of the seven criteria

are given by synthesizing the results from Step 2 to Step 4 as follows:

















=

















×

















=×=

089.0

622.0

287.0

263.0

368.0

368.0

091.0130.0048.0

455.0652.0714.0

455.0217.0238.0

2141P1
WWW

















=

















×

















=×=

256.0

634.0

108.0

304.0

391.0

304.0

231.0217.0333.0

692.0652.0556.0

077.0130.0111.0

2242P2
WWW

















=

















×

















=×=

269.0

071.0

660.0

429.0

238.0

333.0

238.0385.0226.0

048.0077.0097.0

714.0538.0678.0

2343P3
WWW

















=

















×

















=×=

095.0

633.0

272.0

200.0

467.0

333.0

091.0130.0048.0

455.0652.0714.0

455.0217.0238.0

2444P4 WWW

















=

















×

















=×=

108.0

249.0

642.0

238.0

333.0

429.0

111.0077.0130.0

333.0231.0217.0

556.0692.0652.0

2545P5 WWW

















=

















×

















=×=

304.0

627.0

069.0

304.0

391.0

304.0

241.0226.0467.0

724.0678.0467.0

035.0097.0067.0

2646P6 WWW

















=

















×

















=×=

093.0

281.0

626.0

238.0

333.0

429.0

091.0048.0130.0

445.0238.0217.0

455.0714.0652.0

2747P7 WWW

The matrix pW by grouping all the seven columns:

),,,,,,(7654321 pppppppp WWWWWWWW = .

K. Delhi Babu, P. Govindarajulu, A. Ramamohana Reddy, A.N. Aruna Kumari

International Journal of Software Engineering (IJSE), Volume (1): Issue (5) 100

















=

0.0930.3040.1080.0950.2690.2560.089

0.2810.6270.2490.6330.0710.6340.622

0.6260.0690.6420.2720.6600.1080.287

pW

Step 7: Finally, the overall priorities for the architecture styles AW are calculated by

multiplying pW by cW .

=×= cpA WWW

















=





























×

















0.174

0.484

0.342

0.063

0.186

0.192

0.023

0.088

0.150

0.300

0.0930.3040.1080.0950.2690.2560.089

0.2810.6270.2490.6330.0710.6340.622

0.6260.0690.6420.2720.6600.1080.287

The final results in the ANP Phase are (LS, PF, BB) = (0.342, 0.484, 0.174). These weights are

used as priorities in goal programming formulation. That is (LS, PF, BB) = (321 ,, www) = (0.342,

0.484, 0.174), jw are the values of the three architecture styles.

The weight vector obtained from the above ANP model is used to optimize the solution further by

zero-one goal programming as follows: There exist several obligatory and flexible goals that must

be considered in the selection from the available pool of three architecture styles. There are

three obligatory goals: (1) a maximum time of 24 working days is required to select the best

architecture style, (2) a maximum duration of 35 months is required to complete the software

project and (3) a maximum budget of $ 30,000 is allocated to develop the project.

In addition to the obligatory goals of selecting the best architecture style, there are two other

flexible goals, stated in order of importance: (1) allocation of budget is set at $30,000 and (2)

allocation of miscellaneous fees is set at $4200, deviation from this allocation is not allowed. In

Table 17, the cost and resource usage information for each of the three styles is presented.

Table 17.Cost and resources usage information

 Project resource usage (ija)

 1x 2x 3x ib

Planning and design days 10 24 18 24 days

Construction months 32 34 30 35 months

Budgeted cost (00) $150 $300 $280 $300

Misc cost (00) $18 $24 $15 $42

Based on the weight vector computed using ANP, we can formulate the goal constraints in Table 18.

This ZOGP model is solved using LINDO Ver 6.1. The results are summarized as follows:

K. Delhi Babu, P. Govindarajulu, A. Ramamohana Reddy, A.N. Aruna Kumari

International Journal of Software Engineering (IJSE), Volume (1): Issue (5) 101

Table 18. ZOGP model formulation

ZOGP model formulation Goals

Minimize Z =

)(3211

+++
++ dddpl Satisfy all obligatory goals

)174.0484.0342.0(7652
−+−+− dddpl Select highest ANP weighted architecture styles

)(883
++− ddpl Use $30,000 for all architecture styles selected

)(444

+−
+ ddpl Use $4200for all architecture styles selected

Subject to

24182410
11321

=
+

−
−

+++ ddXXX Avoid over utilizing max. planning and design days

35303432
22321

=
+

−
−

+++ ddXXX Avoid over utilizing max. construction months

300280300150
33321

=
+

−
−

+++ ddXXX Avoid over utilizing max. budgeted dollars

151 =−+ dX Select Layered Style (LS)

162 =−+ dX Select Pipe & Filter (PF)

173 =−+ dX Select Blackboard Style (BB)

42152418
44321

=
+

−
−

+++ ddXXX Avoid over or under utilizing misc cost

.300280300150
88321

=
+

−
−

+++ ddXXX Avoid over or under utilizing expected budget

31,2,jor 0 == ∀jX

0,10 321 === xxx

,0,18,0,0,0,1,0,0
44332211

========
+−+−+−+− dddddddd .0,0,1,0,1 88765 =====

+−−−−
ddddd

Architecture Style 2 is chosen as it is consumes the total budgeted cost of $30,000 and use 14

days of time for decision. Also, the selected style will save one month construction time (total time

is 35 months) as 12 =
−d .

4. DISCUSSION

Several methods have been proposed to help organizations for solving problems related to

interdependence among criteria. The existing methodologies range from single-criteria

cost/benefit analysis to multiple criteria scoring models, ranking methods and AHP. However they

did not consider interdependence property. But they have addressed consider independence

property among alternatives or criteria. Also Ranking, Scoring, AHP methods are not applicable

to problems having resource feasibility, optimization requirements. In spite of this limitation, the

ranking and scoring method and AHP method have been used with real problems because they

are simple and easy to understand. In order to solve optimization problems, researchers have

used mathematical methods such as goal programming, dynamic programming, etc. [25, 30].

Many real-world problems are related to interdependence among alternatives and/or criteria

(multiple criteria) and these problems are need to apply resource feasibility, optimization and so

on. Table 15 shows the list of methods for various problem characteristics.

K. Delhi Babu, P. Govindarajulu, A. Ramamohana Reddy, A.N. Aruna Kumari

International Journal of Software Engineering (IJSE), Volume (1): Issue (5) 102

Table 19. List of methods for various problem characteristics

Method
Multiple

Criteria

Resource

Feasibility
Interdependence

Optimization

required

Ranking [16] Yes No No No

Scoring [17] Yes No No No

AHP [18] Yes No No No

Goal Programming [20] Yes Yes No Yes

Dynamic Programming[19] No Yes Yes Yes

AHP-GP [13] Yes Yes No Yes

ANP-GP (This paper) Yes Yes Yes Yes

According to experts, in selecting a style there is no single decision involved but in the decisions

consideration may be better or worse but still significant. For example, a style with a low weight

might be selected over a style with a high weight if developers are more familiar with the style

which has a lower score. The weight vector obtained using AHP for the above example is (0.371,

0.474, 0.154) [18]. AHP and ANP approaches have no much difference in solving the example

given, but there are some differences with respect to decision variables. It is evident that resource

feasibility, optimization requirements cannot be fulfilled with AHP method. But it is simple and

easy to understand and so the method more frequently used [21, 22, 24]. Table 18 shows the

comparison among the AHP and ANP approaches.

Table 20. Comparison of AHP and ANP approaches

Method

Resources Used

Planning and

design days

Construction

months

Budgeted

cost (00)

Misc

cost (00)

AHP 24 35 300 42

ANP 24 34* 300 18**

* We will save one month construction time (total time is 35 months) as 12 =
−d

** We will use only Misc cost $1800 (<$4200) more than the initial Budgeted cost as 184 =
−

d .

The proposed model, ANP is to demonstrate the procedure of finding weight that considers

interdependence among criteria or alternatives [23] which has highest weight wj. The ZOGP

model selects the best architectural style for which the weight wj is derived from ANP which has

maximum value and minimum deviation dj. Finally, architecture Style 2 is chosen which is

optimum as it is consumes the total budget cost of $30,000 and use exactly 24 days of time for

decision. The selected style will save one month construction time (total time is 35 months) as

12 =
−d .

K. Delhi Babu, P. Govindarajulu, A. Ramamohana Reddy, A.N. Aruna Kumari

International Journal of Software Engineering (IJSE), Volume (1): Issue (5) 103

In literature, all techniques mainly focused on problems related to independence among criteria.

Also recent survey indicates that the use of mathematical models is becoming prevalent for

solving this kind of problems [25, 26]. This paper shows an example solving interdependence

problem using the integrated approach ANP and ZOGP by using group expert interview. Using

this approach we conclude that we can select suitable architecture style having multiple criteria,

interdependence and resource feasibility.

5. CONCLUSIONS

There are mainly two inadequacies in the traditional approaches for selection of architecture styles.

First, they focused on relative importance among criteria to minimize the cost. However, the interests

of stakeholders and experts opinion were neglected. Second they considered only quantitative

factors.

To overcome the above drawbacks, this paper presented a method for a selecting the best

architecture style. In this method, ANP is used to determine the interdependency among the

alternatives and criteria. The priority vector obtained from Analytic Network Process is used to

formulate Zero-One Goal Programming model. For some scenarios, it might be obvious if all

architecture element types and all architecture properties are taken into consideration. So in this

paper three architecture styles and seven criteria are used in the case study. The major

advantage of this integrated approach is both the interests of stakeholder and expert opinion are

focused. Qualitative factors are also considered. Therefore, it is believed that this approach is

much more practical and the results obtained in this approach are better than earlier approaches

like Fuzzy Logic, AHP, ANP for selecting the best architecture style.

6. REFERENCES
[1] Shaw M., Clements P.: “The golden age of software architecture”, IEEE Softw., 2006

[2] Garlan D.: “Software architecture: a roadmap’’, in Finkelstein A. (ED.): “The future of

software engineering” (ACM Press, 2000)

[3] Dobrica L., Niemela E.: “A survey on software architecture analysis methods”, IEEE Trans.

Softw. Eng., 2002

[4] Soung Hie K., Jin Woo L.: "An Optimization usability of information system project

resources using a QFD and ZOGP for reflection customer wants", Korea Advanced Inst of

Science & Tech.

[5] Jin Woo Lee, Soung Hie Kim: “Using analytic network process and goal programming for

interdependent information system project selection”, Computers & Operation Research

Volume 27, Issue 4, April 2000

[6] Saaty, T. L., “A Scaling Method for Priorities in Hierarchical structures”, Journal of

Mathematical Psychology, 1984

[7] Saaty and Takizawa: "The Theory of Ratio Scale estimation", Management Science Vol 33,

Nov 1987

K. Delhi Babu, P. Govindarajulu, A. Ramamohana Reddy, A.N. Aruna Kumari

International Journal of Software Engineering (IJSE), Volume (1): Issue (5) 104

[8] Gloria E., Eugene D.and Guisseppi A.,:"A multiple-criteria framework for evaluation of

decision support systems", Omega Volume 32, Issue 4, August 2004

[9] Thomas L. Saaty, Luis Gonzalez Vargas: "Decision making with the analytic network

process", Management Science and Operation Research, 2006

[10] Reza, K., Hossein, A., Yvon, G.,: "An integrated approach to project evaluation and

selection", IEEE Transactions on Engineering Management 1988

[11] Elim Liu, Shih-Wen Hsiao: “ANP-GP approach of Product Variety Design”, Int J Adv Manuf

Technol 2006.

[12] Selcuk Percin : "Using the ANP approach in selecting and benchmarking ERP systems"

Emerald Group Publishing Limited, 1994

[13] K. Delhi Babu, P. Govindarajulu, A. Ramamohana Reddy, A.N. Aruna Kumari : “An

Integrated Approach of AHP-GP and Visualization for Selection of Software Architecture: A

Framework”, International Conference on Advances in Computer Engineering, 2010.

 [14] Ingu Kim, Shangmun Shin: "Development of a Project Selection Method on Information

System Using ANP and Fuzzy Logic", World Academy of Science, Engg. and Tech. 2009

[15] Galster M.,Eberlein A. and Moussavi A.:"Systematic selection of software architecture

styles", Published in IET Software 2009.

[16] Martin D.J. Buss : "How to Rank Computer Projects", Harvard Business Review Article,

Jan, 1983.

[17] HC Lucas, JR Moor : "A multiple-criterion scoring approach to information system project

selection", INFOR 1976

[18] K Muralidhar, R Santhanam : "Using the analytic hierarchy process for information system

project selection" Information & Management, Volume 18, Issue 2, February 1990

[19] G. L. Nemhauser, Z. UllmannDiscrete : "Dynamic Programming and Capital Allocation",

Management Science, Vol. 15, No. 9, Theory Series May, 1969

[20] R Santhanama, K Muralidhara, M Schniederjans : "A zero-one goal programming approach

for information system project selection", Omega Volume 17, Issue 6, 1989

[21] Saaty T.L.: “Decision making for leaders: the analytic hierarchy process for decisions in a

complex world”, RWS Publications, 2001

[22] Fleiss J.L., Levin B., Paik M.C.: “Statistical methods for rates and proportions”, John Wiley

& Sons, 2003

[23] Yubo Gao An AHP-GP Model for Determining Weights, 3" World Congress on Intelligent

Control and Automation, 2000

[24] K. Delhi Babu, P. Govindarajulu, A. Ramamohana Reddy, A.N. Aruna Kumari : "Selection

of Architecture Styles using Analytic Network Process for the Optimization of Software

Architecture", International Journal of Computer Science and Information Security, IJCSIS,

Vol. 8 No. 1, April 2010

[25] P. Shoval, Y. Lugasi : "Models for computer system evaluation and selection", Information

and Management archive, Volume 12 Issue 3, March 1987

[26] Weber, R.,Werners, B.,Zimmermann, H. J.,Zimmermann, H. J., : "Planning models for

research and development" European Journal of Operational Research, 1990

Anu Gupta & R.K. Singla

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 105

Defect Management Practices and Problems in Free/Open Source
Software Projects

Dr. Anu Gupta anugupta@pu.ac.in
Assistant Professor
Department of Computer Science and Applications
Panjab University, Chandigarh, 160014, India.

Dr. R.K. Singla rksingla@pu.ac.in
Professor
Department of Computer Science and Applications
Panjab University,Chandigarh, 160014, India.

Abstract

With the advent of Free/Open Source Software (F/OSS) paradigm, a large number of
projects are evolving that make use of F/OSS infrastructure and development
practices. Defect Management System is an important component in F/OSS
infrastructure which maintains defect records as well as tracks their status. The
defect data comprising more than 60,000 defect reports from 20 F/OSS Projects is
analyzed from various perspectives, with special focus on evaluating the efficiency
and effectiveness in resolving defects and determining responsiveness towards
users. Major problems and inefficiencies encountered in Defect Management among
F/OSS Projects have been identified. A process is proposed to distribute roles and
responsibilities among F/OSS participants which can help F/OSS Projects to improve
the effectiveness and efficiency of Defect Management and hence assure better
quality of F/OSS Projects.

Keywords: Free Software, Open Source, Defect Management, Quality, Metrics

1. INTRODUCTION
Free/Open Source Software (F/OSS) is an evolving paradigm of software development which allows
the entire Internet community to use its combined programming knowledge, creativity and expertise to
develop software solutions, which could render benefits to whole community without involving cost
and proprietary issues [1]. F/OSS participants rely on extensive peer collaboration through the
Internet using Version Control System, Mailing List, Defect Management System, Internet Relay Chat,
Discussion Forum etc. [2]. These tools enable participants to collaborate in the F/OSS development
process as well as act as repositories to store the communication activities of the participants,
manage the progress and evolution of F/OSS Projects. These repositories contain explicit and implicit
knowledgebase about F/OSS projects that can be mined to help developers in improving the product
as well as to facilitate the users in evaluating the product.

Even though there are number of qualitative and quantitative studies about F/OSS, little attention has
been paid to the rich information stored in Defect Management Systems of F/OSS projects [3-8].
Defect Management System provides an effective mechanism for recording and tracking of defects as
well as promotes user involvement and peer review process. All the users may not have knowledge to
participate in the development or code review of an F/OSS Project but such users may report bugs or
request new features. They may also comment on existing defect reports or help in their removal, for
example by reproducing them or supplying more information. A large amount of defect related data
flows back and forth between the developers and the users of the F/OSS projects. Hence in most of
the F/OSS projects, substantial amount of defect data gets accumulated in the Defect Management
Systems over the period. This valuable defect data can be used to analyze the past experience,
degree of improvement or deterioration in resolving defects and determine responsiveness towards
users. As the potential F/OSS users need to evaluate the extensibility and maintainability before

Anu Gupta & R.K. Singla

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 106

taking any decision to adopt a particular F/OSS product, so the defect related analysis can greatly
help them to evaluate how efficiently and effectively the requests for fixing bugs, enhancing features,
translation requests, support requests etc. are being managed. Moreover the availability of huge
amount of information with a great variety in size, programming languages, tools, methods etc. offers
the possibility of creating a comparison framework among F/OSS projects from which knowledge and
experience can be gained.

In the current study, the defect data of various F/OSS projects is analyzed from various perspectives,
with special focus on evaluating the efficiency and effectiveness in resolving defects and determining
responsiveness towards users. Based on the findings, effective ways and means are suggested to
improve defect management and thus enhance the quality of F/OSS projects.

2. F/OSS PROJECT SELECTION AND DATA COLLECTION
F/OSS projects are selected from SourceForge, a centralized place for F/OSS developers to host their
projects [9]. It is the world's largest F/OSS projects repository with more than 230,000 F/OSS projects
and over 2 million registered users. It provides some of the best empirical data on F/OSS research. A
single source is chosen to select projects in order to control for differences in available tools and
project visibility. In spite of large number of projects hosted, only a small proportion of these projects
are actually active. Also many of the F/OSS projects either do not use or do not allow public access to
Defect Management System. Hence those projects are considered for which defect related data is
publicly accessible and is being maintained completely at SourceForge. Another criterion used for
selection of projects is the project development stage (1-6 where 1 is the planning and 6 is a mature
stage). A cut-off of 5 is chosen which indicates that the selected projects are at similar stage of
development and are not in the early stage of development lifecycle. A total of 20 projects are
selected which constitute a diverse mix of project size, team size, nature of application and targeted
end user type. Selection of limited number of projects has helped to carry out in-depth study. For all
the selected F/OSS projects, detailed defect data is downloaded from SourceForge Research Data
Archive (SRDA) for the period starting from their respective Registration Date to October 2008 [10].
The defect data is downloaded on the basis of unique Project ID assigned to each project at
SourceForge and is stored in the local repository (mySQL) aggregating more than 60,000 defect
records. Further the Defect Analysis and Reporting Tool (DART) is used to carry out exhaustive
analysis of defect data and generate variety of textual/graphical reports. For selected F/OSS projects,
various parameters used for analyzing defect data and their quantitative results are discussed in
subsequent sections.

3. Quality Metrics used for evaluating Defect Management
In order to evaluate Defect Management among F/OSS projects, various metrics used are mentioned
in Table 1.

Anu Gupta & R.K. Singla

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 107

Sr. # Metric Name Formula Objective
1. Defect

Resolution
Cumulative Defect Arrival Pattern and
Defect Closure pattern over time
interval (in months)

To check consistency and efficiency
in defect resolution over the period

2. Pending Defects Frequency as well volume of
increase/decrease in pending defects
over period (in months)

To check the trend of pending
defects over the period

3. Defect Removal
Rate

Proportion of defects resolved out of
defects submitted for a particular period

To observe the rate at which
defects are resolved over the period

4. Backlog
Management

Ratio of number of defects closed to
number of defects arrived during the
period

To measure the capability to handle
the pending defects

5. Software
Release and
Backlog
Management

Tracing the shapes of BMI curves with
release history of the project

To observe the relationship of
software releases with defect
handling over the period

6. Defect
Resolution Age

Number of days elapsed since a defect
arrived till the time defect is
resolved/closed.

To measure the resolution efficiency

7. Fix/Non-Fix
Defect
Resolution

Defect Resolution Age for Fix versus
Non-Fix Defects

To compare the efficiency in
handling defects requiring code
change with defects requiring no
code change

8. Defect Pending
Age

Number of days elapsed since a defect
arrived and still remained pending at the
end of the month

To measure the age of pending
defects at any point of time

9. Defect
Resolution
(Defect Type
Wise)

Defect Resolution Age for Bugs versus
Feature Requests versus others

To compare the efficiency in
handling defects belonging to
various defect types

TABLE 1: Quality Metrics used for Evaluating Defect Management

4. QUANTITATIVE RESULTS
The detailed results obtained are being presented with the help of statistics and various graphs in the
following subsections.

4.1. Defect Resolution
Defect arrival curves and defect closure curves have been drawn for all the selected F/OSS projects
on the basis of live defect data consolidated on monthly basis. Defect arrival curve is related to the
defects reported by F/OSS community, represented as Cumulative Defects arrived over the period.
Defect closure curve is related to the resolution and closing of defects by F/OSS community,
represented by Cumulative Defects closed over the period. The distance between these two curves at
a given point in time represents the number of defects pending at that time. An ideal defect resolution
process needs to be
• Continuous: when cumulative closed curve is quite smooth without having any peaks or steps.

• Efficient: when cumulative closed curve stays near to the cumulative open curve without raising
overall number of pending defects.

The graphs for all the selected F/OSS projects have been drawn which show varying patterns. Those
patterns can be classified among the following four categories [11]:
• Continuous and Efficient

• Discontinuous and Efficient

• Continuous and Inefficient
• Discontinuous and Inefficient

The patterns for all the selected F/OSS projects are identifiable in one or the other category and
helpful in determining the quality of defect resolution process. The example graphs for each of the
above categories are shown in Figure 1 to 4.

Anu Gupta & R.K. Singla

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 108

FIGURE 1: Continuous and Efficient Defect Resolution

FIGURE 2: Continuous and Inefficient Defect Resolution

FIGURE 3: Discontinuous and Efficient Defect Resolution

Anu Gupta & R.K. Singla

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 109

FIGURE 4: Discontinuous and Inefficient Defect Resolution

4.2. Pending Defects
Pending defects refers to all those defects which still need to be addressed. Ideally pending defects
should decrease with the passage of time or at least it should remain constant. Large number of
pending defects may discourage participating users from providing further feedback and many
opportunities of improvement in the software may be lost. Figure 5 shows that number of monthly
pending defects for all the 20 projects taken together keeps on increasing. To confirm the same
statistically, a paired two-sided t-test is applied between number of pending defects in the beginning
and at the end of the observation period for each of the 20 projects. It is clearly seen that there is
significant difference (t(19)=3.93634888, p<0.05; t critical =2.09302405).

Pending Defects

0

2000

4000

6000

8000

10000

12000

14000

16000

Apr
 2

00
0

Sep
 2
00

0

Fe
b

20
01

Ju
l 2

00
1

D
ec

 2
00

1

M
ay

 2
00

2

O
ct
 2

00
2

M
ar

 2
003

Aug
 2

00
3

Ja
n

200
4

Ju
n

20
04

N
ov

 2
00

4

Apr
 2

00
5

Sep
 2
00

5

Feb
 2

00
6

Ju
l 2

00
6

D
ec

 2
00

6

M
ay

 2
00

7

O
ct
 2

00
7

M
ar

 2
00

8

Aug
 2

00
8

Period

 D
e
fe

c
ts

FIGURE 5: Aggregate Pending Defects for 20 F/OSS projects Together

The closer examination of pending defects over the period January 2006- November 2007 (Figure 6)
shows that there are usually gradual increases and steep decreases in the number of pending
defects. This suggests that defects slowly accumulate over the period and are removed in bursty
manner. To test the hypothesis statistically, changes in pending defects from one month to the next
month are recorded in form of upward change (for an increase) and downward change (for a
decrease) frequencies for each of the 20 projects. Paired two-sided t-test shows that the difference
between upward and downward changes in the number of pending defects is significant
(t(19)=11.9702; p<0.05; t critical = 1.7291). There are overall 2.91 times more upward changes than
downward changes. On an average basis, whenever there is an increase in pending defects, the
upward change is 16.63 defects per month. On the other hand, if pending defects decrease, the
downward change is 30.36 defects per month on an average. The reason for bursty nature of defect
resolution is further discussed in subsection 4.5.

Anu Gupta & R.K. Singla

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 110

Pending Defects

11000

11500

12000

12500

13000

13500

14000

Ja
n

20
06

M
ar

 2
006

M
ay

 2
00

6

Ju
l 2

00
6

Sep
 2

00
6

N
ov

 2
00

6

Ja
n

200
7

M
ar

 2
00

7

M
ay

 2
00

7

Ju
l 2

00
7

Sep
 2

00
7

N
ov

 2
00

7

Period

 D
e
fe

c
ts

FIGURE 6: Gradual Increases and Steep Decreases in Pending Defects

4.3. Defect Removal Rate
Defect removal rate refers the proportion of defects resolved out of defects submitted for a particular
period. The ever increasing number of pending defects indicates that the defect removal rate is
decreasing. The size of core team has remained roughly same among the selected F/OSS projects.
The hypothesis is that certain percentage of defects does not get resolved over the period as defect
reports are submitted, thus number of pending defects accumulate.

In order to investigate this hypothesis statistically, a period of five years from 2003 to 2007 is
considered. For each selected project, all the defects reports submitted during a particular year have
been considered and then the status of each defect report exactly after 1 year of defect submission is
observed whether the defect is resolved/closed or not [12]. The application of ANOVA reveals that the
period in which a defect is submitted has significant influence on the defect removal rate
(F(4,94)=6.058928; p<0.05; F critical=2.468533). The defects that have been reported during the year
2003, 81% of them have been resolved after 1 year (Table 2). The defect removal rate reduces to
71% in year 2005 and further to 65% in year 2007. This clearly shows that the defect removal rate is
declining which results in ever increasing number of pending defects.

Period Average Removal Rate Standard Deviation

Year 2003 0.81 0.11

Year 2004 0.74 0.20

Year 2005 0.71 0.15

Year 2006 0.66 0.23

Year 2007 0.65 0.26

TABLE 2: Defect Removal Rate Over Five Years

4.4. Backlog Management
Backlog management refers to the capability of F/OSS developers to handle the pending defects,
measured using Backlog Management Index (BMI). BMI is a ratio of number of defects closed to
number of defects arrived during the period.

100

 ×=

periodtheduringarriveddefectsofNumber

periodtheduringcloseddefectsofNumber
BMI

If BMI is larger than 100, it means that the backlog is reduced as defects are being closed at the same
or higher rate at which the defects are arriving. If BMI is less than 100, the backlog is increased. Of
course, the goal is always to strive for a BMI larger than 100. With enough data points, the technique
of control charting can help to calculate the overall backlog management capability of the software
process [13]. A control chart is a graph or chart with limit lines, called control lines. In fact BMI chart is
a pseudo-control chart because BMI data are auto correlated and assumption of independence for

Anu Gupta & R.K. Singla

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 111

control charts is violated. As the BMI values are in wide range, c control chart is more suitable [13]. In
this case, three kinds of control lines are calculated as follows:

• Central Line (CL) equal to Mean BMI

• Lower Control Limit
)CL3 (×−= CLLCL

• Upper Control Limit)CL3 (×+= CLUCL

If a process is mature and under statistical process control, all values should lie within the LCL and
UCL. If any value falls out of the control limits, the process is said to be out of statistical process
control. Figure 7 shows a project having very good backlog management. Most of the times the BMI
curves are able to maintain themselves above the LCL. In case of Figure 8, the project was not having
good backlog management initially but later on it improved. Figure 9 shows poor backlog
management throughout the period.

FIGURE 7: Backlog Management of Defects (Good)

FIGURE 8: Backlog Management of Defects (Improved Later)

Anu Gupta & R.K. Singla

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 112

FIGURE 9: Backlog Management of Defects (Poor)

4.5. Software Release and Backlog Management
In the subsection 4.4, it is observed that BMI curves for most of the F/OSS projects are very
fluctuating in spite of the fact that BMI values remain greater than 100 or lesser. To find out the
reasons for such behavior, a detailed analysis of release data with BMI curves was carried out.
Detailed inspection of release data revealed that the F/OSS projects are releasing their minor/major
versions very frequently confirming the premise “Release Early, Release Often” [1]. In the Figure 10
and 11, efforts are made to trace back the shapes of BMI curves with release history of the projects.
The dotted red colored vertical lines are drawn corresponding to major/minor releases in each of the
following graphs.

FIGURE 10: Software Release and Backlog Management of Defects

Anu Gupta & R.K. Singla

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 113

FIGURE 11: Software Release and Backlog Management of Defects

It is found that more than 90% of spikes in BMI curves are matching with the version releases. This
phenomenon refers that generally F/OSS developer community do not resolve the defects on regular
basis, instead put additional efforts to resolve defects near to each release.

4.6. Defect Resolution Age
Defect Resolution Age (DRA) refers to the number of days elapsed since a defect arrived till the time
defect is resolved/closed. The average defect resolution age should be short as well as quite
consistent to have efficiency in defect resolution. The monthly average of defect resolution age
(MADRA) is computed using the following formula:

DRA(di)=Defect Closing Date(di)-Defect Opening Date(di)

Where di refers to a defect closed

The graphs are drawn to show curves for average defect resolution age over the period for the F/OSS
projects. Corresponding linear trend lines are also plotted. The projects should have preferably
decreasing or at least constant trend of average defect resolution age to bring efficiency in defect
resolution. For the F/OSS projects under study, it is observed that none of the projects has decreasing
trend, very few projects are having near to constant trend lines (Figure 12) and most of the projects
are showing upward trends in average defect resolution age over the period (Figure 13).

FIGURE 12: Defect Resolution Age (Near to Constant Trend)

FIGURE 13: Defect Resolution Age (Increasing Trend)

Anu Gupta & R.K. Singla

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 114

Project Period Average
Resolution Age

(Days)

Standard
Deviation

ANOVA
Statistics

Webmin Jan.1, 2002 to
Dec. 31, 2003

21.56 32.46 F(2,69)= 0.220411;
p<0.05;

F critical= 3.129644

Jan.1, 2004 to
Dec. 31, 2005

28.90 51.62

Jan.1, 2006 to
Dec. 31, 2007

23.89 29.62

NSIS Jan.1, 2002 to
Dec. 31, 2003

16.48 30.25 F(2,69)=7.176098;
p<0.05;

F critical= 3.129644

Jan.1, 2004 to
Dec. 31, 2005

19.98 21.48

Jan.1, 2006 to
Dec. 31, 2007

69.61 86.51

TABLE 3: One Way ANOVA Statistics on Defect Resolution Age

To confirm the observation about trends in Defect Resolution Age, a standard analysis of variance
(ANOVA) is carried out on monthly average resolution age over the period for all the selected F/OSS
projects. Statistics about two projects are shown in Table 3. It is clearly seen that there is no
significant difference in the average resolution over the period in case of Webmin, while it differs
significantly for NSIS.

To analyze the overall defect resolution age for all the selected projects together during the
investigation period, average resolution age for each of the 20 projects for various years is taken into
consideration and standard analysis of variance (ANOVA) is applied which shows that there is
significant change in defect resolution age over the period (F (4,94) =4.29461975;p<0.05;F critical
=2.468533). The Table 4 also shows a continuous increasing trend in average defect resolution age
(days) for various years for all the 20 projects taken together.

Period Average Defect Resolution Age

(Days)
Standard Deviation

2004 61.77 58.34

2005 76.35 41.62

2006 98.73 71.95

2007 113.07 89.99

2008 149.53 104.62

TABLE 4: Average Defect Resolution Age for 20 F/OSS projects Together

Figure 14 is a scatter plot for one of the F/OSS projects where each point represents resolution age
for each defect closed. While Figure 15 shows the number of defects resolved with same resolution
age value. The quality of the defect resolution process can be quantified by considering two statistical
indices of the resolution age distribution i.e. skewness and kurtosis [51]. Skewness measures the
asymmetry of the distribution and high values indicate that there are certain defects which have
resolution age much higher than the average one. While Kurtosis measures the peaked ness of the
distribution and high values mean that the variance of the resolution age is caused by very few
defects with extremely long closing time (Table 5).

Anu Gupta & R.K. Singla

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 115

SquirrelMail (Resolution Age)

0

500

1000

1500

2000

2500

0-J
an-

00

14
-M

ay
-0

1

26
-S

ep
-0

2

8-
Feb

-0
4

22
-J

un
-0

5

4-
N
ov

-0
6

18
-M

ar
-0

8

Defect Arrival Date

R
e
s

o
lu

ti
o

n
 A

g
e
 (

D
a
y

s
)

FIGURE 14: Scatter Plot of Resolution Age

Distribution of Resolution Age Value (SquirrelMail)

0

50

100

150

200

250

300

350

400

450

500

Resolution Age (Days)

D
e

fe
c

ts

FIGURE 15: Distribution of Resolution Age

 SquirrelMail NSIS Webmin

Mean 6.20 7.02 13.09

Standard Deviation 25.29 37.83 100.33

Kurtosis 188.75 131.18 127.30

Skewness 12.58 10.97 11.04

Sum of Resolved Defects 3880 1362 3194

TABLE 5: Descriptive Statistics on Distribution of Resolution Age

It is clearly indicated that in most of the selected F/OSS projects, larger number of defects are
resolved in shorter period while smaller number of defects are resolved in longer period which leads
to an increase in overall mean resolution age.

4.7. Fix/Non-Fix Defect Resolution
It is observed that there is generally an increasing trend in defect resolution age and some of the
defects are even resolved after 365 days. Many defects are resolved by making change/fix in the

Anu Gupta & R.K. Singla

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 116

source code whereas others may be resolved with non-fix status such as Invalid, Won’t fix, Out of
date, Duplicate, Works for me, Rejected etc.

Hence further analysis is carried out by comparing the resolution age in fix and non-fix categories.
Figure 16 and 17 show graphs for two of the selected projects where comparison is made between fix
and non-fix resolutions by distributing the resolved defects on the basis of defect resolution age (Less
than 10 days, 11 to 30 days, 31 to 90 days, 91 to 365 days and More than 365 days). It is found that
even the defects with non-fix resolution are closed in higher ranges of resolution age i.e. 91 to 365
days or More than 365 days. It is also observed that the proportion of non-fix resolved defects remain
more or less same across all the resolution age categories.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

D
e
fe

c
ts

 (
%

)

<=10 11 To 30 31 To 90 91 To 365 >365

Resolution Period (Days)

Defect Resolution (Fix/Non Fix) - Gallery

Deleted

Works For Me

Wont Fix

Rejected

Out of Date

Invalid

Duplicate

Fixed

FIGURE 16: Defect Resolution Fix/Non-Fix (Gallery)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

D
e
fe

c
ts

 (
%

)

<=10 11 To 30 31 To 90 91 To 365 >365

Resolution Period (Days)

Defect Resolution (Fix/Non Fix) - NSIS

Deleted

Works For Me

Wont Fix

Rejected

Out of Date

Invalid

Duplicate

Fixed

FIGURE 17: Defect Resolution Fix/Non-Fix (NSIS)

An unpaired two-sided t-test is conducted between defects with fix and non-fix resolution using their
monthly average resolution age over all the months. The t-values in the last column of Table 6 for
various F/OSS projects are below the critical values which clearly show that there is no significant
difference in the resolution age of fix and non-fix resolved defects. An unpaired two-sided t-test is also
applied to overall average age of defects with fix and non-fix resolution for all the 20 F/OSS projects.
The test statistics (t(38)=0.984940769; p<0.05; t Critical=1.685954461) shows that there is no
difference in efficiency for defects with fix and non-fix resolution as a whole also.

Anu Gupta & R.K. Singla

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 117

Project Resolution

Type
Average

Resolution
Age(Days)

Standard
Deviation

t value*

Squirrelmail Fix 132.58 165.75 0.820547
Non-Fix 106.78 260.96

Gallery Fix 104.66 110.02 0.65281
Non-Fix 117.43 167.31

Webmin Fix 22.47 37.78 0.21268
Non-Fix 24.05 75.40

NSIS

Fix 43.12 85.56 2.123759
Non-Fix 21.41 47.08

Netwide Assembler Fix 132.13 308.57 0.645107
Non-Fix 101.68 278.20

aMSN

Fix 62.91 69.01 0.572375
Non-Fix 55.69 81.39

*p<0.05
TABLE 6: t-test statistics on Defect Resolution (Fix/Non-Fix)

4.8. Defect Pending Age
Defect Pending Age (DPA) refers to the number of days elapsed since a defect arrived and still
remained pending at the end of the month. For all the selected F/OSS projects, monthly average of
defect pending age (MADPA) is computed using the following formula:

DPA(di)=Current Date-Defect Opening Date(di)

Where di refers to a pending defect

The graphs are plotted to show the curves for monthly averages of defect pending age for all the
projects. It is observed that all the projects are showing increasing trend of monthly average defect
pending age. Further detailed analysis of defects pending age is carried out by distributing the
pending defects according to their pending age (Less than 10 days, 11 to 30 days, 31 to 90 days, 91
to 365 days and More than 365 days). Figure 18 and 19 also show curves for the overall monthly
average pending age of all the pending defects as well as monthly average pending age for defects
falling in each of the categories. By observing the pattern of defect pending age over the period, it is
found that in almost all the projects the average pending age is increasing. But this increase in defect
pending age trend is attributed mainly by those defects whose average pending age is 90 days or
more. While in other lower age categories, trend remains either constant or slightly downward/upward.

Average Pending Defect Age - Privoxy

0
200
400
600
800

1000
1200
1400
1600
1800

S
ep

 2
00

0

A
pr

 2
00

1

N
ov

20
01

Ju
n

20
02

Ja
n

20
03

A
ug

 2
00

3

M
ar

 2
004

O
ct
 2

00
4

M
ay

 2
005

D
ec

20
05

Ju
l 2

00
6

Feb
 2

007

S
ep

 2
00

7

A
pr

 2
00

8

Period

A
g

e
 (

D
a

y
s
)

<=10Days

11To30Days

31To90Days

91To365Days

>365Days

Average Age

FIGURE 18: Defect Pending Age - Pending Age Wise (Privoxy)

Anu Gupta & R.K. Singla

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 118

Average Pending Defect Age - Webmin

0
200
400
600
800

1000
1200
1400
1600
1800

A
pr

 2
00

1

O
ct

 2
00

1

A
pr

 2
00

2

O
ct

 2
00

2

A
pr

 2
00

3

O
ct

 2
00

3

A
pr

 2
00

4

O
ct

 2
00

4

A
pr

 2
00

5

O
ct

 2
00

5

A
pr

 2
00

6

O
ct

 2
00

6

A
pr

 2
00

7

O
ct

 2
00

7

A
pr

 2
00

8

O
ct

 2
00

8

Period

A
g

e
 (

D
a

y
s
)

<=10Days

11To30Days

31To90Days

91To365Days

>365Days

Average Age

FIGURE 19: Defect Pending Age - Pending Age Wise (Webmin)

To observe the difference in pending age over the period for each of the 20 projects, ANOVA is
applied. The statistics for two projects are highlighted in Table 7. Since the test statistic for both the
projects is larger than the critical value, it is concluded that there is a (statistically) significant
difference in average pending age over the periods. To analyze the overall defect pending age for all
the selected projects together during the investigation period, average pending age for each of the 20
projects for various years is taken into consideration and standard analysis of variance (ANOVA) is
applied which shows that there is significant change in defect pending age over the period (F
(4,95)=15.2694; p<0.05; F critical=2.467494). The Table 8 also shows a continuous increasing trend
in average defect pending age (days) for various years for all the 20 projects taken together.

Project Period Average

Pending Age
Standard
Deviation

ANOVA
Results

Webmin Jan.1, 2002 to
Dec. 31, 2003

264.58 94.25 F(2,69)=
252.4181;

p<0.05;
F critical=

3.129644

Jan.1, 2004 to
Dec. 31, 2005

647.36 108.64

Jan.1, 2006 to
Dec. 31, 2007

1047.70 151.84

Privoxy Jan.1, 2002 to
Dec. 31, 2003

151.14 74.96 F(2,69)=
163.3788;

p<0.05;
F critical=

3.129644

Jan.1, 2004 to
Dec. 31, 2005

369.15 70.36

Jan.1, 2006 to
Dec. 31, 2007

927.15 244.99

TABLE 7: One Way ANOVA Statistics on Defect Pending Age

Period Average Defect Pending Age (Days) Standard Deviation

2004 286.51 174.13

2005 421.28 227.67

2006 593.92 288.80

2007 802.74 355.54

2008 897.11 364.85

TABLE 8: Average Defect Pending Age for 20 F/OSS Projects Together

4.9. Defect Resolution (Defect Type Wise)
An F/OSS user can submit defects in the form of bug reports, feature requests, patches or
miscellaneous (translation, support requests, plug-ins, package requests or any other project specific
category). As it is observed that there is generally an increasing trend in defect resolution age, hence
further analysis is carried out to observe the resolution age of each of the defect type. Figure 20 and

Anu Gupta & R.K. Singla

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 119

21 show graphs for two of the selected projects where comparison is made between various defect
types by distributing the resolved defects on the basis of defect resolution age (Less than 10 days, 11
to 30 days, 31 to 90 days, 91 to 365 days and More than 365 days).

0%

20%

40%

60%

80%

100%

D
e
fe

c
ts

 (
%

)

<=10 11 To 30 31 To 90 91 To 365 >365

Resolution Period (Days)

Defect Resolution (Defect Type Wise) - SquirrelMail

Miscellaneous

Patches

Feature Requests

Bugs

FIGURE 20: Defect Resolution - Defect Type Wise (SquirrelMail)

0%

10%

20%
30%

40%

50%

60%

70%

80%

90%

100%

D
e

fe
c

ts
 (

%
)

<=10 11 To 30 31 To 90 91 To

365

>365

Resolution Period (Days)

Defect Resolution (Defect Type Wise) - NSIS

Miscellaneous

Patches

Feature Requests

Bugs

FIGURE 21: Defect Resolution - Defect Type Wise (NSIS)

It is found that all the defect types are dispersed among all the resolution age categories. It is also
observed that proportion of bugs decrease with increasing resolution age while others (Feature
Requests, Patches, Miscellaneous) increase with increasing resolution age. Further analysis of
monthly average pending age is carried out in each of the defect type over the period (Figure 22 and
23). It is observed that each defect type is showing increasing trend in all the selected projects.

To analyze the defect pending age for each defect type taking all the selected projects together,
average pending age in each defect type for each of the 20 projects for various years is taken into
consideration and two way ANOVA is applied. The null hypothesis is that the differences between the
defect types are consistent for various years. A significant year effect (F(4)=23.36133;p<0.05;F
critical=2.395431) implies that there is a difference in the effect of different years on the defect
pending age regardless of the type of defect. A significant defect type effect (F(3)=14.83437;p<0.05;F
critical=2.628397) implies that there is a difference in the effect of different defect types on the defect
pending age regardless of the level of year. While the interaction of year and Defect type
(F(12)=0.748815;p>0.05; F critical=1.777693) implies that differences between the defect type are
consistent for various years.

Anu Gupta & R.K. Singla

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 120

Average Pending Age (Defect Type Wise) - Gallery

0

200

400

600

800

1000

1200

J
u
l
2

0
0

0

J
a
n

 2
0
0

1

J
u
l
2

0
0

1

J
a
n

 2
0
0

2

J
u
l
2

0
0

2

J
a
n

 2
0
0

3

J
u
l
2

0
0

3

J
a
n

 2
0
0

4

J
u
l
2

0
0

4

J
a
n

 2
0
0

5

J
u
l
2

0
0

5

J
a
n

 2
0
0

6

J
u
l
2

0
0

6

J
a
n

 2
0
0

7

J
u
l
2

0
0

7

J
a
n

 2
0
0

8

J
u
l
2

0
0

8

Period

D
a

y
s

Bugs

FeatureRequests

Patches

Miscellaneous

FIGURE 22: Average Pending Age - Defect Type Wise (Gallery)

Average Pending Age (Defect Type Wise) - PDFCreator

0

200

400

600

800

1000

1200

A
u
g

 2
0

0
2

J
a
n

 2
0

0
3

J
u
n

 2
0

0
3

N
o

v
 2

0
0
3

A
p

r
2
0

0
4

S
e
p

 2
0

0
4

F
e
b

 2
0

0
5

J
u
l
2
0

0
5

D
e
c
 2

0
0
5

M
a

y

O
c
t

2
0

0
6

M
a
r

2
0

0
7

A
u
g

 2
0

0
7

J
a
n

 2
0

0
8

J
u
n

 2
0

0
8

Period

D
a
y

s

Bugs

FeatureRequests

Patches

Miscellaneous

FIGURE 23: Average Pending Age - Defect Type Wise (PDFCreator)

5. PROBLEMS IN DEFECT MANAGEMENT
During the current study, various problems that have been identified in Defect Management are
discussed as follows. Also an attempt is made to address these problems.

• It is observed that many F/OSS projects do not carry out defect resolution consistently and
efficiently. The defect resolution is not able to keep pace with defect arrival thus accumulating
pending defects. It is also found that backlog of pending defects accumulate gradually while their
resolutions are carried out in bursty manner near the forthcoming releases. All these factors
cause an increasing trend of overall resolution age as well as pending age. The detailed analysis
shows that most of the defects are closed in reasonable time period while few defects take quite
longer resolution time and aggravate the overall scenario. F/OSS development team should
periodically review such long pending defects and prioritize them for resolution.

• It is also observed that there is no significant difference in resolution age of defects resolved with
code fix or without any code fix (such as Duplicate, Out of Date, Won’t Fix, Works for Me, Invalid
etc.). It is not justified that a defect is closed after 100 days or longer with the status information
as Duplicate, Out of Date, Won’t Fix, Works for Me etc. Such behavior may cause loss of interest
among participating users for further involvement. A process need to defined so that as soon as a
defect is reported, members of development team should review it and if defect does not require
any code change, it should be closed immediately with appropriate resolution status. By reducing
Non-fix defect resolution age, overall resolution efficiency can be improved.

• It is found that all the defect types (Bugs, Feature Requests, Patches, Miscellaneous) are
dispersed among all the resolution age categories although proportion of bugs decrease with

Anu Gupta & R.K. Singla

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 121

increasing resolution age while others (Feature Requests, Patches, Miscellaneous) increase with
increasing resolution age. It is also observed that each defect type is showing an overall
increasing trend of pending age in all the selected projects. Ideally bugs should be resolved within
shorter period depending upon the criticality of the bugs; while feature requests, patch
submissions may be delayed till forthcoming releases/patches. Under miscellaneous category,
the resolution should be carried out based upon the type of request. Due to volunteer nature of
F/OSS participants, nobody can ensure that they will have enough time to respond to a defect
quickly. So spreading the load across several development team members may lead to more
reliability and to a shorter defect removal time.

• It has been found that in few F/OSS projects, the defect resolution status remains default (None)
rather than being updated with relevant resolution status (Fixed, Duplicate, Out of Date, Won’t
Fix, Works for Me, Invalid etc.) even after the defect is closed. Although such defects are closed
but the F/OSS users are not able to know exactly what actions have been taken on their reported
defects. Defect Management System should have the functionality which enforces the
development team to update the resolution status correctly while closing the defect.

• It has been found that in most of F/OSS projects, the F/OSS development team is not defining the
priority of each defect being reported, although Defect Management System has the functionality
to assign priority to reported defects. When a defect is reported, the priority is always set to
default value 5 i.e. Normal (1-Highest, 9-Lowest) which is generally not updated by Development
Team. Due to lack of prioritization of reported defects, the resolution of many critical defects may
be delayed. F/OSS project development team should clearly define the criterion to identify the
priority of each reported defect and make some of the team members responsible to assign the
priority as per the criteria.

6. PROPOSED PROCESS FOR DEFECT MANAGEMENT
Based on the suggestions mentioned in the previous section, a process is proposed as shown in
Figure 24, which can help to improve the effectiveness as well as efficiency of Defect Management.

FIGURE 24: Proposed Process Diagram

F/OSS Users

Quality

Assuran

ce Team

Support Level 1

Support Level 2

Communication with Users, Obtaining Feedbacks and

Conducting Periodically Surveys

Level

2

Defect Review, Reproduction, Prioritization, Assignment,
Monitoring and Escalation

Support Level 3

Code Change for Bug Fixing and Product Enhancements

F/OSS

Core

Team

Anu Gupta & R.K. Singla

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 122

It is proposed that support and maintenance activities should be distributed among various levels in
order to improve the effectiveness and efficiency in Defect Management. The roles and
responsibilities at these levels can be distributed as follows:

• Support Level 1: This level may comprise volunteer F/OSS users who may not have sufficient

technical skill set to help development team but are ready to participate in F/OSS development
process. This team should have responsibility to communicate with F/OSS users, obtain their
feedback and conduct surveys periodically to know the level of satisfaction regarding usage of
F/OSS Product and any issues that need to be addressed by development team.

• Support Level 2: This level may comprise volunteer F/OSS users cum developers who have

sufficient technical skill set to help development team. They should be assigned the responsibility
to review all the reported defects within stipulated period, make efforts to reproduce, collect
additional information if required, set priority based upon prior defined criterion and assign them to
team at level 3. They should keep on monitoring that no defect should remain pending for a long
period without any appropriate reason. If there is any long pending defect without any justified
reason, it should be escalated to Core Team for corrective measures. The members at this level
should also resolve the defects which does not require any code change and set their appropriate
status in the Defect Management System. They should also build knowledgebase comprising
frequently occurring defects related to installation, configuration etc. and enabling F/OSS users to
browse through easily.

• Support Level 3: This level may comprise volunteer F/OSS developers who have good technical

skill set and knowledge of source code of F/OSS project. This team will have the responsibility to
carry out necessary code changes to fix the defects as well to incorporate required feature
enhancements. Whenever a defect is assigned, they should resolve the defect with in reasonable
time frame. If some additional information is required about the defects, it should be obtained
through level 2 team. Many times some of the defects can not be resolved due to constraints like
software design, technology, resources, irreproducible etc. In all such cases, relevant information
should be communicated to users timely.

• Quality Assurance Team: This team should comprise F/OSS volunteers preferably having some

knowledge or experience in software quality assurance. They should have responsibility to
monitor the activities carried out at all levels e.g. responsiveness towards users, defect resolution
period, backlog of defects, code review etc. and should assure that quality is maintained at all the
levels. They should generate and analyze the statistics periodically and should escalate serious
concerns (if any) to core team.

• F/OSS Core Team: This team comprises the initiators and project leaders who have the overall

responsibility. They should control the overall direction of project, take corrective measures for
serious concerns and decide future strategy for forthcoming releases.

7. CONCLUSION
Defect Management Systems have been used to record and track defects for many years, but there is
little analysis of the recorded defect data. Analyzing the defect data is of substantial value since it
reveals how various variables connected to the defects change over time such as defect arrival rate,
defect removal rate, defect resolution period, handling of pending defects etc. An analysis of more
than 60,000 defect reports associated with 20 F/OSS projects reveals that many important insights
can be gained through the analysis of defect data that has been recorded over the years. The quality
of an F/OSS project can be improved a lot if defects are identified, reported and resolved in efficient
manner. Generally an F/OSS project is developed by a small team of core developers which is
surrounded by a community consisting of large number of globally distributed users. Not every F/OSS
user has the technical skills to take part in code review or to carry out development. However, these
users can contribute to the project by reporting bugs or by suggesting new features.

For effective Defect Management, the defect reports should be updated correctly and regularly. Also
for efficient defect management, the defects should be resolved and closed at the earliest and
consistently. During the analyses, it has been found that generally defect resolution is not performed
consistently. This results in declining defect removal rate and an ever increasing average age of
defect resolution. This problem needs to be addressed timely otherwise important user feedback is

Anu Gupta & R.K. Singla

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 123

not incorporated into the software and many opportunities of improving the software are lost. It is also
observed that defects get accumulated gradually and then additional efforts are put to resolve them
near the forthcoming software releases. An observation of the BMI reports also confirms that backlog
is increasing gradually but decreasing steeply. It is also found that a few defects remain pending for
fairly long period of time in the Defect Management System. They are neither resolved nor their status
is updated, if resolved. Such ignored defects keep on accumulating and result in increasing trend in
overall defect pending age. The inefficient defect resolution has serious effects in the long term if
effective countermeasures are not found. Moreover, as defects become older, reproducing them
becomes increasingly more complex because the software continuously changes. Finally, users will
perceive that their feedback does not have any impact and will stop providing valuable input. This
minimizes the benefits that F/OSS projects can draw from peer review and user involvement, which is
an important characteristic of F/OSS projects. A layered process is proposed where roles and
responsibilities are clearly defined and distributed among F/OSS participants. F/OSS projects may
use the proposed process which can help to improve the effectiveness and efficiency in Defect
Management and thus assure better quality of F/OSS Products.

ACKNOWLEDGMENTS
We are thankful to the University of Notre Dame for providing access to Sourceforge Research Data
Archive (SRDA) for retrieving data on F/OSS projects.

REFERENCES
1. Eric S. Raymond, "The Cathedral and the Bazaar", First Monday, 3(3), 1998.

2. Walt Scacchi, “Software Development Practices in Open Software Development

Communities: A Comparative Case Study”, Proceedings of 1st Workshop on Open Source
Software Engineering, May 2001, Toronto, Ontario, Canada.

3. Audris Mockus, Roy Fielding and James D. Herbsleb, “Two Case Studies of Open Source

Software Development: Apache and Mozilla” ACM Transactions on Software Engineering and
Methodology, 11(3): 309–346.

4. Dawid Weiss, “A Large Crawl and Quantitative Analysis Of Open Source Projects Hosted On

Sourceforge”, Research Report ra-001/05(2005), Institute of Computing Science, Pozna
University of Technology, Poland.

5. A. G. Koru and J. Tian, “Defect Handling in Medium and Large Open Source Projects”, IEEE

Software, 21(4):54-61, July 2004.

6. Daniel German and Audris Mockus, “ Automating the Measurement of Open Source
Projects”, Proceedings of the 3rd Workshop on Open Source Software Engineering,
International Conference on Software Engineering, May 2003, Portland, Oregon, USA.

7. Stefan Koch, “Effort Modeling and Programmer Participation in Open Source Software

Projects '', Information Economics and Policy, 20 (4): 345-355, 2008.

8. Ionic Stamelos, Lefteris Angelis, Apostolos Oikonomou and Georgios L. Bleris, “Code Quality
Analysis in Open Source Software Development”, Information Systems Journal, 12(1): 43:60,
2002.

9. “SourceForge”, http://sourceforge.net/

10. Yongqin Gao, Matthew Van Antwerp, Scott Christley and Greg Madey, "A Research
Collaboratory for Open Source Software Research", Proceedings of 29th International
Conference on Software Engineering + Workshops (ICSE-ICSE Workshops 2007),
International Workshop on Emerging Trends in FLOSS Research and Development (FLOSS
2007), May 2007, Minneapolis, Minnesota, USA.

Anu Gupta & R.K. Singla

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 124

11. Chiara Francalanci and Francesco Merlo, “Empirical Analysis of the Bug Fixing Process in
Open Source Projects”, Open Source Development, Communities and Quality, Springer
Boston, 275 :187-196, 2008.

12. Martin Michlmayr and Anthony Senyard, “A Statistical Analysis of Defects in Debian and

Strategies for Improving Quality in Free Software Projects”, The Economics of Open Source
Software Development, Elsevier B.V., 2006, pp 131–148.

13. Stephen H. Kan, “Metrics and Models in Software Quality Engineering”, Second Edition,

2003, Pearson Education.

Shelbi Joseph, Shouri P.V & Jagathy Raj V. P

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 125

A Simplified Model for Evaluating Software Reliability at the
Developmental Stage

Shelbi Joseph achayanshelbil@gmail.com
Division of Information Technology
School of Engineering
Cochin University of Science and Technology
Cochin, India

Shouri P.V pvshouri@gmail.com
Department of Mechanical Engineering
Model Engineering College
Cochin, India

Jagathy Raj V. P jagathy@cusat.ac.in
School of Management Studies,
Cochin University of Science and Technology
Cochin, India

Abstract

 The use of open source software is becoming more and more predominant and it is important
that the reliability of this software are evaluated. Even though a lot of researchers have tried
to establish the failure pattern of different packages a deterministic model for evaluating
reliability is not yet developed. The present work details a simplified model for evaluating the
reliability of the open source software based on the available failure data. The methodology
involves identifying a fixed number of packages at the start of the time and defining the failure
rate based on the failure data for these preset number of packages. The defined function of
the failure rate is used to arrive at the reliability model. The reliability values obtained using
the developed model are also compared with the exact reliability values.

Key words: Bugs, Failure Density, Failure Rate, Open Source Software, Reliability

1. INTRODUCTION
Open Source Software (OSS) has attracted significant attention in recent years [1]. It is being accepted as a
viable alternative to commercial software [2]. OSS in general refers to any software whose source code is freely
available for distribution [3]. However the OSS development approach is still not fully understood [4]. Reliability
estimation plays a vital role during the developmental phase of the open source software. In fact, once the
package has stabilized (or developed) then chances of further failure are relatively low and package will be more
or less reliable. However, during the developmental stage failures or bug arrival are more frequent and it is
important that a model has to be developed to evaluate the reliability during this period. The bug arrivals usually
peak at the code inspection phase and get rather stabilized in the system test phase [5]. Software reliability
evaluation is an increasingly important aspect of software development process [6].

Reliability can be defined as the probability of failure free operation of a computer program in a specified
environment for a specified period of time [4,5]. It is evident from the definition that there are four key elements
associated with the reliability namely element of probability, function of the product, environmental conditions,
and time.

Reliability is nothing but the probability of success. As success and failure are complementary, a measure of the
failure is essential to arrive at the reliability. That is,

Shelbi Joseph, Shouri P.V & Jagathy Raj V. P

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 126

 Reliability = Probability of success = 1- Probability of failure (1)

From equation (1), it is evident that the first step in reliability analysis is failure data analysis. This involves fixing
up a time interval and noting down the failures at different time intervals. The number of packages at the start of
the analysis is defined as the initial population and the survivors at any point of time is the difference of initial
population and the failures that have occurred till this point. Failure rate associated with a time interval can be
defined as the ratio of number of bugs reported during the

NOMENCLATURE

fd (t) failure density

N initial population

R(t) reliability

t time

Z(t) failure rate

λ constant failure rate

given time interval to the average population associated with the time interval. Once the variation of failure rate
with respect to time can be established an equation can be used to fit the variation which will be the failure
model for reliability estimation. Typical reliability models include Jelinski-Moranda [6], Littlewood [7] , Goel-
Okumoto [8], Nelson model [9], Mills model [10],Basin model [10],Halstead model [11] and Musa-Okumoto [4].
For software projects that have not been in operation long enough, the failure data collected may not be
sufficient to provide a decent picture of software quality, which may lead to anomalous reliability estimates [12,
13] Weibull function is also used for reliability analysis and the function has been particularly valuable for
situations for which the data samples are relatively small [14].

Concern about software reliability has been around for a long time [15,16] and as open source is a relatively
novel software development approach differing significantly from proprietary software waterfall model, we do not
yet have any mature or stable technique to assess open source software reliability [17].

It is clear from the above discussions that even though a variety of models are available for reliability prediction,
a deterministic model is presently not available. Or in other words, none of these models quantifies reliability.
The present work focuses on development of an algorithm and there by a simplified method of quantifying
reliability of a software.

2. MODEL DEVELOPMENT AND ALGORITHM
An open source program typically consists of multiple modules [18]. Attributes of the reliability models have been
usually defined with respect to time with four general ways to characterize [19, 20] reliability, time of failure, time
interval between failures, cumulative number of faults upto a period of time and failure found in a time interval.
The present methodology involves defining an equation for the pattern of failure based on the available bug
arrival rate and developing a generalized model for the reliability of the software. The following are the
assumptions involved in the analysis.

1. The software analyzed is an open source.

2. As the open source software is made up of a very large community the environmental changes are not

considered.

3. The total number of packages at the beginning of the analysis is assumed to remain constant and is

taken as the initial population.

4. The failures of various packages are assumed to be independent of each other.

5. The model is developed for evaluation of the software reliability at the developmental stage and the

packages that fail during this period are not further considered. It is further assumed that by the end of

Shelbi Joseph, Shouri P.V & Jagathy Raj V. P

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 127

developmental stage the bug associated with the failed packages would be eliminated and will be stable

further.

6. The reliability of the software is inversely proportional to the number of bugs reported at any point of

time.

7. The beginning of the time period after which the bug arrival or failure rate remains constant marks the

culmination of the developmental stage and the software will be stabilize.

Based on the above assumptions a 6- step algorithm is developed for the analysis as detailed below.

1. Indentify the total initial population. This corresponds to the total number of packages existing at the

beginning of the time period. That is, at the start of analysis.

2. Define a time period and find out the bugs reported during this time interval. As the failure would have

occurred anywhere between the time interval, the reported failures are indicated in between the time

interval.

3. Calculate the cumulative failures and thereby the survivors and different points in time.

4. Estimate the failure rate associated with the time intervals by dividing the number of failures associated

with the given unit time interval by average population associated with the time interval. Average

population associated with a given time interval is the average of survivors at the beginning and end of

the time period.

5. Plot the graphs defining the relation between failure rate and time and obtain the equation defining the

relation between failure rate and time.

6. Obtain the expression for reliability of the software by substituting the equation of failure rate in

equation(1) given as

∫−

=

t

dttZ

etR 0

)(

)((1)

3. RESULTS AND DISCUSSION

A total of 1880 packages were available at the start of the analysis as per the details available from the

official website of Debian [21]. This is taken as the initial population. A time interval of 1 month is fixed and

the bug arrival rate during this interval is noted. The reported errors at different time intervals are given in the

Table 1. The observations are taken for 1 year after which the bug arrival is negligible indicating that the

software has more or less stabilized.

TABLE 1: Failure Data Analysis

Shelbi Joseph, Shouri P.V & Jagathy Raj V. P

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 128

F(t) = - 0.0004 t + 0.078

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8 9 10

Time (months)

F
a

ilu
re

 r
a

te

FIGURE 1. Variation of failure rate with time

The variation of failure rate with respect to time is shown in Fig. 1. It can be seen that after the 8
th
 month

onwards the software has somewhat stabilized indicating the completion of developmental phase. The

failure model corresponding to the failure rate can be expressed by the equation (2)

 078.00004.0)(+−= ttZ (2)

The corresponding reliability can be expressed by the equation (3) as

dtt

t

etR
)078.00004.0(

0)(
∫ +−−

=

 That is,
t

t

etR
078.0

2

0004.0
2

)(
−

= (3)

Failure density associated with the time intervals is the ratio of number of failures associated with the given

unit time interval to the initial population. Failure density can be related with Reliability and failure rate using

the equation (4) as

)()()(tZtRtf
d

×= (4)

Therefore, based on the developed model failure density can be expressed as

)078.00004.0()(
078.0

2

0004.0
2

+−×=
−

tetf
t

t

d
 (5)

The reliability of the software at different points in time is calculated using the equation (3). The actual

values of reliability obtained by dividing the survivors at the given point in time by the initial population are

also calculated. The Musa model assumes a constant value for the failure rate and by considering this as

the average value of failure rates the reliability values are calculated using the equation

tetR λ−

=)((6)

Shelbi Joseph, Shouri P.V & Jagathy Raj V. P

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 129

The reliability values calculated using the three different methods and the failure density values are shown in

table 2.

TABLE2. Reliability and failure density

Fig. 2 shows a comparison of reliability obtained using the developed simplified model and Musa model with

the actual reliability values. It can be seen that the simplified model and the Musa model nearly provides the

same results. Further, these two models very closely approximate the real situation. The variation of failure

density with time is also shown in Fig. 3

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10

Time (months)

R
e

li
a

b
il
it
y

Reliability (Model)

Reliability (Actual)

Reliability (Musa)

FIGURE2. Comparison of reliability obtained using different models

Shelbi Joseph, Shouri P.V & Jagathy Raj V. P

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 130

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

1 2 3 4 5 6 7 8 9 10

Time (months)

F
a

ilu
re

 d
e

n
s

it
y

FIGURE 3. Variation of Failure density with time

Fig 4 compares the reliability value obtained using the model with the theoretical value. It can be seen that the

percentage error is always within 10% of the actual value which is a reasonably good result for all engineering problems.

-15

-10

-5

0

5

10

0 1 2 3 4 5 6 7 8 9 10

Time (months)

%
 E

rr
o
r

FIGURE 4. Error Analysis

4. CONCLUSION

A simplified model for evaluation of software reliability was presented. This is a relatively simplified and a

totally new method of analysis of software reliability as the initial population is assumed to remain constant.

The method provides fairly good results and the related errors are negligible. It is hoped that this model will

prove to be a powerful tool for software reliability analysis.

5. REFERENCES

1. Ying ZHOU,Joseph Davis. Open Source Software reliability model: an empirical approach, ACM 2005

2. Sharifah Mashita Syed-Mohamad,Tom McBride. A comparison of the Reliability Growth of Open Source

and In-House Software. 2008 IEEE 15th Asia-Pacific Software Engineering Conference

Shelbi Joseph, Shouri P.V & Jagathy Raj V. P

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 131

3. Cobra Rahmani,Harvey Siy, Azad Azadmanesh. An Experimental Analysis of Open Source Software
Reliability. Department of Defense/Air Force Office of Scientific Research

4. Lars M.Karg, Michael Grottke, Arne Beckhausa . Conformance Quality and Failure Costs in the Software

Industry: An Empirical Analysis of Open Source Software. 2009 IEEE

5. Kan H.S. Metrics and models in software quality engineering, 2nd edition, Addison-Wesley(2003)

6. S.P. Leblanc, P.A.Roman Reliability Estimation of Hierarchical Software Systems. 2002 Proceedings

annual reliability and maintainability symposium

7. J D Musa and K. Okumoto. A logarithamic Poisson execution time model for software reliability

measurement 7th international conference on Software Engineering(ICSE),1984, pp. 230-238

8. H. Pham, Software Reliability Spriner-Veriag , 2000

9. E.C. Nelson, A Stastistical Basis for Software Reliability Assessment, TRW-SS-73-03. 1973.

10. ShaoPing Wang, Software Engineering. BEIJING BUAA PRESS.

11. M.H.Halstead, Elements of Software Science, North Holand, 1977.

12. Z. Jelinski and P.B. Moranda, Software Reliability research, in Stastistical Computer Performance

Evaluation, W. Freiberger, Ed. New York: Academic Press, 1972, pp.465-484

13. B. Littlewood and J.L. Verrall, A Bayesian reliability growth model for computer software, Applied

Stastistics, Vol 22, 1973, pp 332-346

14. A. L. Goel and K. Okumoto, A time-dependent error-detection rate model for software reliability and

other performance measure, IEEE Transactions on Reliability, vol. R-28, 1979, pp. 206-211.

15. Adalberto Nobiato Crespo, Alberto Pasquini ,”Applying Code Coverage Approach to an Infinite Failure

Software Reliabilit Model” , 2009 XXIII Brazilian Symposium on Software Engineering, 2009 IEEE.

16. Hudson, A, “Program Error as a British and Death Process”, Technical Report SP- 3011, Santa Monica,

Cal,:Systems development Corporation, 1967.

17. Fenghong Zou , Joseph Davis “Analysing and Modeling Open Source Software Bug Report Data’, 19th

Australian Confeence on Software Engineering.,2008 IEEE.

18. Fenghong Zou , Joseph Davis “ A Model of Bug Dynamics for Open Source ”, The second International

Conference on Secure System Integration and Reliability Improvement., 2008 IEEE.

19. Sharifah Mashita Syed-Mohamad, Tom McBride, ‘Reliability Growth of Open Source Software using

Defect Analysis’, 2008 International conference on Computer Science and Software Engineering, 2008
IEEE.

20. Musa, J.D., Iannino, A. and Okumoto, K. (1987),”Software Reliability: Measurement, Prediction,

Application’, pp. 621.

21. http://www.debian.orgs

CALL FOR PAPERS

Journal: International Journal of Software Engineering (IJSE)

Volume: 2 Issue: 1
ISSN: 2180-1320

URL: http://www.cscjournals.org/csc/description.php?JCode=IJSE

About IJSE

The International Journal of Software Engineering (IJSE) provides a

forum for software engineering research that publish empirical results
relevant to both researchers and practitioners. IJSE encourage researchers,

practitioners, and developers to submit research papers reporting original

research results, technology trend surveys reviewing an area of research in
software engineering and knowledge engineering, survey articles surveying a

broad area in software engineering and knowledge engineering, tool reviews

and book reviews. The general topics covered by IJSE usually involve the

study on collection and analysis of data and experience that can be used to
characterize, evaluate and reveal relationships between software

development deliverables, practices, and technologies. IJSE is a refereed

journal that promotes the publication of industry-relevant research, to
address the significant gap between research and practice.

IJSE List of Topics

The realm of International Journal of Computer Networks (IJSE) extends, but

not limited, to the following:

• Ambiguity in Software

Development

• Application of Object-Oriented

Technology to Engin

• Architecting an OO System for
Size Clarity Reuse E

• Composition and Extension

• Computer-Based Engineering

Techniques

• Data Modeling Techniques

• History of Software Engineering • IDEF

• Impact of CASE on Software

Development Life Cycle

• Intellectual Property

• Iterative Model • Knowledge Engineering
Methods and Practices

• Licensing • Modeling Languages

• Object-Oriented Systems • Project Management
• Quality Management • Rational Unified Processing

• SDLC • Software Components

• Software Deployment

• Software Design and
applications in Various Domain

• Software Engineering • Software Engineering

Demographics Economics

• Software Engineering Methods
and Practices

• Software Engineering
Professionalism

• Software Ergonomics • Software Maintenance and

Evaluation

• Structured Analysis • Structuring (Large) OO
Systems

• Systems Engineering • Test Driven Development

• UML

Important Dates

Volume: 2

Issue: 1
Paper Submission: January 31, 2011
Author Notification: March 01, 2011
Issue Publication: March / April 2011

CALL FOR EDITORS/REVIEWERS

CSC Journals is in process of appointing Editorial Board Members for

International Journal of Software Engineering (IJSE). CSC
Journals would like to invite interested candidates to join IJSE network

of professionals/researchers for the positions of Editor-in-Chief,

Associate Editor-in-Chief, Editorial Board Members and Reviewers.

The invitation encourages interested professionals to contribute into

CSC research network by joining as a part of editorial board members
and reviewers for scientific peer-reviewed journals. All journals use an

online, electronic submission process. The Editor is responsible for the

timely and substantive output of the journal, including the solicitation

of manuscripts, supervision of the peer review process and the final
selection of articles for publication. Responsibilities also include

implementing the journal’s editorial policies, maintaining high

professional standards for published content, ensuring the integrity of

the journal, guiding manuscripts through the review process,
overseeing revisions, and planning special issues along with the

editorial team.

A complete list of journals can be found at
http://www.cscjournals.org/csc/byjournal.php. Interested candidates

may apply for the following positions through

http://www.cscjournals.org/csc/login.php.

Please remember that it is through the effort of volunteers such as
yourself that CSC Journals continues to grow and flourish. Your help

with reviewing the issues written by prospective authors would be very

much appreciated.

Feel free to contact us at coordinator@cscjournals.org if you have any

queries.

Contact Information

Computer Science Journals Sdn BhD

M-3-19, Plaza Damas Sri Hartamas

50480, Kuala Lumpur MALAYSIA

Phone: +603 6207 1607

 +603 2782 6991

Fax: +603 6207 1697

BRANCH OFFICE 1

Suite 5.04 Level 5, 365 Little Collins Street,

MELBOURNE 3000, Victoria, AUSTRALIA

Fax: +613 8677 1132

BRANCH OFFICE 2
Office no. 8, Saad Arcad, DHA Main Bulevard

Lahore, PAKISTAN

EMAIL SUPPORT

Head CSC Press: coordinator@cscjournals.org
CSC Press: cscpress@cscjournals.org

Info: info@cscjournals.org

