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EDITORIAL PREFACE 

 
This is first issue of volume three of the International Journal of Data Engineering (IJDE). IJDE is 
an International refereed journal for publication of current research in Data Engineering 
technologies. IJDE publishes research papers dealing primarily with the technological aspects of 
Data Engineering in new and emerging technologies. Publications of IJDE are beneficial for 
researchers, academics, scholars, advanced students, practitioners, and those seeking an 
update on current experience, state of the art research theories and future prospects in relation to 
computer science in general but specific to computer security studies. Some important topics 
cover by IJDE is Annotation and Data Curation, Data Engineering, Data Mining and Knowledge 
Discovery, Query Processing in Databases and Semantic Web etc. 

 
The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal. 
Starting with volume 3, 2012, IJDE appears in more focused issues. Besides normal publications, 
IJDE intend to organized special issues on more focused topics. Each special issue will have a 
designated editor (editors) – either member of the editorial board or another recognized specialist 
in the respective field. 
 
This journal publishes new dissertations and state of the art research to target its readership that 
not only includes researchers, industrialists and scientist but also advanced students and 
practitioners. The aim of IJDE is to publish research which is not only technically proficient, but 
contains innovation or information for our international readers. In order to position IJDE as one of 
the top International journal in Data Engineering, a group of highly valuable and senior 
International scholars are serving its Editorial Board who ensures that each issue must publish 
qualitative research articles from International research communities relevant to Data Engineering 
fields. 
   
IJDE editors understand that how much it is important for authors and researchers to have their 
work published with a minimum delay after submission of their papers. They also strongly believe 
that the direct communication between the editors and authors are important for the welfare, 
quality and wellbeing of the Journal and its readers. Therefore, all activities from paper 
submission to paper publication are controlled through electronic systems that include electronic 
submission, editorial panel and review system that ensures rapid decision with least delays in the 
publication processes.  
 
To build its international reputation, we are disseminating the publication information through 
Google Books, Google Scholar, Directory of Open Access Journals (DOAJ), Open J Gate, 
ScientificCommons, Docstoc and many more. Our International Editors are working on 
establishing ISI listing and a good impact factor for IJDE. We would like to remind you that the 
success of our journal depends directly on the number of quality articles submitted for review. 
Accordingly, we would like to request your participation by submitting quality manuscripts for 
review and encouraging your colleagues to submit quality manuscripts for review. One of the 
great benefits we can provide to our prospective authors is the mentoring nature of our review 
process. IJDE provides authors with high quality, helpful reviews that are shaped to assist 
authors in improving their manuscripts..  
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Abstract 

 
With more and more text data stored in databases, the problem of handling natural language 
query predicates becomes highly important. Closely related to query optimization for these 
predicates is the (sub)string estimation problem, i.e., estimating the selectivity of query terms 
before query execution based on small summary statistics. The Count Suffix Trees (CST) is the 
data structure commonly used to address this problem. While selectivity estimates based on 
CST tend to be good, they are computationally expensive to build and require a large amount of 
memory for storage. To fit CST into the data dictionary of database systems, they have to be 
pruned severely. Pruning techniques proposed so far are based on term (suffix) frequency or on 
the tree depth of nodes. In this paper, we propose new filtering and pruning techniques that 
reduce the building cost and the size of CST over natural-language texts. The core idea is to 
exploit the features of the natural language data over which the CST is built. In particular, we 
aim at regarding only those suffixes that are useful in a linguistic sense. We use (well-known) IR 
techniques to identify them. The most important innovations are as follows: (a) We propose and 
use a new optimistic syllabification technique to filter out suffixes. (b)  We introduce a new affix 
and prefix stripping procedure that is more aggressive than conventional stemming techniques, 
which are commonly used to reduce the size of indices. (c) We observe that misspellings and 
other language anomalies like foreign words incur an over-proportional growth of the CST. We 
apply state-of-the-art trigram techniques as well as a new syllable-based non-word detection 
mechanism to filter out such substrings. – Our evaluation with large English text corpora shows 
that our new mechanisms in combination decrease the size of a CST by up to 80%, already 
during construction, and at the same time increase the accuracy of selectivity estimates 
computed from the final CST by up to 70%. 
 
Keywords: Selectivity Estimation, Count Suffix Tree, Pruning, Text Data 

 

 
1. INTRODUCTION 
With more and more natural language data stored in databases, query processing for this type of 
data becomes highly important. To optimize queries over this kind of data, the (sub)string 
estimation problem is vital. This is estimating the selectivity of natural language query 
predicates, usually term-based before the actual query execution, based on small summary 
statistics. The selectivity of a term (or of any substring) is the number of documents in the 
underlying collection it appears in. To estimate the selectivity of predicates of the kind 
considered here, Count Suffix Trees (CST) are commonly used [8]. According to [8], each CST 
node stores the selectivity of the string along the path from the root to the node. The selectivity 
of a string can be retrieved in a time linear to its length. A CST built over text data can efficiently 
solve the selectivity-estimation problem. 
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However, CST are computationally expensive to build and have high memory requirements. The 
space complexity of a CST is proportional to the size of the underlying alphabet and to the 
number of strings stored in the CST1. A CST built over a large amount of text data may well 
exceed 1,000,000 nodes. Since the statistics data structures used by the query optimizers of 
database systems have to fit in the data dictionary, i.e., in a very limited amount of memory, 
CST used for query optimization need to be reduced in size [4]. This is because they always 
have to be in physical main memory. If query optimization caused only a single page fault (i.e., 
the need to swap a memory page from on-disk virtual memory back into physical main memory), 
this would annihilate the performance advantage database systems gain from query 
optimization. One might think that the 1 KB limit from [8], published in 1996, is too strict 
nowadays, and that modern database servers can have statistics that are larger by orders of 
magnitude. However, not only the amount of memory available to database servers has rapidly 
grown since 1996. The amount of data to be handled has grown at a similar rate, both regarding 
the number of relations and of attributes per relation. Thus, the data dictionary has to 
accommodate significantly more statistics. Consequently, it is not unrealistic to assume that the 
statistics for an individual attribute still have to fit into 1 KB with today’s commercial database 
servers [24]. 
 
To make the CST meet these restrictive memory requirements, a common solution is to apply 
pruning rules. Discarding some nodes, for instance those with the lowest selectivities [7, 8], 
saves space. But it also affects the accuracy of estimations. To deal with this problem, methods 
for estimating the selectivity of strings that are not retained in the Pruned CST (PST) any more 
have been proposed. Algorithms like KVI or MO [8, 7] alleviate estimation inaccuracies due to 
pruning to some degree, but do not rule out the problem. Pruning becomes even more 
problematic with non-static document collections, e.g., journal archives or the Blogosphere. 
Estimation errors may arise, due to incorrect node counts [1]. The only solution currently known 
is to rebuild the CST over the updated collection. Even though algorithms that reduce space and 
time complexity have been proposed [17, 18], CST construction remains computationally 
expensive and time consuming. 
 
The goal of our work is finding other ways of reducing the size of the CST, i.e., filtering out 
suffixes. We focus on natural-language texts. Our core idea is to find linguistic criteria that let us 
decide, prior to insertion in the CST, which strings or suffixes are more likely to be queried. For 
the CST, we keep only the latter, and we deal with the rest separately to reduce the size of the 
CST during construction already, before the actual pruning. In particular, we apply syllabification, 
stemming, and non-word detection. The combination of these mechanisms allows for building a 
tree that requires significantly less memory than state-of-the-art CST. More specifically, the 
contributions of this paper are as follows: 
 
Design of a New Approximate Syllabification Algorithm for CST-specific Data 
Preprocessing  
We observe that letter-wise suffixes that do not start at a syllable border carry little semantic 
meaning. To filter out these suffixes we propose a fast approximate syllabification routine, based 
on the morphological structure of words. In order to avoid filtering too many suffixes, however, 
we have to find every syllable boundary, even at the cost of some false positives. Therefore, our 
routine is more aggressive than conventional ones. We will show that avoiding the insertion of 
suffixes that do not start at syllable borders reduces the size of the CST by much, not only for 
storage, but also during construction. 
 

                                                   

1 Note that this mostly holds for languages in which words tend to consist of many letters, like the 
languages written in the Latin, Greek, Cyrillic, Arabic, Hebrew, or Thai writing system – these are the ones 
we deal with here For languages written in symbolic writing systems, like Chinese, Japanese, or Korean, 
words consist of far fewer symbols, and other data structures are better suited for selectivity estimation 
altogether, e.g. histograms. 
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Design of an Optimistic Suffix and Affix Stripping Algorithm  
Stemming, that is conflating different inflections of a term to the same root form, further reduces 
the number of suffixes. We observe that traditional stemming algorithms like Porter’s stemmer 
[16] are rather conservative, i.e., omit some conflations to avoid errors. We propose a new, more 
optimistic stemming procedure. It conflates more terms and thus reduces the number of suffixes 
to store. This procedure also includes prefix stripping, which moves the stem up front. The 
rationale is that the stem carries the most semantic meaning, and the nodes closest to the root of 
a CST are the last ones to be pruned. Note that linguistic errors may occur with this approach. 
But we show that their effect on estimation quality is likely to be insignificant. 
 
Non-word Filtering  
Experience shows that non-words and foreign words incur an over-proportional number of nodes 
in the CST. They also increase the memory consumption in the building phase of the tree. We 
therefore deploy a q-gram based algorithm for non-word detection to prevent inserting non-words 
in the CST. In particular, we exclude terms including very rare q-grams. To estimate the 
selectivity of non-words, we use a variant of what [4] refers to as q-gram estimator instead. 
Because we apply this technique only to words with highly distinctive q-grams, we do not 
encounter the errors reported in [4]. In contrast, our evaluation shows that the q-gram technique 
yields very good selectivity estimates for non-words. 
 
New Node Labeling sStrategy  
Traditional CST construction mechanisms suggest labeling each node with a single character 
and applying path compression when the tree is completely built. We propose a new node 
labeling mechanism which is syllable-based. It results in a more compact CST. In particular, we 
use syllables as the atomic node labels, instead of individual characters. While this increases the 
fan-out of the tree, it reduces its depth significantly, resulting in more compact CST. 
 
Extensive Performance Experiments and Feasibility Demonstration.  
We run a series of evaluations over large English document corpora. It turns out that syllable 
CST require significantly less space. For instance, the size of the CST built over datasets from 
the Aquaint Corpus [6] is reduced by up to 80%. We also show that the benefit of Syllable CST 
over traditional ones grows with the number of non-words and misspellings in the corpus, by 
introducing errors into it in a controlled way. Thanks to the reduced memory occupation, 
frequency-based pruning can then use lower thresholds. This results in more accurate 
estimations. We experimentally verify that, when pruned to meet the same size, Syllable CST 
provide significantly better selectivity estimates than standard ones. On average, the relative 
estimation error is reduced by up to 80%. 
 
Although we use English language corpora for our experiments, the techniques presented in this 
paper are not restricted to English: They are applicable to any character-based language, 
provided that a small reference dictionary (for the non-word filtering) and a stemming and 
syllabification routine (for building the Syllable CST) are available. 
 
Paper Outline  
Section 2 reviews related work. Section 3 describes the syllabification and non-word detection 
techniques, Section 4 the design of the Syllable CST, and how to use it for selectivity estimation. 
Section 5 features our evaluation. Section 6 concludes. [23] is an shorter, preliminary version of 
this paper. This current article features a new node-labeling strategy, a more detailed description 
and discussion of our algorithms, and more extensive experiments which assess our techniques 
with documents containing spelling errors. 

 
2. RELATED WORK 
The Count Suffix Tree (CST) [8] is a data structure commonly used to estimate the selectivity of 
string predicates. Given a collection of documents, all strings and their suffixes are stored in the 
CST. Each node is labeled with a string and has a counter that stores the number of occurrences 
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in the collection. Since CST tend to grow quickly in size when built on large text datasets, 
pruning strategies are essential to make the data structure meet memory constraints. Pruning 
requires estimating the selectivity of those terms whose node has been discarded. Krishnan et al. 
[8] has proposed three families of estimation methods. Among these, the KVI algorithm yields 
the most accurate results according to experiments. The MO (Maximal Overlap) algorithm, 
proposed by Jagadish et al. [7], outperforms KVI when the statistical short memory property 
holds for sequences of symbols. According to MO, the searched pattern is parsed in overlapping 
(when existing) substrings, which are considered statistically dependent. Since both KVI and MO 
tend to underestimate selectivities, Chaudhuri et al. [4] propose a new estimation model based 
on q-gram Markov tables and a regression tree. Bae [1] describes which estimation inaccuracies 
may arise in the presence of pruning and tries to overcome the problem by building a Count Q-
gram tree. While it is useful for DNA data (alphabet size 5), [1] also shows that it is worse when 
the alphabet size increases. It is hardly applicable for natural language data (alphabet size 26). 
 
Statistics on collections of text data [2] must be updated when new document are added to the 
collection. Once nodes have been pruned, however, there is no information left on the previous 
selectivity of removed strings. If they appear to be frequent in newly added documents, the node 
counts are incorrect. This is because they do not include the selectivities before pruning. As 
mentioned in Section 1, the only way to solve this problem is to rebuild the CST over the 
updated collection. Algorithms have been developed for constructing in-memory suffix trees in 
linear time, proportional to the number of strings stored in it, by Weiner [19] and McCreight [15]. 
Ukkonen [18] later designed an online version. The ever-increasing amount of available text data 
however calls for disk-based construction algorithms. The “Top Down Disk-based” strategy by 
Tian et al. [17], despite the fact that it runs in quadratic time, is faster than the linear in-memory 
alternatives, and its space consumption is lower than that of other algorithms described in 
literature. Even if disk-based strategies have significantly decreased time and space building 
overhead, the computational effort is still in the way of rebuilding the tree frequently. On the 
other hand, the final CST has to fit in main memory to let query optimizers estimate selectivities 
in short time. Thus, pruning and its drawbacks cannot be avoided. The goal of our work therefore 
is to find pruning strategies that incur less inaccuracy than the existing standard ones. 
 
We will refer to further related work, in particular to algorithms from computational linguistics 
which we adapt and deploy in our context, in Sections 3 and 4. 

 
3. SYLLABLE COUNT SUFFIX TREE 
This section proposes a new variant of the CST data structure for selectivity estimation on 
collections of natural-language texts, the Syllable CST. Section 3.1 explains how syllabification 
reduces the size of the suffix tree. Section 3.2 presents our new syllabification routine. Sections 
3.3 and 3.4 explain why Porter’s algorithm is not sufficient for our purpose, and why we 
implement another stemming routine. Section 3.5 illustrates the drawbacks of inserting non-
words in the data structure and proposes a solution. 
 
3.1 Syllabification 
According to the original definition of suffix tree [19], inserting an index term in the tree implies 
generating all of its suffixes and inserting them as well. Given a string σ of length n, defined over 
the alphabet Σ and a string terminator symbol $ (not in Σ and lexicographically subsequent to 
any symbol in it), the i-th suffix is the substring starting with the i-th character of σ and 
terminated by $. 
 
Example 1. Given σ = information$, its suffixes are: (information$, nformation$, formation$, 
ormation$, rmation$, mation$, ation$, tion$, ion$, on$, n$, $). □ 
 
Some of these suffixes are very unlikely to be ever addressed in a user query. The reason is that 
they convey very little semantic meaning, e.g., -rmation. Syllables are natural word building 
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blocks in many languages. Using syllable-division points to compute suffixes reduces their 
number. The remaining ones carry an enhanced semantic message at the same time. 
 
Example 2. Given the syllabified string σ = in-for-ma-tion-$, the set of its syllable suffixes is:  
(in-for-ma-tion-$, for-ma-tion-$, ma-tion-$, tion-$, $). □ 
 
Syllabification proves to be convenient to filter out suffixes that start with unusual combinations 
of letters. Since the number of suffixes that need to be stored in the tree decreases, its size is re-
duced as well. Figure 1 contrasts memory requirements of a standard CST built over the string 
‘information’ with the equivalent Syllable CST. The number of nodes is more than halved. We 
expect a similar size reduction for larger datasets as well. Experimental evaluations will confirm 
this hypothesis (see Section 5). 
 
Discussion. Syllabification-based filtering is not limited to English; it is applicable to any 
character-based language, provided that there is a syllabification routine. In this paper, we use 
English text for the examples and for the experiments. 
 
Clearly, filtering out suffixes with the mechanism described here affects selectivity estimation for 
substrings that do not start at syllable boundaries. For instance, the Syllable CST in Figure 1 
would not be able to estimate the selectivity of the predicate LIKE ‘%nfo%’. This is not a severe 
drawback (we argue). Namely, queries over natural language text, even if it is dirty, are likely to 
contain rather “natural” text fragments, e.g., LIKE ‘%info%’ or LIKE ‘%inform%’, as opposed to 
‘%nfo%’. 
 

 
 

FIGURE 1: Syllable CST on the String information$ 
 

3.2 The Syllabification Routine 
The problem of syllabification of written words is strictly tied to the hyphenation (or justification) 
task [13]. Algorithms for splitting words at syllable boundaries can be classified as rule-based or 
dictionary-based. The latter ones provide orthographically correct syllable division points by 
performing a lookup in a dictionary. Although they guarantee greater accuracy, there are several 
reasons why we did not pursue this option. First, since we want to minimize space requirements, 
the overhead of a dictionary is not tolerable. The dictionary size strongly depends on the content 
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and the size of the corpus. The New York Times dataset of the Aquaint Corpus, for instance, 
contains 352404 different terms. The size of the dictionary should be of the same order of 
magnitude. Second, no matter the size of the dictionary, there will always be words that are not 
contained in it (foreign language words, proper names, etc.). Furthermore, a language keeps 
evolving, and new terms constantly enrich the dictionary. Third, since many syllabification rules 
are based on how the word is pronounced, there are differences regarding syllabification of the 
same term according to different English dictionaries. 
 
Rule-based hyphenation systems, such as the LATEX algorithm [13], are an alternative. They 
are typically faster and require less storage space, but they are inherently subject to errors. The 
reason is that, even if a set of general rules has been defined, based on sophisticated linguistic 
literature, syllabification is not an “exact” process. Most of the rules are based on the sound of 
the spoken word and are not easy to implement. The so-called VV rule is an example [5]. It 
suggests separating two consecutive vowels in two distinct syllables if they do not form a 
diphthong, or considering them as part of the same syllable otherwise. Without any further 
phonological information, it is impossible to tell if adjacent vowels form a diphthong or not. Since 
our goal is exploiting syllabification to reduce memory requirements of the CST, however, we 
have adopted a rule-based solution anyway. It trades grammatical accuracy for a reduction of 
computational overhead and extra data required. 
 
Example 3. The diphthong ie is split in sci-ence, since the vowels are pronounced separately. 
The same diphthong in re-triev-al belongs to one syllable. □ 
 
To achieve high-quality results, the hyphenation routine of LATEX [13] uses close to 5.000 rules 
in 5 levels. The representation of these rules alone would consume more than half of the 
memory available for a selectivity-estimation data structure. In addition, processing a term 
through 5 levels of rules causes more computational effort than acceptable to obtain selectivity 
estimates. Further, the LATEX hyphenation algorithm is trimmed towards missing some division 
points rather than dividing terms at incorrect positions. Because we remove suffixes not starting 
at syllable boundaries, this would result in too many suffixes sorted out. Consequently, we favor 
faulty hyphenation over missed division points to some extent. In other words, the design goal 
behind our hyphenation routine is different from the one of the routine used in LATEX. 
 
Because we wanted to exploit syllabification to reduce memory requirements of the suffix tree, 
we choose a rule-based approach. To minimize the computation effort, we use a very small set 
of rules. To miss as few division points as possible, our rules are more aggressive than the ones 
in [5]. The basic idea of our syllabification routine is to determine syllabification points matching 
regular expressions over the consonant-vowel structure of the word. Function 1 lists the pseudo-
code of the function computing the word structure. The output string is constructed by mapping 
each character to V, in case of a vowel (Line 3), and to C otherwise (Line 4). Function 2 contains 
the pseudo-code of the syllabification routine. First the algorithm checks the word length (Line 1): 
Words shorter than four characters are left unchanged (e.g., box, cat). 
 
Function 1: computeWordStructure  

Input: String word 

Output: String wordStructure 

1 for (I = 0; i < word.length; i++) 

2   if (word[i] is vowel)  

3     wordStructure[i] = ’V’; 

4   else wordStructure[i] = ’C’; 

5 return wordStructure; 

 
In English, the number of syllables equals the number of vowel sounds. We assume that a vowel 
sound corresponds to a sequence of consecutive vowels. We compute the number of vowel 
sounds (Line 2). If it is less than two, the word is returned (Line 3). 
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Function 2: getSyllables  

Input: String word 

Output: String syllabifiedWord 

1 if (word.length < 4) return word;  

2 int vowelSounds = countVowelSounds(word); 

3 if (vowelSounds < 2) return word; 

4 wordStructure = computeWordStructure(word); 

5 if (wordStructure contains consonantBlends) { 

6   replace ”CC” with ”DD”;// Check patterns with blends  

7   if (wordStructure.match(”VCDDV”))  

8     replace ”VCDDV” with “VC-DDV”; 

9   if (wordStructure.match(”CVDDV”))  

10     replace ”CVDDV” with “CV-DDV”; 

11 } 

12 // Check common patterns 

13 if (wordStructure.match(”VCCV”) 

14   replace ”VCCV” with ”VC-CV”; 

15 if (wordStructure.match(”VCCCV”) 

16   replace ”VCCCV” with ”VC-CCV”; 

17 if (wordStructure.match(”CVVCV”) 

18   replace ”CVVCV” with ”CVV-CV”; 

19  

20 sylabifiedWord = getDivisionPoints(wordStructure); 

21 return syllabifiedWord; 

 
The following step is the construction of the string describing the structure of the word (Line 4). 
To find syllable boundaries, we test the word structure against 5 basic patterns (Lines 13-19). 
Table 1 shows the patterns and how we derive syllabification points from them; Table 1a 
illustrates the process for one word. 
 

Vowel-Consonant-Vowel Structure Derived Syllabification Examples 

VCV V-CV mo-tor, lu-nar 

VCCV VC-CV un-der, sub-way 

VCCCV VC-CCV im-print, pil-grim 

VCCCCV VCC-CCV sand-stone 

VCCCCCV VCC-CCCV high-street 

TABLE 1: The Basic Syllabification Patterns 

 

Step Word Status Word Structure 

Input word undoubtedly - 

Line 4 word structure undoubtedly VCCVVCCVCCV 

Line 13 found division point (pattern VCCV) un-doubtedly VC-CVVCCVCCV 

Line 13 found division point (pattern VCCV) un-doub-tedly VC-CVVC-CVCCV 

Line 13 found division point (pattern VCCV) un-doub-ted-ly VC-CVVC-CVC-CV 

Line 20 Transfer division points from structure to word un-doub-ted-ly VC-CVVC-CVC-CV 

TABLE 1a: Syllabification Algorithm Applied to undoubtedly 

 
Consonant blends and digraphs are couples of consonants that are sounded together and 
therefore should not belong to different syllables. However, the common syllabification pattern 
VC-CV would incorrectly syllabify words like migration to mig-ra-tion if we did not take the 
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presence of the consonant blend gr into account. Therefore, we define a set of common English 
blends and bigraphs2 and check if any of them appear in the word (Line 5). In case of a match, 
we modify the word structure (Line 6) by replacing the bigraph’s consonants CC with DD. We 
then test the word structure against 14 specifically designed patterns (Lines 7-10), see Table 1b. 
If none of these patterns matches, we use the five basic patterns described above (Lines 13-19). 
Finally, we retrieve the division points from the position of the dashes among the word structure 
string (Line 20) and return the syllabified word. 

 

Vowel-Consonant-Vowel Structure Derived Syllabification Examples 

VDDV V-DDV fa-ther 

VCDDV VC-DDV im-print 

VDDCV VDD-CV bank-rupt 

VDDCCV VDD-CCV - 

VCDDCV VC-DDCV un-thrilled 

VCCDDV VCC-DDV off-shore 

VDDDDV VDD-DDV bank-crush 

VDDCCCV VDD-CCCV  

VCDDCCV VCDD-CCV  

VCCDDCV VCC-DDCV  

VCCCDDV VCC-CDDV off-spring 

VDDDDCV VDD-DDCV  

VDDCDDV VDD-CDDV high-school 

VCDDDDV VCDD-DDV worth-while 

TABLE 1b: The Special Syllabification Patterns 

 
This approach has a few weaknesses. Compound words, for instance, are potential error 
sources. They should be divided between the words that make them up, but the sole analysis of 
the word structure cannot tell where the exact division point is located. The word sandbox, for 
instance, will be divided according to the syllabification rule that suggests splitting a sequence of 
three consonants after the first one (Line 16). This produces the incorrect san-dbox. 
 
However, even if the algorithm does not always detect correct division points, we will 
experimentally verify that these inaccuracies hardly affect the quality of selectivity estimates. In 
Section 4.3, we will discuss the effect of inaccuracies in more detail. 
 
3.3 Stemming 
Morphological variants of the same term (plural, past tense, third person singular, etc.) are 
responsible for a considerable growth of the data structure. Figure 2 shows how the size of a 
Syllable CST built on the string connect increases when its past tense and continuous forms are 
included. A common practice to reduce the size of an index is stemming, i.e., conflating inflected 
terms to their root form. Conflating connected and connecting with connect is reasonable since 
they convey the same semantic message. Several stemming algorithms have been proposed in 
literature [9, 16, 14]. Porter’s stemmer [16] probably is the most popular one. It adopts a longest-
match suffix stripping strategy, through a series of linear steps. Since it is fast and does not 
require additional storage, we use Porter’s algorithm as a preprocessing step. However, the 
number of stems can be further reduced. Porter’s algorithm does not deal with some common 
suffixes (e.g., -less, -ution, -ary, etc.). [9] features a detailed description of errors and wrong 
conflations made by Porter’s stemmer. Furthermore, it does not deal well with compound 

                                                   

2 In particular, we check the following bigraphs: bl, cl, dl, fl, pl, gl, br, cr, dr, fr, pr, tr, ch, gh, ph, sh, th, wh, 
kn, ck 
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suffixes, namely suffixes obtained by concatenating more than one suffix. The adverb 
increasingly, for instance, is not stemmed. The reason is that the suffix –ly is removed only when 
it inflects adjectives ending with -ent or -al. Not conflating increasingly with its stem implies the 
generation of more suffixes, i.e., nodes. 
 

 
 

FIGURE 2: Effect of Morphological Variants of the same Word on the Syllable CST’s Size 
 

Traditionally, stemming only deals with inflectional or derivational suffixes, but rarely attempts to 
remove prefixes [11]. However, we observe that removal of prefixes further reduces the number 
of nodes of a suffix tree. If we conflated disconnect with its stem connect, we would save the 
space required by the additional suffix dis-con-nect. In Section 3.4, we will illustrate how we 
manage to reach this size reduction, without losing the information carried by the prefix. We 
propose a more aggressive stemming routine based on Porter’s stemmer that lets us decrease 
the CST size, without significantly reducing the accuracy of selectivity estimations. 
 
3.4 Stemming Routine 
Function 3 lists the pseudo-code of our stemming routine. Our algorithm invokes Porter’s 
algorithm (Line 3), but only as a preprocessing step. It then removes iteratively common English 
prefixes and suffixes that Porter’s stemmer may not have stripped. The algorithm places a 
condition on the minimum length of the final stem. The affix stripping process stops if no affix is 
found, or if the removal of one affix would result in a stem shorter than three characters (Line 4). 
 
We divide suffixes in four classes, depending on their inflectional role (adverbial, noun, 
adjective, verbal), and use an out-of-alphabet symbol to identify each of them (Line 6, 
suffixCategoryID). Each removed suffix is coded as a string obtained by concatenation of the 
category identifier and its length (Line 8-9). The reason is that a code is typically shorter than the 
suffix itself. This reduces the number of bytes to store it. We observe that there are not many 
suffixes belonging to the same category that can be attached to the same stem, therefore the 
probability of conflations due to the same code is low. To reduce it further, we use the 
information on the length. This way, even if -less and -ful are both adjective suffixes, we can 
distinguish them based on their length. 
 
In contrast, we do not code prefixes, for the following reason. Dividing prefixes in classes to take 
advantage of a codified representation is not trivial. Prefixes add a specific connotation to the 
meaning of the word. Numerical prefixes, for instance bi-, tri-, give quantitative information; 
negative prefixes express the opposite meaning of a term. However, it is more difficult to state 
which message is carried by other prefixes and use it to divide them in classes, as we did with 
suffixes. 
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Function 3: Stemming algorithm 

Input: word, suffixes[4], prefixes 

Output: stemmedWord 

1 Array suffixCodes; // Store coded suffixes  

2 Array prefixes; // Store removed prefixes  

3 word = porterStem(word)  

4 while(affixFound and word.length > 3) { 

5   if (affix is suffix and word.length-affix.length>2) 

6   if (affix in any suffixes[]) { 

7     // Check suffix category and code suffix  

8     suffixCode = suffixCategoryID + suffixLength; 

9     suffixCodes.add(suffixCode); 

10   } else { 

11     prefixes.add(affix); 

12   } 

13   word = affix; // Affix stripping  

14 } 

15 stemmedWord = word + prefixes + suffixes; 

16 return stemmedWord; 

 

By reordering prefixes and suffixes, we can further reduce the size of the CST. The algorithm 
changes the order of affixes as follows: We syllabify the stem and attach the prefixes and 
codified suffixes (Line 15). 
 
Example 4. Suppose that adverbial and adjective suffixes are associated with the respective 
symbols. Given the word undoubtedly, Table 2 reports the steps of the algorithm and its output. 
Figure 3 shows how the number of nodes of the CST built on un-doubt-ed-ly decreases thanks to 
this strategy. We can omit the tree branch generated by the prefix. □ 
 

 

 
FIGURE 3: Moving the Prefix to the End of the Stem 

 
Moving prefixes behind the stem shows another benefit. In case of pruning, the stem is last to be 
pruned. This preserves its distinctive semantics as long as possible. We do not move the 
prefixes behind the suffixes, however, because the prefix carries more semantic meaning than 
the suffixes and should thus not be pruned before them. 
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Step Word Status Word Parts Split 

Input word undoubtedly     

Line 3 Porter stem undoubtedli     

Line 6 Suffix found undoubted α2   

Line 6 Suffix found undoubt α2, β2   

Line 11 Suffix found doubt α2, β2 un 

Line 14 String stemmed doubtunα2β2   

TABLE 2: Stemming Algorithm Applied to undoubtedly 

 
3.5 Non-Word Detection 
Typographical errors are a serious problem regarding CST space requirements. Typos and 
misspelled words result in undesirable suffixes, i.e., CST nodes. Figure 4 shows how the CST 
grows if the incorrect term developement is added to a CST built on development. We observe 
that we can save space by not inserting mistyped variants of index terms in the CST, but storing 
them in another way, as explained below. The benefit of non-word detection grows with the 
number of misspellings in the text collection. This is because the more misspellings are present 
in the document collection, the more nodes are created while building the CST, similarly to the 
example in Figure 4. An observation of ours, based on our experiments, is that the probability of 
identical accidental misspellings is very low. Consequently, the CST nodes created for the 
suffixes of misspelled terms are relatively useless; Due to their low frequency, they will most 
likely be pruned after the CST is built. Nevertheless, they require a considerable amount of 
memory while building the CST, so it is beneficial to exclude misspelled words right away. 
 
A common technique for detecting misspellings is based on n-gram analysis [10]. Given a string, 
an n-gram is any substring of length n. n-gram analysis requires a set of training words which 
must be sufficiently representative of the language. From these words, n-grams are extracted 
and inserted into a table (Dictionary Table). We investigate four strategies to detect non-words. 
Two of them, Trigram Analysis (TA) and Positional Trigram Analysis (PTA), are based on 
conventional trigram analysis, the other ones, Syllable Analysis (SA) and Positional Syllable 
Analysis (PSA), are more recent and are similar to [3]. 
 

 
 

FIGURE 4: Inserting developement in the CST 
 

Example 5. Table 3 illustrates which strings will be inserted in the Dictionary Table from the 
word inform according to each strategy. □ 
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Trigram analysis (TA) inf, nfo, for, orm 

Positional trigram analysis (PTA) inf_0, nfo_1, for_2, orm_3 

Syllable analysis (SA) in, form 

Positional syllable analysis (PSA) in_0, form_1 

TABLE 3: N-Grams Generated from the Stem inform 

 
In our case, the Dictionary Table is a simple set data structure. With TA, the Dictionary Table 
contains trigrams. In the positional case (PTA), we attach the information on the position of the 
trigrams within the words to the trigram string. Syllable analysis (SA) generates non-overlapping 
syllables, not n-grams; in the positional case (PSA), we store the syllable string together with its 
position within the word. In order to determine if a given term is a non-word, we extract from it 
the trigrams (in TA and PTA) or syllables (in SA and PSA). We then look up these parts in the 
Dictionary Table. We consider a term a non-word if it contains at least one trigram (or syllable, 
respectively) that is not present in the dictionary. The idea of using syllables to detect non-words 
is borrowed from [3]. They demonstrate that syllables are superior to state-of-the-art character n-
grams, using Indonesian texts. However, the effectiveness of the method on English text is 
currently unclear. In our evaluation (Section 5), we will therefore test the strength of syllables in 
detecting non-words on English texts and compare it to trigram analysis. 
 
n-grams characterize the morphological structure of a language well [20]. However, out-of-
dictionary n-grams do not necessarily identify a mistyped word. Foreign language words, for 
instance, show a different morphological structure and could go as errors. Terms like 
Albuquerque or Afghanistan, which contain the uncommon trigrams uqu and fgh respectively, are 
considered invalid, therefore would not be inserted in the CST, no matter their selectivity. We 
therefore propose to deal with non-words as follows. We introduce the so-called Invalid N-gram 
Table, to store invalid n-grams and their selectivity. We use the information contained in this 
table to estimate the selectivity of non-words, as we will explain in Section 4. Memory 
requirements of this additional structure are significantly lower than the overhead of storing non-
words and their suffixes in the CST. Note that the Dictionary Table does not require any memory 
after the building phase: It is a temporary data structure for testing the validity of index terms and 
is discarded after the CST has been completely built. 
 

4. SYLLABLE CST CONSTRUCTION AND SELECTIVITY ESTIMATION 
This section describes how we build the Syllable CST and the additional structures used for 
selectivity estimation. Section 4.1 says how we build the Syllable CST and the Invalid N-gram 
Table. Section 4.2 presents a new node-labeling strategy, which yields a more concise 
representation of the CST. Section 4.3 demonstrates how to estimate the selectivity of strings 
with our model. Finally, Section 4.4 presents selectivity estimation in case of pruning. 
 
4.1 Building the Syllable CST 
Function 4 is the procedure that inserts index terms in the Syllable CST (SylCST). Prior to the 
insertion in the SylCST, every term is decomposed in its trigrams or syllables, according to one 
of the strategies described in Section 3.5 (Line 1). The Dictionary Table is checked for the 
presence of each n-gram. If at least one is not in the Dictionary Table (Line 3), it is marked as 
invalid (Line 4). All invalid n-grams are stored in the Invalid N-gram Table, together with their 
selectivity (Line 5). The rationale is that we can identify a non-word with its invalid n-grams and 
use their selectivity to estimate the selectivity of the entire word. This is similar to the data 
structure [4] refers to as a q-gram estimator. As opposed to [4], however, we do not expect 
severe overestimations. This is because we expect the invalid n-grams to be rather distinctive. In 
particular, the more characteristic the n-grams of a non-word are, the more accurate is the 
estimation. The out-of-dictionary trigram fgh, for instance, strongly identifies Afghanistan, 
especially in combination with positional analysis. We can reasonably suppose that its selectivity 
will be close to the one of the word itself. At the expense of little estimation inaccuracies, we can 
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save the space required by suffixes of non-words. This approach also prevents the generation of 
isolated tree nodes. Non-words suffixes are unlikely to share nodes with English words (e.g., no 
English word starts with fghanistan). Only words that contain no invalid n-grams (valid words) are 
inserted in the Syllable CST (Line 8). After stemming, they are syllabified, and syllable suffixes 
are generated (Lines 9-11). Finally, all suffixes are inserted in the SylCST (Line 12). This 
reduces the size of the CST already during construction. Thus, building the CST becomes less 
resource-intensive. 
 
Function 4: BuildCST  

Input: word, dictionaryTable 

Output: invalidTable, SylCST  

1 wordNGrams = generateNgrams(word); 

2 for each nGram in wordNGrams { 

3   if (nGram not in dictionaryTable) { 

4     validWord = false; 

5     invalidTable.add(nGram, wordSelectivity); 

6   } 

7 } 

8 if (validWord = true) {  

9   stem = stem(word); 

10   syllabifiedStem = syllabify(stem); 

11   syllableSuffixes = syllableSuffixes(syllabifiedStem); 

12   SylCST.add(syllableSuffixes) 

13 } 

14 return SylCST, invalidTable; 

 
4.2 Node Labeling Strategies 
Standard CST construction mechanisms label each node with a single character and then apply 
path compression [19], i.e., collapsing unary children with their parent node. We refer to this 
mechanism as Standard Labeling (SL). We introduce a new node labeling strategy. When 
inserting syllable suffixes in the tree, we label each node with a syllable, instead of a single 
character, and then apply path compression. We will refer to our labeling mechanism as Atomic 
Labeling (AL). As we will explain later, this approach yields a more compact representation of the 
Syllable CST. Since the two structures have the same content, the difference in size is due 
exclusively to how syllables drive the path-compression mechanism. 
 

    
 

FIGURE 5: Labeling each Node with a Syllable Instead of a Single Character 
 

Example 6. Consider a SylCST that is built over the strings in-ter-net, in-te-ger. Standard 
Labeling ignores internal syllable division points of syllable suffixes and inserts the strings 
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internet, ternet, net, integer, teger, ger. Conversely, nodes created by Atomic Labeling store 
syllables and not single characters. Note that we use our optimization introduced before that 
uses only syllable suffixes instead of all suffixes, with both Standard Labeling and Atomic 
Labeling. The result is that path compression produces two different tree structures. Figure 5 
illustrates this. □ 
 
The SylCST obtained following standard labelling has a small number of nodes in its first level, 
because the fan-out of a node is at most the alphabet size. On the other hand, it is relatively 
deep, since the depth is at most the length of the second longest suffix in the CST, and thus has 
many internal nodes, such as the one labeled with te. Conversely, Atomic Labeling produces a 
Syllable CST which is broader in its first level. The fan-out of the root is equal to the number of 
syllables in the tree, the fan-out of other nodes is at most this number. This CST is also 
shallower. This is because the depth is at most the number of syllables in the suffix with the 
second-most syllables in the CST. Thus, we hypothesize that Atomic Labeling can further reduce 
CST size, without affecting selectivity estimation. The reason is that, with Atomic Labeling, the 
paths of suffixes with common prefixes, but different syllabification points (e.g. in-te-ger, in-ter-
net) split at the start of the first syllable they do not have in common. This leads to internal nodes 
with a high fan-out. With standard labeling, in contrast, the paths split at the first character they 
do not have in common, resulting in internal nodes with a lower fan-out. Mathematically, for a 
fixed number of leaves (each leaf represents one suffix), the number of internal nodes is 
negatively correlated with the average fan-out of the inner nodes: A lower fan-out results in a 
deeper tree with more internals nodes, a higher fan-out results in a shallower tree with less 
internal nodes. Experimental results will confirm this hypothesis. 
 
Clearly, the atomic labeling strategy prevents estimating substrings that do not start and end at 
syllable borders. However, this is not a problem if queries use keywords as predicates. This is 
likely for textual data. If other wildcard predicates were frequent, the standard labeling strategy 
would be advantageous. 
 
4.3 Selectivity Estimation 
Once the CST has been built, it can be used for selectivity estimation. The string in question is 
first decomposed in its n-grams. This is to determine if its structure respects the morphological 
profile described by n-gram analysis. This means searching for the presence of any of its n-
grams in the Invalid N-gram Table. If no match is found, then the string, if present, must have 
been stored in the CST. The tree is traversed from the root to the node labeled with the string, 
and its count stores the selectivity sought. Conversely, if the string contains at least an invalid n-
gram, then its selectivity estimate is the minimum of the selectivities of its invalid n-grams. 
 
We expect some estimation errors due to syllabification errors. To illustrate, consider again the 
incorrect syllabification of the word sandbox (Section 3.2), which is divided according to the 
syllabification rule that suggests splitting a sequence of three consonants after the first one. This 
produces the incorrect san-dbox. However, this has no effect at all when estimating the 
selectivity of the term sandbox. But the selectivity of the term box will be slightly underestimated. 
This is because the occurrences of the suffix box in the term sandbox are not counted due to the 
incorrect syllabification. However, we do not expect this effect to induce severe errors. This is 
because we expect the selectivity of a basic (non-compound) word w to be much larger than the 
selectivity of a specific compound word w is part of. In addition, our experiments will show that, 
even if the impact of incorrect syllabifications is non-negligible, the benefit of syllabification 
outweighs it by far. 
 
4.4 Pruning 
Since both the Invalid N-gram Table and the Syllable CST still have high memory requirements 
when built on large text corpora, we cannot do without pruning. We have implemented the 
common frequency-based pruning strategy. Given the maximum size of a CST (maximum 
number of nodes), we iteratively remove nodes whose count is under a threshold T. In each 
iteration, we increase T until the CST has the desired size. To estimate the selectivity of a valid 
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string that is no longer in the PST, we introduce a syllable-based variant of the MO estimator [7]. 
If the searched string σ is syllabified as σA-σB-σC, its estimated selectivity (ESel) is: 

)Sel(σ

)Sel(σ
)Sel(σESel

B

BC
AB ⋅=  

where σAB = σAσB, σBC = σBσC. If any of the previous terms is not in the CST because it has been 
pruned, then the selectivity of the string is estimated as the value of the pruning threshold T. 
Given a non-word, if the Invalid Table has to be pruned as well, and none of its invalid n-grams 
is found, its selectivity is set to the pruning threshold. 
 

5. EXPERIMENTAL EVALUATION 
We evaluate the performance of our Syllable CST. In particular, we first assess how 
syllabification, atomic node labeling and non-word filtering, reduce the size of the CST. Second, 
we compare the selectivity-estimation accuracy of the standard CST and the different variants of 
the Syllable CST. Third, we study how pruning affects the accuracy of selectivity estimates for 
the different CST types. Finally, we measure the impact of the number of errors in the data; In 
particular, we wonder if our linguistics-based optimizations still work well in the presence of many 
errors. 
 
For our experiments, we use four English newswire text corpora, Reuters-21578 (Reuters) [12] 
and three datasets of the Aquaint Corpus (APW, XIE, NYT) [6]. Since the collections contain 
data in SGML format, we first parse them to extract text fields only. We then tokenize them to 
extract single words. Stop words are filtered out, and all terms are converted to lowercase. Table 
4 contains statistics on the number of documents, the number of distinct terms, and the size of a 
complete CST (number of nodes) built on the collection. 
 

 Documents Tokens CST size 

Reuters 21578 32554 86772 

APW 239576 207616 558633 

XIE 479433 243932 633899 

NYT 314452 352404 979383 

TABLE 4: Corpora Statistics 
 

5.1 Effect of Syllabification 
The Syllable CST built on the collections significantly reduces memory requirements compared 
to the standard version. Table 5 shows that the size of the statistics data structure is more than 
halved. Note that the figures quantify size as the number of nodes in the CST. The memory 
footprint resulting from the number of nodes is implementation-specific; the currently optimal 
implementation [22] takes 8.5 KB per node. 
 

 CST’s size SL SylCST AL SylCST 

Reuters 86772 41565 (52.1%) 37298 (57.0%) 

APW 558633 308764 (44.7%) 234047 (58.1%) 

XIE 633899 307001 (51.6%) 271018 (57.2%) 

NYT 979383 526955 (46.2%) 399432 (59.2%) 

TABLE 5: CST size (in nodes) and size reduction 

 
Figure 6 shows graphically that a Syllable CST constructed according to the atomic mechanism 
(AL SylCST, see 4.2) always has smaller memory requirements than the tree built according to 
the standard algorithm (SL SylCST, see 4.2). This confirms the hypotheses from Section 4.1. 
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Memory requirements of a CST built on the NYT corpus are 40% of the initial size. This means 
both that we need less memory to build the tree, and that we can prune the tree at a lower 
threshold. The latter results in higher estimation accuracy. 
 

 
 

FIGURE 6: Atomic Labeling Yields a Syllable CST with Reduced Memory Requirements 

 
5.2 Effect of N-gram Analysis 
n-gram analysis is initialized on a small reference dictionary of common English words (69004 
terms, 650 KB). Each dictionary entry is Porter stemmed, and its n-grams are computed 
according to one of the strategies from Section 3.5 and stored in the Dictionary Table. Each 
index term is then processed, and out-of-dictionary n-grams are inserted in the Invalid N-gram 
Table. Table 6 reports the number of entries of each table. 
 

 TA SA PTA PSA 

Dictionary 5888 10305 22880 15101 

     
Invalid Table Reuters 3954 9240 11868 11071 

Invalid Table APW 6873 39728 41803 51726 

Invalid Table XIE 7517 49179 45601 62277 

Invalid Table NYT 8421 68914 63951 88623 

TABLE 6: Dictionary and Invalid N-gram Table Size 
 

The Invalid Table in turn is retained since we use it to estimate the selectivity of non-words. 
Table 6 shows that the greater the corpus size, the larger is the Invalid N-gram Table, and its 
memory requirements can become non-negligible. To limit its size, we set its maximum number 
of entries to an eighth of the tree size. This is roughly the acceptable size ratio proposed in [4] for 
the n-gram table. We followed the frequency-based approach proposed in [4] to prune the Invalid 
Table. I.e., we remove the entries with the lowest frequencies until the n-gram table has at most 
one eighth the number of entries as the CST has nodes. This increases the estimation error only 
insignificantly (by less than 0.1%) because the pruning threshold is very low, compared to that of 
the CST. The reason is that most entries in the Invalid Table are due to misspellings, which 
rarely have a frequency above 2. Only few entries represent proper names and therefore have a 
higher frequency. By keeping these high-selectivity n-grams, we can compute better estimates 
for non-words that turn out to be frequent. This is because of our hypothesis that the selectivity 
of invalid n-grams is rather strictly related to the selectivity of the words they have been 
generated from (see Section 4.1). 
 
We evaluate the strength of each strategy (trigram and syllable analysis, with and without 
considering in-word position) regarding non-word detection and the impact on the size of the 
statistics data structure. Figure 7 shows that n-gram analysis alone considerably reduces the size 
of the CST, without syllabification in this experiment. An inspection of the corpora reveals that 
the size reduction increases with the number of non-words in the corpus: The reduction is highest 
for the Aquaint XIE corpus, which contains the most non-English words, and lowest for the 
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Reuters corpus, which is the cleanest. Thus, non-word filtering is particularly beneficial if the data 
is not very clean. 
 

 
 

FIGURE 7: Size Reduction due to N-Gram Analysis 
 

  SL SylCST AL SylCST 

Reuters 

TA 34538 (-60.2%) 30514 (-64.8%) 

SA 29191 (-66.4%) 25630 (-70.5%) 

PTA 26454 (-69.5%) 23374 (-73.1%) 

PSA 25847 (-70.2%) 22721 (-73.8%) 

APW 

TA 239898 (-57.1%) 178799 (-68.0%) 

SA 197059 (-64.7%) 147959 (-73.5%) 

PTA 153005 (-72.6%) 110260 (-80.3%) 

PSA 154910 (-72.3%) 113454 (-79.7%) 

XIE 

TA 216907 (-65.8%) 190864 (-69.9%) 

SA 179375 (-71.7%) 156724 (-75.3%) 

PTA 126221 (-80.1%) 111010 (-82.5%) 

PSA 132886 (-79.0%) 116124 (-81.7%) 

NYT 

TA 419359 (-57.2%) 313492 (-68.0%) 

SA 340327 (-73.9%) 256467 (-73.8%) 

PTA 255629 (-65.3%) 183295 (-81.3%) 

PSA 261281 (-73.3%) 190746 (-80.5%) 

TABLE 7: Syllable CST Size (in Nodes) and Size Reduction 
 

We observe that the positional variants are better at detecting and removing non-words. In 
particular, positional trigram analysis performs better than the corresponding syllable strategy 
and also has a smaller Invalid Table (see Table 6). Figure 7 shows that, for the Aquaint corpora, 
more than half of the size of the CST without non-word filtering is attributable to non-words. The 
size of the Syllable CST built exclusively over valid words is reported in Table 7. These results 
demonstrate that syllable analysis is superior to state-of-the-art techniques in the non-positional 
case. It filters out more words and yields a smaller CST. In the positional case, it does not 
improve the results obtained with positional trigram analysis. 
 
Figure 8 shows that positional trigram analysis and Atomic Labeling yield a very compact tree. 
More specifically, the size of CST built over all three Aquaint corpora is reduced to 20% of its 
initial size using positional trigram analysis to filter out non-words. With Standard Labeling, non-
word filtering and syllabification still shrink the CST to at most 35% of its original size (see Table 
7). 
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FIGURE 8: Size Reduction Obtained by Building the Syllable CST over Valid Words only 

 
This means that, compared to existing techniques, (a) building the CST requires significantly less 
memory, and (b) for a given memory size, we can significantly lower the pruning threshold, 
compared to existing techniques. The latter lets the MO algorithm better estimate the selectivity 
of pruned suffixes. The experiments in the next sections will demonstrate this. 
 
5.3 Accuracy of Estimations 
The following sections report on experimental results on the accuracy of selectivity estimates 
computed on the Syllable CST. Section 5.3.1 presents the metrics used. We follow the approach 
adopted in [8, 7, 4] and evaluate positive queries (Section 5.3.2) and negative queries (Section 
5.3.3). Positive queries are those that contain terms contained in the corpus, i.e., queries with a 
selectivity greater than 0, negative queries, in turn, have a 0 selectivity. Finally, Section 5.4 
demonstrates that estimation inaccuracies due to pruning are less severe on the Syllable CST. 
 
5.3.1 Evaluation Metrics 
For positive queries, we evaluate the accuracy of our estimation model based on the average 
relative error, as suggested in [4]. It is defined as the ratio: 

Sel'

|SelESel|
(RE) Error Relative Average

−
=  (ARE) 

where ESel is the estimated selectivity and Sel the real selectivity of a given string. This 
definition of the average relative error metric includes the correction suggested in [4] to 
overcome the penalizing effect on low selectivity strings. More specifically, given a corpus of 
size C, if the actual selectivity of a string is smaller than 100/|C|, then the denominator is set to 
100/|C|, formally: 
Sel’ := max(Sel, 100/|C|) 
 
We consider the quartile distributions introduced by the same authors [4] to show how the 
accuracy of the estimator is biased. We bucketize the error distribution over the intervals 
 
[-100%,-75%), [-75%,-50%), [-50%,-25%), [-25%,0%), [0,25%), [25%,50%), [50%,75%), 
[75%,100%), [100%,∞). 
 
Estimates that fall in the interval [0,25%) are exact estimations and small overestimations, 
whereas the ones that fall in the first four buckets are underestimations. 
 
Following again [4], we use the average absolute error and its percentage of the corpus size as 
evaluation metric for negative queries. 
 
5.3.2 Positive Queries 
Testing the CST against positive queries means estimating the selectivity of strings that are 
present in the collection. Unless the tree has been pruned, these strings are in the CST. To 
evaluate the accuracy of our estimator for positive queries, we take the corpus terms and 
estimate their selectivity as described in Section 4.3. Figure 9 shows the results. The average 
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relative error for the Syllable CST, without introducing n-gram analysis to skip non-words, is 
minimal for Reuters (3.5%) and maximal for Aquaint NYT, where it is slightly over 10%. The 
different average errors for the different corpora are due to different average document sizes: 
The larger the documents, the more terms are frequent, and the higher are the document 
frequencies of the terms, for the same number of documents. This incurs larger absolute errors 
(numerator of the relative error) for the same number of documents (a hundredth of it is a lower 
bound of the denominator of the relative error, cf. Formula ARE) and yields a higher relative 
error. Average document size is highest in the Aquaint NYT corpus and lowest in the Reuters 
corpus, Aquaint XIE and APW lie in between. The average relative estimation errors behave 
accordingly. 
 

 
 

FIGURE 9: Average Relative Error 
 

The experimental results indicate that conflations due to our stemming algorithm do not 
introduce significant selectivity-estimation errors. The benefits gained from non-word detection in 
turn come at the cost of some errors: The average relative error for the SylCST without non-word 
filtering (the leftmost data points in Figure 9) is lower than with any of the non-word filtering 
strategies enabled (the TA, SA, PTA, and PSA data points). Further, there are more errors with 
n-gram analysis (the TA and PTA data points) than with syllable analysis (the SA and PSA data 
points). Overestimations, due to invalid words identified by the same invalid n-gram, penalize the 
estimation of non-words (see Example 7). However, the average relative error is always under 
20% even for Aquaint NYT, which contains the biggest percentage of non-words. For Reuters, 
errors are almost negligible. 
 
Example 7. Consider the two terms Albuquerque and Unterbauquerträger (the latter being a 
German word from the civil engineering domain). They both will be identified as non-words due 
to trigram uqu. Non-positional trigram analysis conflates these terms in the uqu bucket. In 
consequence, the selectivity of both words is over-estimated as the sum of their individual 
selectivities. Positional trigram analysis avoids this by taking the in-word position into account: 
Albuquerque belongs to the uqu_3 bucket, while Unterbauquerträger belongs to uqu_7. □ 
 
Quartile distributions are shown in Figure 10. Each graph refers to a corpus and plots the 
distribution of estimation errors according to each n-gram strategy. We normalize the absolute 
frequency to the total number of patterns tested and plot the distribution using a logarithmic scale 
for the y-axis. A linear scale would not reveal the differences between non-word detection 
strategies, since the number of overestimations and underestimations is always negligible. All 
the strategies produce an error that is much lower than 10%. The worst case is Aquaint NYT with 
non-positional trigram analysis. This is due to two reasons: (a) Non-positional trigram analysis 
incurs the most errors of all the non-word filtering strategies, and (b) the Aquaint NYT corpus has 
the largest average document size, which generally results in a higher error rate (see above). 
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However, 92% of estimations still fall in the central bucket. Non-positional trigram analysis yields 
less accurate results because it conflates more invalid trigrams (see Example 7). Their number 
is insufficient to identify non-words, and estimation errors are more likely. The number of 
estimations in the [100, ∞) bucket is interesting: It shows that if overestimations occur, they are 
likely to bear a very large error. We think that this effect has to do with the MO algorithm. It 
overestimates rare combinations of frequent substrings. 
 
5.3.3 Negative Queries 
We test our estimation model with negative patterns, which are strings that are not present in the 
indexed collection. The estimation should return selectivities close to zero. In our experiments, 
we generate a set of negative strings by randomly introducing errors into corpus words. Table 8 
presents the results. 
 

  
 Reuters Aquaint APW 

  
 Aquaint XIE Aquaint NYT 

 
FIGURE 10: Quartile Distribution of Estimation Accuracy 

 
For Reuters, the error is under 0.02%. We observe that errors tend to become larger the larger 
the documents in the corpus, for the reasons explained above. However, they remain below 
0.15% even with non-positional trigram analysis to filter non-words. This is four times less than 
the 0.6% worst case reported in [4]. This demonstrates that, even though our model does not 
return a selectivity of zero, the error induced is not significant. 
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 Terms SylCST TA SA PTA PSA 

Reuters 32,554 2.2 (0.01%) 5.5 (0.02%) 4.2 (0.01%) 4.5 (0.01%) 4.0 (0.01%) 

APW 207,616 49.5 (0.02%) 185.6 (0.09%) 126.4 (0.06%) 133.4 (0.06%) 123.6 (0.06%) 

XIE 243,932 47.1 (0.02%) 349.7 (0.14%) 211.9 (0.09%) 265.5 (0.11%) 237.0 (0.05%) 

TABLE 8: Absolute Error and Percentage of Corpus Size for Negative Queries 

 

Corpus 

 CST Type / Non-Word Filtering Strategy 

CST size 
(nodes) 

CST CST-TA CST-PTA SylCST SylCST-TA 
SylCST-

PTA 

Reuters 

32,000 17,4% (7) 18,1% (6) 17,3% (5) 6,56% (1) 7,48% (1) 6,93% (0) 

16,000 17,8% (29) 18,2% (27) 17,3% (23) 6,56% (4) 7,47% (3) 6,92% (2) 

8,000 19,7% (109) 19,4% (104) 17,9% (97) 6,56% (14) 7,46% (12) 6,91% (10) 

4,000 29,4% (332) 26,1% (323) 21,8% (310) 6,56% (53) 7,42% (50) 6,87% (46) 

APW 

32,000 12,5% (61) 15,6% (55) 11,1% (44) 8,89% (8) 14,8% (6) 13,4% (4) 

16,000 48,3% (214) 42,2% (202) 26,5% (179) 17,7% (31) 21,1% (28) 16,4% (22) 

8,000 
163,0% 
(666) 

129,0% 
(645) 

80,1% (607) 49,9% (113) 44,6% (106) 30,0% (95) 

4,000 
452,0% 
(1726) 

352,1% 
(1688) 

227,3% 
(1635) 

148,8% 
(355) 

120,1% 
(341) 

77,2% (319) 

XIE 

32,000 4,53% (22) 12,5% (18) 14,3% (14) 4,59% (3) 14,0% (2) 16,3% (1) 

16,000 19,0% (90) 21,8% (80) 19,1% (68) 7,66% (11) 15,8% (9) 17,0% (6) 

8,000 71,6% (313) 57,3% (293) 38,7% (266) 20,7% (44) 24,1% (39) 21,2% (31) 

4,000 
216,6% 
(863) 

159,1% 
(828) 

100,2% 
(779) 

62,7% (152) 52,7% (144) 37,5% (127) 

NYT 

32,000 27,6% (122) 27,2% (115) 18,7% (101) 16,1% (16) 21,0% (14) 19,5% (10) 

16,000 98,4% (413) 81,3% (396) 50,8% (364) 35,6% (65) 35,7% (61) 27,5% (54) 

8,000 
303,4% 
(1220) 

242,6% 
(1196) 

152,8% 
(1142) 

99,4% (223) 84,8% (215) 56,5% (199) 

4,000 
833,5% 
(3016) 

659,3% 
(2981) 

413,6% 
(2917) 

281,2% 
(663) 

228,6% 
(649) 

147,4% 
(628) 

TABLE 9: Average Relative Errors and Pruning Threshold by CST Size (Best Value of Line in 
Bold) 

 
5.4 Pruning 
Despite all reductions, the Syllable CST for larger corpora still requires too much memory to fit in 
the data dictionary, see Table 7 for the exact numbers One might think that the memory 
available to database servers nowadays can easily accommodate the complete CST, and that 
limits such as the 1KB limit from [8] from 1996 is obsolete. However, not only the amount of 
physical memory has grown since 1996, but also the number of relations and attributes that 
database servers must handle. The memory available for the data dictionary has to 
accommodate statistics for significantly more attributes. Consequently, the memory available for 
an individual statistics data structure has grown less than the physical memory available in total. 
In commercial database servers, assuming 1 KB as a limit for the statistics for an individual 
attribute is not unrealistic [24]. All this means that we cannot do without pruning. Our 
experiments will show that the Syllable CST can be pruned at a lower threshold, compared to the 
standard CST, because of its inherently reduced size. As a result, the estimations are 
significantly more accurate. 
 
We have pruned the CST and the Syllable CST iteratively to meet the same final size of 4,000 
nodes. Table 9 contains the average relative error and the respective pruning threshold for each 
tree size. For readability, we restrict this table to the standard CST and the Syllable CST with 
standard labeling, and we give only the results for trigram analysis. Appendix A provides the 
complete results. The Syllable CST is always more accurate than the corresponding standard 
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version when the tree is pruned. The atomic node labeling strategy gives an additional slight 
advantage. 

 
The SylCST provides good estimation results even with the minimum required size for Reuters: 
The average relative error is slightly over 40%. In general, the Syllable CST always gives the 
best estimations. This is due to considerably lower pruning thresholds: The figures show that the 
value of the pruning threshold decreases by up to 80%, compared to standard CST. This leaves 
a more accurate basis for the MO algorithm that computes the estimates for pruned strings: The 
relative estimation error is reduced by up to 70%, compared to the technique from [4]. 
 
5.5 Noisy Data 
Because the Syllable CST relies on linguistic features of the documents, it is susceptible to 
misspellings. It is unclear how the Syllable CST performs if the documents contain significantly 
more errors than a newswire corpus. Such noisy data occurs in the Blogosphere, for instance. To 
assess the behavior of the Syllable CST in the presence of many errors, we run experiments on 
documents containing errors. In order to control the error rate at arbitrarily fine granularity and to 
measure its effect, we use the same corpora as above and introduce artificial errors. To stress 
the algorithm, we describe experiments in which we have introduced random misspellings in 
10% of the terms. The misspellings we introduce are equally distributed among removal, 
insertion, and replacement of a random character within the term. 
 
The standard CST turns out impossible to build over the complete Aquaint corpora with so many 
misspellings: The CST grows out of memory due to the suffixes caused by the misspellings. In 
particular, the standard CST without non-word filtering grows so large that it exceeds the 
memory limits of a JVM running with 1.5 GB. This is by far more than a database server can 
allocate for building statistics data structures. The use of another programming language, e.g., 
C++ instead of Java, and a highly memory-optimized CST implementation might mitigate this 
problem, but will not do away with it. Thus, for this series of experiments, we only use the first 
50,000 documents of each of our test corpora. Table 10 shows the results of a comparison 
between the standard CST and the Syllable CST with standard node labeling, each without non-
word filtering and with non-positional and positional trigram analysis. 
 
The numbers show that, somewhat expected, the benefit of n-gram analysis is very high when 
the data contains many misspellings: Positional trigram analysis reduces the size of the un-
pruned CST by about 65%, i.e., 65% less memory is required to build the CST. Further, the 
results show that misspellings do not affect the benefit of syllabification to a significant degree: 
Syllabification still reduces the average relative error of selectivity estimates by about 50% in 
most of the cases. Only the error of the 4,000 node SylCST for the XIE branch is in the order of 
magnitude of the corresponding standard CST. Furthermore, n-gram analysis affects the 
average relative estimation error only negligibly. 
 
In general, the average relative estimation error shows the same tendencies as for the complete 
Aquaint corpora without artificial misspellings: (a) Both syllabification and non-word filtering 
reduce the size of the un-pruned CST, (b) syllabification reduces the pruning threshold for the 
pruned CST, (c) due to (b), syllabification improves selectivity-estimation accuracy significantly, 
(d) non-word filtering can incur some estimation errors, but does not decrease overall accuracy 
by much. However, the advantage of the Syllable CST over the standard CST is higher for the 
16,000 and 8,000 node trees, and lower for the 4,000 node tree. We attribute this effect to local 
skews in the distributions of the document frequencies of the terms. With a larger number of 
documents, as in the previous experiments, those skews level out and yield a rather predictable 
development of the relative estimation error. Conversely, these skews have a more significant 
effect in this current experiment, due to the considerably smaller number of documents. 
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Corpus CST Type CST Size 

Average relative error at different CST sizes 
(pruning threshold) 

16000 8000 4000 

APW 

CST 1710729 137.9% (1004) 219.3% (2405) 392.3% (4847) 

CST-TA 921349 125.6% (904) 186.7% (2231) 303.9% (4607) 

CST-PTA 491327 113.7% (795) 174.5% (2058) 263.0% (4389) 

SylCST 807641 28.4% (273) 65.8% (774) 201.7% (1887) 

SylCST-TA 449642 28.0% (219) 64.5% (677) 171.8% (1753) 

SylCST-PTA 227461 26.4% (156) 68.9% (572) 189.0% (1598) 

XIE 

CST 1065209 146.1% (522) 237.0% (1355) 419.1% (2897) 

CST-TA 586189 134.1% (464) 193.9% (1277) 310.3% (2759) 

CST-PTA 322911 127.5% (385) 178.2% (1169) 274.4% (2648) 

SylCST 493905 34.1% (116) 126.5% (378) 401.4% (1013) 

SylCST-TA 282024 26.5% (87) 86.3% (320) 225.1% (947) 

SylCST-PTA 148285 26.9% (56) 90.6% (252) 205.9% (854) 

NYT 

CST 2649161 125.2% (1925) 203.9% (4462) 362.5% (8482) 

CST-TA 1436417 118.4% (1799) 182.9% (4282) 310.7% (8212) 

CST-PTA 762014 109.2% (1655) 167.9% (4079) 283.2% (7908) 

SylCST 1261474 30.8% (558) 51.8% (1534) 115.2% (3688) 

SylCST-TA 704858 34.0% (486) 57.5% (1408) 130.7% (3505) 

SylCST-PTA 354332 34.4% (390) 54.6% (1272) 143.9% (3356) 

TABLE 10: Experiment Results with Noisy Data 

 

6. CONCLUSIONS 
Estimating the selectivity of query terms is essential for query optimization and in other contexts. 
The estimates have to be available before the actual query processing and need to be based on 
small summary statistics. The memory limitations result from the need to permanently hold the 
statistics used for query optimization in physical main memory. If query optimization caused only 
a single page fault (i.e., the need to swap a memory page from on-disk virtual memory back into 
physical main memory), this would annihilate the performance advantage a database system 
gains from optimizing query execution. 
 
Selectivity estimation for string predicates frequently relies on Count Suffix Trees (CST) [4, 7, 8]. 
While they provide good estimates, their storage requirements are prohibitively high. Pruning 
tries to solve this problem, by trading estimation accuracy for reduced memory needs. So far, 
pruning strategies are mostly based on frequency and tree depth. In this paper, we have 
proposed new techniques that reduce the size of CST over natural-language texts. We exclude 
suffixes that do not make sense from a linguistic point of view, regardless of their frequency. 
Syllabification has proven to be a suitable tool for generating suffixes that carry an enhanced 
semantic message, compared to letter-wise suffixes. A more aggressive stemming routine lets 
us further reduce the CST size, without affecting the quality of selectivity estimates by much. 
Further, a very concise n-gram data structure allows (a) for filtering out non-words during CST 
construction already, and (b) for estimating their selectivity precisely. 
 
The various filtering techniques described here are mutually independent. They are applicable to 
other languages as well, provided that there is a stemming procedure, a syllabification routine, or 
a dictionary of the language for the n-gram filtering. Since all the filtering takes place during CST 
construction, significantly less memory is required to build the CST. The combination of these 
approaches, together with a new node labeling strategy, yields a much more compact CST: For 
English text, estimation accuracy is the same as with a classical CST, with only 20-30% of the 
nodes. From another perspective, with the same number of nodes, the new techniques reduce 
the average estimation error by up to 70%. 
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8. APPENDIX 

Corpus / CST Type CST Size (in Nodes) 

Reuters 32000 16000 8000 4000 

CST 17,4% (7) 17,8% (29) 19,7% (109) 29,4% (332) 

CST - TA 18,1% (6) 18,2% (27) 19,4% (104) 26,1% (323) 

CST - SA 17,5% (5) 17,5% (24) 18,1% (98) 22,3% (306) 

CST - PTA 17,3% (5) 17,3% (23) 17,9% (97) 21,8% (310) 

CST - PSA 17,2% (4) 17,3% (22) 17,7% (96) 21,1% (301) 

SL SylCST 6,56% (1) 6,56% (4) 6,56% (14) 6,56% (53) 

SL SylCST - TA 7,48% (1) 7,47% (3) 7,46% (12) 7,42% (50) 

SL SylCST - SA 7,07% (0) 7,10% (2) 7,12% (11) 7,14% (47) 

SL SylCST - PTA 6,93% (0) 6,92% (2) 6,91% (10) 6,87% (46) 

SL SylCST - PSA 6,15% (0) 7,03% (2) 7,06% (10) 7,09% (45) 

AL SylCST 6,73% (1) 7,04% (4) 8,11% (14) 11,1% (54) 

AL SylCST - TA 7,91% (1) 7,91% (3) 8,65% (12) 10,7% (50) 

AL SylCST - SA 6,22% (0) 7,41% (2) 7,83% (11) 9,45% (48) 

AL SylCST - PTA 6,12% (0) 7,40% (2) 7,71% (10) 9,30% (46) 

AL SylCST - PSA 6,14% (0) 7,32% (2) 7,69% (10) 8,95% (46) 

Appendix A1: Average Relative Errors and Pruning Threshold by CST Size with Reuters 
 
 

Corpus / CST Type CST Size (in Nodes) 

APW 32000 16000 8000 4000 

CST 12,5% (61) 48,3% (214) 163,0% (666) 452,0% (1726) 

CST - TA 15,6% (55) 42,2% (202) 129,0% (645) 352,1% (1688) 

CST - SA 11,8% (48) 31,3% (187) 96,9% (619) 274,5% (1645) 

CST - PTA 11,1% (44) 26,5% (179) 80,1% (607) 227,3% (1635) 

CST - PSA 10,9% (43) 25,8% (175) 77,5% (598) 218,7% (1608) 

SL SylCST 8,89% (8) 17,7% (31) 49,9% (113) 148,8% (355) 

SL SylCST - TA 14,8% (6) 21,1% (28) 44,6% (106) 120,1% (341) 

SL SylCST - SA 12,7% (5) 17,0% (24) 34,2% (99) 91,8% (329) 

SL SylCST - PTA 13,4% (4) 16,4% (22) 30,0% (95) 77,2% (319) 

SL SylCST - PSA 13,1% (4) 16,1% (21) 29,1% (92) 74,6% (316) 

AL SylCST 7,96% (8) 13,8% (31) 35,8% (113) 105,0% (355) 

AL SylCST - TA 14,2% (6) 18,4% (28) 34,6% (106) 86,8% (341) 

AL SylCST - SA 12,3% (5) 15,2% (24) 27,2% (99) 67,2% (329) 

AL SylCST - PTA 13,1% (4) 15,1% (22) 24,3% (95) 56,6% (319) 

AL SylCST - PSA 12,9% (4) 14,9% (21) 23,8% (92) 55,2% (316) 

Appendix A2: Average Relative Errors and Pruning Threshold by CST Size with Aquaint APW 
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Corpus / CST Type CST Size (in Nodes) 

XIE 32000 16000 8000 4000 

CST 4,53% (22) 19,0% (90) 71,6% (313) 216,6% (863) 

CST - TA 12,5% (18) 21,8% (80) 57,3% (293) 159,1% (828) 

CST - SA 8,91% (16) 15,5% (73) 41,6% (276) 120,1% (789) 

CST - PTA 14,3% (14) 19,1% (68) 38,7% (266) 100,2% (779) 

CST - PSA 13,4% (13) 18,2% (66) 37,4% (258) 97,3% (761) 

SL SylCST 4,59% (3) 7,66% (11) 20,7% (44) 62,7% (152) 

SL SylCST - TA 14,0% (2) 15,8% (9) 24,1% (39) 52,7% (144) 

SL SylCST - SA 10,8% (1) 12,1% (7) 17,9% (33) 39,4% (132) 

SL SylCST - PTA 16,3% (1) 17,0% (6) 21,2% (31) 37,5% (127) 

SL SylCST - PSA 15,3% (1) 16,2% (5) 20,3% (29) 36,2% (123) 

AL SylCST 4,26% (3) 6,28% (10) 14,9% (43) 44,4% (150) 

AL SylCST - TA 13,8% (2) 15,0% (9) 20,4% (38) 40,4% (140) 

AL SylCST - SA 10,7% (1) 11,5% (7) 15,4% (34) 30,3% (134) 

AL SylCST - PTA 16,2% (1) 16,6% (6) 19,3% (31) 30,5% (129) 

AL SylCST - PSA 15,2% (1) 15,8% (6) 18,6% (30) 29,6% (126) 

Appendix A3: Average Relative Errors and Pruning Threshold by CST Size with Aquaint XIE  
 

Corpus / CST Type CST Size (in Nodes) 

NYT 32000 16000 8000 4000 

CST 27,6% (122) 98,4% (413) 303,4% (1220) 833,5% (3016) 

CST - TA 27,2% (115) 81,3% (396) 242,6% (1196) 659,3% (2981) 

CST - SA 20,8% (105) 61,0% (371) 185,7% (1146) 502,1% (2910) 

CST - PTA 18,7% (101) 50,8% (364) 152,8% (1142) 413,6% (2917) 

CST - PSA 16,9% (98) 47,8% (358) 146,7% (1121) 398,2% (2857) 

SL SylCST 16,1% (16) 35,6% (65) 99,4% (223) 281,2% (663) 

SL SylCST - TA 21,0% (14) 35,7% (61) 84,8% (215) 228,6% (649) 

SL SylCST - SA 19,1% (11) 29,4% (56) 65,6% (202) 176,0% (636) 

SL SylCST - PTA 19,5% (10) 27,5% (54) 56,5% (199) 147,4% (628) 

SL SylCST - PSA 18,0% (10) 25,6% (52) 53,1% (194) 140,8% (619) 

AL SylCST 14,1% (16) 27,6% (65) 71,5% (223) 199,4% (663) 

AL SylCST - TA 19,6% (14) 29,8% (61) 63,4% (215) 162,9% (649) 

AL SylCST - SA 18,1% (11) 25,3% (56) 50,6% (202) 127,0% (636) 

AL SylCST - PTA 18,8% (10) 24,2% (54) 44,3% (199) 105,8% (628) 

AL SylCST - PSA 17,3% (10) 22,6% (52) 42,0% (194) 102,0% (619) 

Appendix A4: Average Relative Errors and Pruning Threshold by CST Sizes with Aquaint NYT 
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