

INTERNATIONAL JOURNAL OF DATA
ENGINEERING (IJDE)

VOLUME 6, ISSUE 2, 2015

EDITED BY

DR. NABEEL TAHIR

ISSN (Online): 2180-1274

International Journal of Data Engineering is published both in traditional paper form and in

Internet. This journal is published at the website http://www.cscjournals.org, maintained by

Computer Science Journals (CSC Journals), Malaysia.

IJDE Journal is a part of CSC Publishers

Computer Science Journals

http://www.cscjournals.org

INTERNATIONAL JOURNAL OF DATA ENGINEERING (IJDE)

Book: Volume 6, Issue 2, July / August 2015

Publishing Date: 31-08-2015

ISSN (Online): 2180-1274

This work is subjected to copyright. All rights are reserved whether the whole or

part of the material is concerned, specifically the rights of translation, reprinting,

re-use of illusions, recitation, broadcasting, reproduction on microfilms or in any

other way, and storage in data banks. Duplication of this publication of parts

thereof is permitted only under the provision of the copyright law 1965, in its

current version, and permission of use must always be obtained from CSC

Publishers.

IJDE Journal is a part of CSC Publishers

http://www.cscjournals.org

© IJDE Journal

Published in Malaysia

Typesetting: Camera-ready by author, data conversation by CSC Publishing Services – CSC Journals,

Malaysia

CSC Publishers, 2015

EDITORIAL PREFACE

This is Second Issue of Volume Six of the International Journal of Data Engineering (IJDE). IJDE
is an International refereed journal for publication of current research in Data Engineering
technologies. IJDE publishes research papers dealing primarily with the technological aspects of
Data Engineering in new and emerging technologies. Publications of IJDE are beneficial for
researchers, academics, scholars, advanced students, practitioners, and those seeking an
update on current experience, state of the art research theories and future prospects in relation to
computer science in general but specific to computer security studies. Some important topics
cover by IJDE is Annotation and Data Curation, Data Engineering, Data Mining and Knowledge
Discovery, Query Processing in Databases and Semantic Web etc.

The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal.
Started with Volume 6, 2015, IJDE appear with more focused issues. Besides normal
publications, IJDE intend to organized special issues on more focused topics. Each special issue
will have a designated editor (editors) – either member of the editorial board or another
recognized specialist in the respective field.

This journal publishes new dissertations and state of the art research to target its readership that
not only includes researchers, industrialists and scientist but also advanced students and
practitioners. The aim of IJDE is to publish research which is not only technically proficient, but
contains innovation or information for our international readers. In order to position IJDE as one of
the top International journal in Data Engineering, a group of highly valuable and senior
International scholars are serving its Editorial Board who ensures that each issue must publish
qualitative research articles from International research communities relevant to Data Engineering
fields.

IJDE editors understand that how much it is important for authors and researchers to have their
work published with a minimum delay after submission of their papers. They also strongly believe
that the direct communication between the editors and authors are important for the welfare,
quality and wellbeing of the Journal and its readers. Therefore, all activities from paper
submission to paper publication are controlled through electronic systems that include electronic
submission, editorial panel and review system that ensures rapid decision with least delays in the
publication processes.

To build its international reputation, we are disseminating the publication information through
Google Books, Google Scholar, Directory of Open Access Journals (DOAJ), Open J Gate,
ScientificCommons, Docstoc and many more. Our International Editors are working on
establishing ISI listing and a good impact factor for IJDE. We would like to remind you that the
success of our journal depends directly on the number of quality articles submitted for review.
Accordingly, we would like to request your participation by submitting quality manuscripts for
review and encouraging your colleagues to submit quality manuscripts for review. One of the
great benefits we can provide to our prospective authors is the mentoring nature of our review
process. IJDE provides authors with high quality, helpful reviews that are shaped to assist
authors in improving their manuscripts..

Editorial Board Members
International Journal of Data Engineering (IJDE)

EDITORIAL BOARD

EDITORIAL BOARD MEMBERS (EBMs)

Dr. Zaher Al Aghbari
University of Sharjah
United Arab Emirates

Assistant Professor. Mohamed Mokbel
University of Minnesota
United States of America

Associate Professor Ibrahim Kamel
University of Sharjah
United Arab Emirates

Dr. Mohamed H. Ali
StreamInsight Group at Microsoft
United States of America

Dr. Xiaopeng Xiong
Chongqing A-Media Communication Tech Co. LTD
China

Assistant Professor. Yasin N. Silva
Arizona State University
United States of America

Associate Professor Mourad Ouzzani
Purdue University
United States of America

Associate Professor Ihab F. Ilyas
University of Waterloo
Canada

Dr. Mohamed Y. Eltabakh
IBM Almaden Research Center
United States of America

Professor Hakan Ferhatosmanoglu

Ohio State University
Turkey

Assistant Professor. Babu Shivnath
Duke University
United States of America

Dr. Andrey Balmin
IBM Almaden Research Center
United States of America

Dr. Rishi R. Sinha
Microsoft Corporation
United States of America

Dr. Qiong Luo
Hong Kong University of Science and Technology
China

Dr. Thanaa M. Ghanem
University of St. Thomas
United States of America

Dr. Ravi Ramamurthy
Microsoft Research
United States of America

Dr. David DeHaan
Sybase
Canada

Dr. Theodore Dalamagas
IMIS, Athens
Greece

Dr Moustafa Hammad
Google, Inc.
United States of America

International Journal of Data Engineering (IJDE), Volume (6), Issue (2) : 2015

TABLE OF CONTENTS

Volume 6, Issue 2, July / August 2015

Pages

9 - 22 Catalog-based Conversion from Relational Database into XML Schema (XSD)

Husam Ahmed Al Hamad

Husam Ahmed Al Hamad

International Journal of Date Engineering (IJDE), Volume (6) : Issue (2) : 2015 9

Catalog-based Conversion from Relational Database
into XML Schema (XSD)

Husam Ahmed Al Hamad
1, 2

 hhamad@qu.edu.sa, hushamad@yahoo.com
1
Department of Information Technology,

College of Computer, Qassim University,
Qassim, Saudi Arabia
2
Mobile Computing Department,

Computer Science and Informatics College, Amman Arab University,
Amman, Jordan

Abstract

Where we are in the age of information revolution, exchange information, and transport data
effectively among various sectors of government, commercial, service and industrial, etc., the
uses of a new databases model to support this trend has become very important because inability
of traditional databases models to support it. eXtensible Markup Language (XML) considers a
new standard model for data interchange through internet and mobiles devices networks, it has
become a common language to exchange and share the data of traditional models in easy and
inexpensive ways. In this research, we propose a new technique to convert the relational
database contents and schema into XML schema (XSD- XML Schema Definition), the main idea
of the technique is extracting relational database catalog using Structured Query Language
(SQL). We follow three steps to complete the conversion process. First, extracting relation
instance (actual content) and schema catalog using SQL query language, which consider the
required information to implement XML document and its schema. Second, transform the actual
content into XML document tree. The idea of this step is converting table columns of the relations
(tables) into the elements of XML document. Third, transform schema catalog into XML schema
for describing the structure of the XML document. To do so, we transform datatype of the
elements and the variant data constrains such as data length, not null, check and default,
moreover define primary foreign keys and the referential integrity between the tables. Overall
results of the technique are very promise while the technique is very clear and does not require
complex procedures that could adversely effect on the results accuracy. We performed many
experiments and report their elapsed CPU times.

Keywords: Conversion Relational Schema into XML Schema, Transformation Schema, XSD
Schema, XML Schema.

1. INTRODUCTION
XML is one such innovative usage of relational database prompted by increasing the usage of
organizations database applications and its related need of managing frequent storage and
retrieval of not-very structured data in document format. XML database becomes an important
database structure in presenting storing, and exchanging data through internet and mobile
systems. It makes the message self-documenting by presenting of the elements.

A schema does not need expert to understand the meaning of the text. The format of XML
document is not rigid; easily we can add an additional information using the elements. In addition,
we can ignore any information or element. In other words, the ability to recognize and ignore
unexpected elements allows the format of the data to evolve over time, without invalidating
existing applications. Similarly, the ability to have multiple occurrences of the same element
makes it easy to represent multivalued attributes. Likewise, XML allows nested structures, and a

Husam Ahmed Al Hamad

International Journal of Date Engineering (IJDE), Volume (6) : Issue (2) : 2015 10

wide variety of tools are available to assist in XML processing, including programming language
to create and to read XML data, browser software, and database tools [1].

XML is designed to describe data using tags (elements) with focus on what data is, by store it in
plain text format, this makes it much easier to share data between different applications and read
by different incompatible applications. XML allows expressing information in ways that match
better for business. XML allows us to model information systems in natural and intuitive way. It
brings a number of powerful capabilities to information modeling such as heterogeneity,
extensibility, and flexibility. For these reasons, XML becomes a standard data format widely used
in these organizations and a common language for data transmission over the internet.
Numerous of languages such as Document Type Definition (DTD) is also used for restructuring
the XML documents [2, 3]. Many papers used and focused on DTD or XML tree to expand the
elements, attributes and data by extend the notion of Functional Dependency (FD) and compare
the values of leaf nodes in a specified context of its corresponding XML tree to form an integrated
XML tree [3]. eXtensible Stylesheet Language Transformations (XSLT) can be used for creating a
mediate architecture of XML schemas [4, 5] as well.

This research develops a technique to convert a relational database schema catalog into XML
schema (XSD) database. The catalog of relational schema contains schema structure of the
database such as tables name, relationship, keys, constraints, etc. We use SQL for extracting the
database schema catalog and relation instance (the actual content of the database at a particular
point in time). We propose extracting relational schema catalog for representing the conceptual
schema of XML model, this style considers simple and contains the required schema data and
content. In our approach, after extracting actual content and schema catalog, we transform actual
content into XML document tree to represent the elements values, we also transform catalog
schema into XML schema document tree (XSD) to represent the schema design and constraints;
Figure 1 illustrates the architecture of converting a relational database into an XML document.

FIGURE 1: Architecture of converting a relational database into an XML document.

Database catalog contains the relations names (tables names), attributes names (table columns
names), and constraints of the database schema such as data type, primary and foreign keys,
referential integrity, check, default, etc. Relation instance contains actual content of each table
columns names. We transform the extracted information into two documents XML document tree
and XML schema document tree. We use three SQL view queries statements to extract the
required information of the catalog. We transform table name, table columns names, and actual
content of all tables into XML document tree, XML document contains elements, sub-elements,
and attributes if needed, we mapped table name as root element of the document, mapped table
columns names as elements of the document, and finally mapped the actual content as values of

Relational
Database and

Schema

Data
Catalog
Query

Relations
Instance

(Actual Content)

XML
Document

Tree

Trans-
formation

XML Schema
(XSD

Document
Tree)

Relational
Schema

(datatype, keys,
constraints,…)

� Column Name
� Actual Content
� Constrains:
� Datatype
� Data length
� Not null
� Check
� Default
� Primary Key
� Foreign Key
� Referential

integrity

SQL View

Queries

Husam Ahmed Al Hamad

International Journal of Date Engineering (IJDE), Volume (6) : Issue (2) : 2015 11

the document elements. Likewise, we transform the data type, primary and foreign keys,
referential integrity, check, default and the other restrictions and constraints of the relational
schema catalog into XSD document tree, we used the variant XSD elements to represent the
restrictions and constraints of the relational schema, as we will see later.

2. RELATED WORKS

XML data is self-describing, where XML tags describe the data itself, it is suitable for interpreting
the data and programing. This means that a program receiving an XML document can interpret it
in multiple way, filter the document based upon its content and restructure it to suit the
application’s needs [6]. Ye Feng et al. [7] maps XML-DTD to Relational Schema by using
Absolute Data Group (ADG) technique, then optimize the ADG convert it to relational schema.
Chunyan Wang et al. [8] addresses both catalog-based and legacy relational databases; it uses
catalog for applying the reverse engineering approach to extract the ER (Extended Entity
Relationship) model from legacy relational databases. Then, the technique converts the ER to
XML schema. Teng Lv et al. [9] converts schema from relational schemas to XML-DTDs and
preserve the semantics implied by functional dependencies and keys of relational schemas.

Yan-Feng Zhang et al. [10] converts XML Schema to UML diagram, the integration process
includes three steps: clustering of concepts, unification of concepts, restructuring of relationships,
and provided a global conceptual model for users. Tzvetkov et al. [11] connects XML with
relational databases and converted data both ways -from XML-schema to relational database
schema and from relational database schema to XML-schema. Sungchul Hong et al. [12]
converts XML to relational data model and relational data model to XML, they used a virtual
collaboration system to store the in a single XML file. Ye Feng [13] converts XML-DTD to
Relational Schema, the algorithm accesses elements, attributes, and relationship of elements, it
creates the DTD graph to express the elements, attributes and semantic constraints of XML DTD,
then optimizes the DTD graph, and converts DTD to relational schema.

Fong [14] uses XML-based technique for integration between relational schema and XML
schema. The technique consists four different types: (1) functional dependency; (2) multi-valued
dependency; (3) join dependency; and (4) M: N cardinality. Fong [15] translates a relational
schema to an XML schema, the mechanism applies the Indirect Schema Translation Method for
translating Extended Entity Relationship (EER) to an XML Schema (XSD) Graph. Then mapping
XSD Graph into the XSD as an XML logical schema. VXMLR [16] is a visual based XML
document management system, it is parses XML document into a DOM tree and extracts the
DTD of the document then map the document tree into a relational table.

3. TECHNIQUE DETAILS
An XML Schema (XSD) describes the structure of an XML document. We choose XSD because it
is much more powerful than DTDs. XML Schema is extensible, because it is written in XML
format. It describes relationship among elements and data type of each element. It defines
structure and content as well as semantics that can be described in an XSD document.

The proposed method in this research introduces a new technique for converting a relational
database catalog into XML database and XML schema. The first step extracts relation instance
and schema catalog of the database, relation instance contains the actual content of the relations
while schema catalog contains all features and components of relational database schema such
as table columns, datatype, keys, constraints, etc.,. In this process, we use SQL query language
to extract the required information. The second step maps relation instance of the database into
XML document tree and determines the table columns. The third step maps schema catalog into
XSD document and define the datatype, keys, references and all other constraints.

For clarifying the idea, we use a simple Registration Application database. In this application, a
student register several courses via register, and a course registered by one or several students
via register. In addition, a semester contains several courses via register, and a course offered in

Husam Ahmed Al Hamad

International Journal of Date Engineering

one or several semesters via
registration application example
relation. The following processes are outlines of the research methodology.

FIGURE 2: Database

FIGURE 3

The three major steps transform the actual
into XML and XML schema (XSD)

Student Relation

StdNo Lastname

S0001 Marwan

S0201 Mosa

S0211 Alnasser

S0421 Mohammad

S0711 Alsaleh

Course Relation

CourseID CourseTitle

CSC152 C Programming

CSC153

Object Oriented

Programming

IT125 Database

IT224 Java Programming

IT326 Data Mining

Semester Relation

SemesterID

SM01

SM02

SM03

SM04

Register Relation

StdNo CourseID

S0001 CSC152

S0001 IT125

S0201 CSC153

S0201 IT125

S0201 IT224

S0211 CSC153

S0421 IT125

S0421 IT224

S0711 CSC152

S0711 CSC152

Date Engineering (IJDE), Volume (6) : Issue (2) : 2015

via register relation. Figure 2 illustrates database schema
example. Figure 3 illustrates the relation instance (actual content

The following processes are outlines of the research methodology.

Database schema of a simple Registration Application.

3: Relation instance (actual content) of all tables.

The three major steps transform the actual content and database schema of relational database
(XSD) document are:

Student Relation

Lastname Givenname Dept

Marwan Khaled CS

 Ahmad Majd IT

Alnasser Ameen CS

Mohammad Omar Riyadh IT

Alsaleh AbdulazizSaleh CS

Relation

CourseTitle Cost Credits

C Programming 8200.5 4

Object Oriented

Programming 8480 4

Database 6435.5 4

Java Programming 7680 3

Data Mining 5340 3

Semester Relation

SemesterCode Year

1 2012

2 2012

1 2013

2 2013

Register Relation

CourseID SemesterID Grade Mark

CSC152 SM02 A 92

IT125 SM01 A+ 96

CSC153 SM01 NULL NULL

IT125 SM02 B+ 87

IT224 SM01 A 92

CSC153 SM01 NULL NULL

IT125 SM02 B 84

IT224 SM02 F 57

CSC152 SM01 F 55

CSC152 SM03 C+ 77

12

schema of the
content) of each

and database schema of relational database

Husam Ahmed Al Hamad

International Journal of Date Engineering (IJDE), Volume (6) : Issue (2) : 2015 13

Step 1: Extracting Schema Catalog and Relation Instance
In general, data structures format of relational schema is different from XML and XSD documents,
XML and XSD represent hierarchical tree structure; their implementation is based on root
elements. The sub-elements under the root must be relevant to the root element. XML root
element represents the table's name of relational schema; XML sub-elements represent the table
columns of the relational schema. Two phases for extracting the required information. First,
extracting actual content that contains table's name and domains of the table columns, which
represent elements and attributes in an XML document. Second, extracting schema catalog that
contains table's constraints such as primary and foreign keys, cardinality constraint, datatype
name, length, check, and other constraints, these constraints will transform and included into
XML schema.

Different SQL query statements return information of instance (actual data) and schema
(database catalog). For example, we use a simple SQL statement to extract the actual content of
the tables "select * from table_name". Likewise, in SQL Server, we use SQL view query

statement "INFORMATION_SCHEMA.COLUMNS" to extract tables' names, tables' columns names,
datatype, null constraint, and maximum length, Table 1 illustrates the output of this view for the
"Registration Application" database.

TABLE_NAME COLUMN_NAME DATA_TYPE IS_NULL-ABLE CHAR-ACTER_MAX-IMUM_LENGTH

Student StdNo char NO 5

Student Lastname varchar NO 25

Student Givenname varchar NO 50

Student Dept char YES 4

Course CourseID char NO 8

Course CourseTitle varchar NO 50

Course Cost decimal YES NULL

Course Credits int YES NULL

Semester SemesterID char NO 5

Semester SemesterCode int YES NULL

Semester Year int YES NULL

Register StdNo char NO 5

Register CourseID char NO 8

Register SemesterID char NO 5

Register Grade char YES 2

Register Mark decimal YES NULL

TABLE 1: Output of the view for the "Registration Application"

"INFORMATION_SCHEMA.COLUMNS".

In addition, we use SQL views statement "information_schema.TABLE_CONSTRAINTS",

"INFORMATION_SCHEMA.KEY_COLUMN_USAGE", and "sp_fkeys table" to extract the relationship
between the tables, the relationships contain Primary and Foreign keys of each table, as well as
Check and Unique constrains and their details. Table 2 illustrates the output of the views
"information..CONSTRAINTS", Table 3 illustrates the output of foreign key constraint "sp_fkeys"
for the "Registration Application" database.

TABLE NAME CONSTRAINT_TYPE COLUMN_NAME CONSTRAINT_Details

Student PRIMARY KEY StdNo

Course PRIMARY KEY CourseID

Course UNIQUE CourseTitle

Course CHECK Cost cost>=0

Course CHECK Credits
Credits between 0 and 200)

Default 2

Semester PRIMARY KEY SemesterID

Semester CHECK SemesterCode SemesterCode between 1 and 4

Semester CHECK Year Year between 2000 and 9999

Register PRIMARY KEY StdNo, CourseID,

Husam Ahmed Al Hamad

International Journal of Date Engineering (IJDE), Volume (6) : Issue (2) : 2015 14

TABLE NAME CONSTRAINT_TYPE COLUMN_NAME CONSTRAINT_Details

SemesterID

Register FOREIGN KEY StdNo

Register FOREIGN KEY CourseID

Register FOREIGN KEY SemesterID

Register CHECK Mark Mark between 0.00 and 100.00

TABLE 2: Output of the views "information..CONSTRAINTS".

PKTABLE_NAME PKCOLUMN_NAME FKTABLE_NAME FKCOLUMN_NAME

Student StdNo Register StdNo

Course CourseID Register CourseID

Semester SemesterID Register SemesterID

TABLE 3: Output of the view "sp_fkeys".

Step 2: Mapping Relation Instance into XML document
Structure of XML document contains a root element, elements and attributers; root element
represents "the parent" of all other elements, the elements in the XML document form a
document tree. The tree starts at the root and branches to the lowest level of the tree. All
elements can have sub-elements (child elements). All elements can have text content and
attributes. In order to create a XML document tree including the extracted information of the first
step, we should identify the root element, branches elements, and their attributes.

We transform the actual content of the relational schema into XML document tree, which process
by mapping the table name with root element of the XML document, and defining XML
namespace, schema namespace, and location of the schema. Thereafter, we transform all
columns of the table into branches elements of the XML document tree, as well as the actual
content of each branch element. Thus, XML document contains only elements names and their
actual content without consider any constraint, keys, datatype, or references, which will be
defined in the XSD schema.

For more clarification, we transform "Student" table to illustrate mapping of root element of the
XML document. We convert columns names of the table to illustrate mapping of branch element
of the XML document.

List 1 shows transformation of "Student" table into XML document root. List 2 shows transform of

"Register" table into XML document root that contains a composite primary key. Likewise, we

transform other tables "Course", "Semester".

LIST 1: Transform "Student" table into XML tree.

<?xml version="1.0"?>

<Student

xmlns="http://www.w3schools.com"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.qu.eud.com student.xsd ">

 <tuple>

 <StdNo>S0001</StdNo>

 <Lastname>Marwan</Lastname>

 <Givenname>Khaled</Givenname>

 <Dept>CS</Dept>

 </tuple>

 <tuple>

 <StdNo>S0201</StdNo>

 <Lastname>Mosa</Lastname>

 <Givenname>Ahmad Majd</Givenname>

 <Dept>IT</Dept>

Husam Ahmed Al Hamad

International Journal of Date Engineering (IJDE), Volume (6) : Issue (2) : 2015 15

 </tuple>

...

</Student>

LIST 2: Transform "Register" table into XML tree.

<?xml version="1.0"?>

<Register

xmlns="http://www.w3schools.com"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.qu.eud.com register.xsd ">

 <tuple>

 <StdNo>S0001</StdNo>

 <CourseID>CSC152</CourseID>

 <SemesterID>SM02</SemesterID>

 <Grade>A</Grade>

 <Mark>92</Mark>

 </tuple>

 <tuple>

 <StdNo>S0001</StdNo>

 <CourseID>IT125</CourseID>

 <SemesterID>SM01</SemesterID>

 <Grade>A+</Grade>

 <Mark>96</Mark>

 </tuple>

...

</Register>

Step 3: Mapping Schema Catalog into XML Schema (XSD) Document
We integrate constraints and restrictions of the relational schema database source into the XML
schema tree; we transform schema catalog that contains the constraints of the relational schema
into XSD document hierarchical tree. When XML document parser reads XSD document, it
creates a document object first, and then complete the whole XML document from this point.
Using XSD, the technique transforms every element node not only the structure of roots and
branches relationship, but also their actuarial values as well.

We represent the tables in XML Schemas by complex elements, and the table columns as sub-
elements. Each table owns several keys such as primary, foreign and composite keys. In XML
document, each key specifies as element (tag), where the keys used in XML query such as
XPath or XQuery to specify a node of the element. The name of the table is equal to the name of
the root element. The names of the table columns are equal to the names of the sub-elements
and attributes that make up the complex element. For example, XML schema in List 3 could
represent a table named "Student". The elements "StdNo" to "Dept" represent the table columns

that make up the table. "StdNo" column is defined as a primary key; we use <sequence> indicator

to specify the child elements must appear in a specific order. Conversely, <all> indicator
specifies the child elements can appear in any order, which is not used for updating issues. In the
same example, we use the sub-element tag <xs:element name="StdNo"/> to define the column

name "StdNo", then add the sub-element tag <xs:simpleType> to define the restrictions of the

table column, the "simpleType" element specifies the constraints and information about the
values of attributes or text-only elements. List 3 to List 6 contain the complete mapping of the
relational schema "Registration Application" database for the tables "Student", "Course",

"Semester", and "Register". For more clarification of XML schema document mapping, we split
up the schema transformation into three parts as below.

1. Transform Datatype of The Elements and Attributes:
XML Schema supports many data types such as string, decimal, integer, Boolean, date, time, etc.
For Example, the attribute type "string" refers to a simple type that is built-in to all XML
Schemas. Each element or attribute of XML document has a data type defined as mentioned
before by the XML schema, data type considers restrictions on the element's or attribute's
content. Fox example, in "Student" table, "StdNo" data type must be "string", we use "base"

attribute in "restriction" element to represent the datatype in the XML schema by add the sub-

Husam Ahmed Al Hamad

International Journal of Date Engineering (IJDE), Volume (6) : Issue (2) : 2015 16

element tag restriction <xs:restriction base="xs:string"> branch of <xs:simpleType>,

which is branch of <xs:element name="StdNo"/>. For example, if the element type is "xs:date"
and the content a string like "Java Programming", the element will not validate. XML schemas
allow to add an own restrictions for the elements and attributes.

2. Transform the Constraints: data length, not null, check and default:
We define different restrictions in XML schema to represent null, length values, and check
constraints. In the extracted catalog of the relational schema.

If the column has an exact length, this length should not less than or greater than a specific
amount. In this case, we use "length" element restriction to limit the exact length constraint of

the element in XSD schema. For example, in "Student" table, "StdNo" column value must be

exactly eight characters, we use "value" attribute in "length" restriction element to represent this

constraint in XML schema, we add the sub-element tag restriction <xs:length value="5"/> as

a branch of <xs:restriction base="xs:string">.

If there are minimum and/or maximum characters of the column domain. In this case, we use
"minLength" and "maxLength" elements restrictions to define min and max lengths of the element

in XSD schema. For example, in "Student" table, "Lastname" column value must be less than 25

characters, we use "value" attribute in "maxlength" restriction element to represent this

constraint, we add the sub-element tag restriction <xs:maxLength value="25"/> as a branch of

<xs:restriction base="xs:string">.

If the column domain is not null, such as primary key of the tables or any column defined as
required in the relational schema. In this case, we use "use" element restriction in XSD schema.

For example, in "Student" table, all of "StdNo", "Lastname" and "Givenname" columns must not

null, we use "value" attribute in "use" element restriction to make the element is required (not

null), we add the sub-element tag restriction <xs:use value="required"/> as a branch of

<xs:restriction base="xs:string">.

In XSD schema, there are another method to define null value, the method uses "minOccurs"

element restriction to mention that the column should not be null (required). "minOccurs" element
restriction specifies the minimum number of times an element can occur, whereas the elements
with the "minOccurs="0"" means each element cad appear zero (null) or one time. Anyway, we

do not use this method because it is more complex than using "use" element restriction.

If there are other constraints in relational schema that use Check clause in the SQL, such as, the
value of the column should equal, less than or greater than something. In this case, we use
"minInclusive" and "maxInclusive" elements restrictions in XSD schema. For example, in

"Course" table, "Credits" column should between 0 and 20 (greater than or equal 0), we use

"value" attribute in "minInclusive" and "maxInclusive" elements restrictions to define this

restriction, we add the sub-elements tag restrictions <xs:minInclusive value="0"/> and

<xs:maxInclusive value="200"/> as a branch of <xs:restriction base="xs:integer">.

If the column domain contains a "default" value constraint with any amount, such as, the default

value of the column is two. In this case, we use "default" element restriction in XSD schema.

For example, in "Course" table, the default value of "Credits" column is 2, we use "value"

attribute in "default" element restriction to define this restriction, we add the sub-elements tag

restrictions <xs: default value="2"/> as a branch of <xs:restriction

base="xs:integer">.

3. Transform primary key, foreign key and unique
In the process, as mentioned before, relational schema catalog recovers key constraints in the
relational schema database. In this respect, we identify the primary key, composite key and

Husam Ahmed Al Hamad

International Journal of Date Engineering (IJDE), Volume (6) : Issue (2) : 2015 17

foreign key of each table in the database and classify their referential integrity in terms of data
constraints. Transform key constraints of the XML schema tree is very important while it allows
better inquiry through XML documents.

We define primary keys for each table using "key" element, the key in XSD schema is allows

unique, non-nullable, "name" attribute specifies the unique name of the key in the schema, we can

specify an optional XSD attribute "PrimaryKey" for more declaration. For example, in "Student"

table, "StdNo" column is the primary key of the table, we use "key" element to define the key of

the table, and add "name" attribute to specify the name of that key in the schema <xs:key

name="StudentPK" PrimaryKey="true">. We also use "XPath" attribute in "selector" sub-
element to specify an Xpath expression selects reference of the key that belong to (the parent),
the full element tag is <xs:selector xpath=".//Student"/>. We also use "XPath" attribute in

"field" sub-element to specify an Xpath expression determines the table column that the key

belong to, the full element tag is <xs:field xpath="StdNo"/>

The same idea for the composite primary key, the difference in this case is add "field" sub-

element in the same number of column the composite attribute. For example, In "Register"

table, the composite primary key is splitting up to three columns "StdNo", "CourseID", and

"SemesterID". We define the "key" element <xs:key name="RegisterPK"

PrimaryKey="true"> and the reference of the key using <xs:selector

xpath=".//Register"/>. We add three "field" sub-element with their attributes "xpath" to

determine the primary key, for "StdNo" the sub-element is <xs:field xpath="StdNo"/>, for

"CourseID" the sub-element is <xs:field xpath="CourseID"/>, for "SemesterID" the sub-

element is <xs:field xpath="SemesterID"/>. The three elements should specify the same
parent before enforcing the composite primary key.

In the some way, we specify the unique constraints, unique can allow null values, whereas
primary key constraints do not allow null values. For example, in "Course" table, "CourseTitle"

column is unique column, we use "unique" element to specify the unique constraint, we add

"name" attribute to specify the name of unique element in the schema <xs:unique

name="CourseUnique">. We also use "XPath" attribute in "selector" sub-element to specify an
Xpath expression selects reference of the unique element belong to (the parent), the full element
tag is <xs:selector xpath=".//Course"/>. We also use "XPath" attribute in "field" sub-
element to specify an Xpath expression determines the table column that the key belong to, the
full element tag is <xs:field xpath="CourseTitle"/>

To define the referential integrity between the tables, we define an element as a foreign key in a
table associates a primary key in another table. To do so, we use "keyref" constraint to define

the referential integrity; we use "selector" and "field" elements for the same purpose in the

definition of primary key. For example, In "Register" table, there are composite foreign key

contains three columns, these columns associate three tables "Student", "Course", and

"Semester". We define attributes "name" and "refer" in the "keyref" element, "name" attribute
specify the name of that foreign key in the schema, since "refer" attribute references to its primary
key <xs:keyref name="Regester_Student" refer="StudentPK">. We use "XPath" attribute in

"selector" sub-element to specify an Xpath expression selects reference of the foreign key

element that belong to (the parent) <xs:selector xpath=".//Register"/>. We also use

"XPath" attribute in "field" sub-element to specify an Xpath expression determines the table

column that the key belong to, the full element tag is <xs:field xpath="StdNo"/ , we define the

rest parts of the composite foreign keys "CourseID" and "SemesterID" in the same way. List 6

illustrates transform "Registrar" table into XSD document tree that contains a composite foreign
key assassinated with three other tables.

List 3 to List 6 contain the complete mapping of the relational schema for the tables "Student",

"Course", "Semester", and "Register".

Husam Ahmed Al Hamad

International Journal of Date Engineering (IJDE), Volume (6) : Issue (2) : 2015 18

List 3: Transform "Student" table into XSD document tree.

<xs:element name="UniversityDB">

 <xs:complexType>

 <xs:element name="Student">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="StdNo" use="required"/>

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:length value="5"/>
 </xs:restriction>

 </xs:simpleType>

 <xs:element name="Lastname" use="required"/>

 <xs:simpleType>

 <xs:restriction base="xs:string" >

 <xs:maxLength value="25"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:element name="Givenname" use="required"/>

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:maxLength value="50"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:element name="Dept"/>

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:maxLength value="4"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:complexType>

 <xs:key name="StudentPK" PrimaryKey="true">

 <xs:selector xpath=".//Student"/>

 <xs:field xpath="StdNo"/>

 </xs:key>

</xs:element>

LIST 4: Transform "Course" table into XSD document tree.

<xs:element name="UniversityDB">

 <xs:complexType>

 <xs:element name="Course">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="CourseID" use="required"/>

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:length value="8"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:element name="CourseTitle" use="required"/>

 <xs:simpleType>

 <xs:restriction base="xs:string" >

 <xs:maxLength value="50"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:element name="Cost"/>

 <xs:simpleType>

 <xs:restriction base="xs:decimal">

 <xs:minInclusive value="0"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:element name="Credits" default="2" />

 <xs:simpleType>

 <xs:restriction base="xs:integer">

 <xs:minInclusive value="0"/>

Husam Ahmed Al Hamad

International Journal of Date Engineering (IJDE), Volume (6) : Issue (2) : 2015 19

 <xs:maxInclusive value="200"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:complexType>

 <xs:key name="CoursePK" PrimaryKey="true">

 <xs:selector xpath=".//Course"/>

 <xs:field xpath="CourseID"/>

 </xs:key>

<xs:Unique name="CourseUnique">

 <xs:selector xpath=".//Course"/>

 <xs:field xpath="CourseTitle"/>

 </xs:Unique>

</xs:element>

LIST 5: Transform "Semester" table into XSD document tree.

<xs:element name="UniversityDB">

 <xs:complexType>

 <xs:element name="Semester">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="SemesterID" use="required"/>

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:length value="5"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:element name="SemesterCode" />

 <xs:simpleType>

 <xs:restriction base="xs:integer" >

 <xs:minInclusive value="1"/>

 <xs:maxInclusive value="4"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:element name="Year"/>

 <xs:simpleType>

 <xs:restriction base="xs:integer">

 <xs:minInclusive value="2000"/>

 <xs:maxInclusive value="9999"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:complexType>

 <xs:key name="SemesterPK" PrimaryKey="true">

 <xs:selector xpath=".//Semester"/>

 <xs:field xpath="SemesterID"/>

 </xs:key>

</xs:element>

LIST 6: Transform "Register" table into XSD document tree.

<xs:element name="UniversityDB">
 <xs:complexType>
 <xs:element name="Register">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="StdNo" use="required"/>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:length value="5"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:element name="CourseID" use="required"/>
 <xs:simpleType>
 <xs:restriction base="xs:string">

Husam Ahmed Al Hamad

International Journal of Date Engineering (IJDE), Volume (6) : Issue (2) : 2015 20

 <xs:length value="8"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:element name="SemesterID" use="required"/>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:length value="5"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:element name="Grade"/>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="2"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:element name="Mark"/>
 <xs:simpleType>
 <xs:restriction base="xs:decimal">
 <xs:minInclusive value="0.00"/>
 <xs:maxInclusive value="100.00"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:complexType>
 <xs:key name="RegisterPK" PrimaryKey="true">
 <xs:selector xpath=".//Register"/>
 <xs:field xpath="StdNo"/>
 <xs:field xpath="CourseID"/>
 <xs:field xpath="SemesterID"/>
 </xs:key>
 <xs:keyref name="Regester_Student " refer="StudentPK">
 <xs:selector xpath=".//Register" />
 <xs:field xpath="StdNo" />
 </xs:keyref>
 <xs:keyref name=" Regester_Course" refer="CoursePK">
 <xs:selector xpath=".//Register" />
 <xs:field xpath="CourseID" />
 </xs:keyref>
 <xs:keyref name=" Regester_Semester" refer="SemesterPK">
 <xs:selector xpath=".//Register" />
 <xs:field xpath="SemesterID" />
 </xs:keyref>
</xs:element>

4. PERFORMANCE EVALUATION AND DISCUSSION
To access the CPU time performance of the algorithm, we performed many experiments using
sets of databases samples; we used a personal computer with a Core i7-3520M CPU @
2.90GHz, 8GB memory and running windows 7 operating system. We compared from 100 to 600
database sets, database sets from 100 to 300 are smaller than database sets from 300 to 600.
Table 4 and Figure 4 illustrate comparing CPU time for generating XML document and XSD
schema.

XML

Generate
Time (m/s)

XSD
Generate

Time (m/s)

Total (m/s)
XML and

XSD

100 DB Sets 1,291.01 1,621.49 2,912.50

300 DB Sets 5,048.15 6,572.08 11,620.24

600 DB Sets 11,844.23 14,317.95 26,162.18

TABLE 4: CPU time of generating XML document and XSD schema.

Husam Ahmed Al Hamad

International Journal of Date Engineering (IJDE), Volume (6) : Issue (2) : 2015 21

FIGURE 4: CPU time of generating XML document and XSD schema.

Many researches proposed solutions for data integration; they performed several experiments to
bring together the flexibility of the XML model for data exchange and the performance of the
relational model for data storage. Some solutions have focused on querying and storing XML
database schema into specifically designed relational databases, while others have addressed
the problem of publishing relational databases as XML documents.

Our proposed technique gives easy and generic solution for online transforming relational
database schema into XML. In addition, XML represents a common language as mediate
language supported by rich existing tools and standards built around the XML family.

5. CONCLUSION AND FUTURE WORK
In this research, we presented a new conversion technique has implemented based on extracting
actual content and catalog of the relational database. The technique helps companies to ease and

reliable converting relational databases into XML documents and schemas. The technique is feasible
because it uses simple SQL queries to extract the actual content and schema of the relational
database. The new XML document and schema contain all aspects of the relational database
schema such as content, datatype, constrains and define referential integrity between the tables.
The algorithm of the technique contains most of XSD schema toolset in order to develop reliable
and costless XSD schema. The experiments demonstrated the efficiency and usefulness of the
results of the technique. We calculated CPU time required for conversion process, set of
database used for this purpose.

The future research of this paper is generate a fully SQL queries that will be used to update the
XML and XSD schema documents and retrieve the relevant relational data from the sources and
publish them according to the required XML format, the process should be automatic and
dynamically support any incoming data structure. As well, work on a generic technique for data
conversion from XML database into relational database.

6. ACKNOWLEDGMENT
The authors would like to acknowledge the financial support provided by the Deanship of
Scientific Research at Qassim University, under research project reference number (2376/1435),
entitled, "Web-Based Tool for Conversion between Relational Databases and XML".

7. REFERENCES

[1] Silberschatz, A., Korth, H. F., Sudarshan, S. "Database System Concepts", McGraw-Hill,
Sixth Edition, 2010, pp. 981-1025.

0

5000

10000

15000

20000

25000

30000

100 DBs 300 DBs 600 DBs
C

P
U

 T
im

e

(m

il
li
se

co
n

d
)

Database Sets

XML XSD XML and XSD

Husam Ahmed Al Hamad

International Journal of Date Engineering (IJDE), Volume (6) : Issue (2) : 2015 22

[2] Arenas, M, Barcelo, P., Libkin, L., Synthesis FM. "Relational and XML Data Exchange", Vol.
2, No. 1, 2010, pp.1-112.

[3] Arenas, M. and Libkin, L. (2005) "Xml data exchange: Consistency and query answering", In
Proceedings of the 24th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems (PODS'05), Baltimore, USA, 2005, pp.13-24.

[4] Jumaa, H., Rubel, P., Fayn, J. "An XML-based framework for automating data exchange in
healthcare", e-Health Networking Applications and Services (Healthcom), 12th IEEE
International Conference, 1-3 July 2010, pp.26124-269.

[5] Al Hamad, H.A. (2015) "XML-Based Data Exchange in the Heterogeneous Databases
(XDEHD)", International Journal of Web & Semantic Technology (IJWesT), Vol. 6, No. 3,
2015, pp.11-24.

[6] Shanmugasundaram J., Tufte K., He G., Zhang C., DeWitt D., J. Naughton. "Relational
Databases for Querying XML Documents: Limitations and Opportunities", Proceedings of the
25th VLDB Conference, Edinburgh, Scotland, 1999, pp.302–314.

[7] Feng, Y and Jingsheng, X. "Mapping XML DTD to Relational Schema", Database
Technology and Applications, First International Workshop, 25-26 April 2009, pp.557-560.

[8] Chunyan, W.; Lo, A.; Alhajj, R.; Barker, K. "Novel Approach for Reengineering Relational
Databases into XML", Data Engineering Workshops, 21st International Conference, 05-08
April 2005, pp. 1284.

[9] Teng, L. and Ping, Y. "Schema Conversion from Relation to XML with Semantic
Constraints", Fuzzy Systems and Knowledge Discovery, FSKD 2007. Fourth International
Conference, 24-27 Aug. 2007, pp.619-623.

[10] Zhang, Y. and Liu, W. "Semantic integration of XML Schema", Machine Learning and
Cybernetics, Proceedings. 2002 International Conference, pp. 1058- 1061.

[11] Tzvetkov, V. and Xiong W. (2005) "DBXML - Connecting XML with Relational Databases",
Computer and Information Technology, CIT 2005. The Fifth International Conference, 21-23
Sept. 2005, pp.130-135.

[12] Hong, S. and Song, Y. "Efficient XML query using Relational Data Model", Software
Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, SNPD
2007. Eighth ACIS International Conference, July 30 2007-Aug. 1 2007, pp.1095-1100.

[13] Feng, Y. "Converting XML DTD to Database", Intelligent Systems and Applications, ISA
2009. International Workshop, 23-24 May 2009, pp.1-4.

[14] Fong, J., Wonga, H.K., Chengb, Z. "Converting relational database into XML documents with
DOM", Information and Software Technology, Vol. 45, 2003, pp.335– 355.

[15] Fong, J. and Cheung, S. 'Translating relational schema into XML schema definition with data
semantic preservation and XSD graph', Information and Software Technology, Vol. 47, No.
7, 2001, pp.437-462.

[16] Zhou, A., Lu, H., Zheng, S., Liang, Y., Zhang, L., W. Ji, Tian, Z., "VXMLR: a visual XML-
relational database system", Proceedings of the 27th International Conference on Very
Large Data Bases, September 11-14, 2001, pp.719-720.

INSTRUCTIONS TO CONTRIBUTORS

Data Engineering refers to the use of data engineering techniques and methodologies in the
design, development and assessment of computer systems for different computing platforms and
application environments. With the proliferation of the different forms of data and its rich
semantics, the need for sophisticated techniques has resulted an in-depth content processing,
engineering analysis, indexing, learning, mining, searching, management, and retrieval of data.

International Journal of Data Engineering (IJDE) is a peer reviewed scientific journal for sharing
and exchanging research and results to problems encountered in today’s data engineering
societies. IJDE especially encourage submissions that make efforts (1) to expose practitioners to
the most recent research results, tools, and practices in data engineering topics; (2) to raise
awareness in the research community of the data engineering problems that arise in practice; (3)
to promote the exchange of data & information engineering technologies and experiences among
researchers and practitioners; and (4) to identify new issues and directions for future research
and development in the data & information engineering fields. IJDE is a peer review journal that
targets researchers and practitioners working on data engineering and data management.

To build its International reputation, we are disseminating the publication information through
Google Books, Google Scholar, Directory of Open Access Journals (DOAJ), Open J Gate,
ScientificCommons, Docstoc and many more. Our International Editors are working on
establishing ISI listing and a good impact factor for IJDE.

The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal.
Started with Volume 6, 2015, IJDE appears with more focused issues. Besides normal
publications, IJDE intend to organized special issues on more focused topics. Each special issue
will have a designated editor (editors) – either member of the editorial board or another
recognized specialist in the respective field.

We are open to contributions, proposals for any topic as well as for editors and reviewers. We
understand that it is through the effort of volunteers that CSC Journals continues to grow and
flourish.

IJDE LIST OF TOPICS
The realm of International Journal of Data Engineering (IJDE) extends, but not limited, to the
following:

• Approximation and Uncertainty in Databases
and Pro

• Autonomic Databases

• Data Engineering • Data Engineering Algorithms

• Data Engineering for Ubiquitous Mobile
Distributed

• Data Engineering Models

• Data Integration • Data Mining and Knowledge Discovery

• Data Ontologies • Data Privacy and Security

• Data Query Optimization in Databases • Data Streams and Sensor Networks

• Data Warehousing • Database Tuning

• Database User Interfaces and Information
Visualiza

• Knowledge Technologies

• Metadata Management and Semantic
Interoperability

• OLAP and Data Grids

• Personalized Databases • Query Processing in Databases

• Scientific Biomedical and Other Advanced • Semantic Web

Database

• Social Information Management • Spatial Temporal

CALL FOR PAPERS

Volume: 6 - Issue: 3

i. Paper Submission: October 31, 2015 ii. Author Notification: November 30, 2015

iii. Issue Publication: December 2015

CONTACT INFORMATION

Computer Science Journals Sdn BhD

B-5-8 Plaza Mont Kiara, Mont Kiara
50480, Kuala Lumpur, MALAYSIA

Phone: 006 03 6204 5627

Fax: 006 03 6204 5628

Email: cscpress@cscjournals.org

