

INTERNATIONAL JOURNAL OF DATA

ENGINEERING (IJDE)

VOLUME 3, ISSUE 1, 2012

EDITED BY

DR. NABEEL TAHIR

ISSN (Online): 2180-1274

International Journal of Data Engineering is published both in traditional paper form and in

Internet. This journal is published at the website http://www.cscjournals.org, maintained by

Computer Science Journals (CSC Journals), Malaysia.

IJDE Journal is a part of CSC Publishers

Computer Science Journals

http://www.cscjournals.org

INTERNATIONAL JOURNAL OF DATA ENGINEERING (IJDE)

Book: Volume 3, Issue 1, February 2012

Publishing Date: 21-02-2012

ISSN (Online): 2180-1274

This work is subjected to copyright. All rights are reserved whether the whole or

part of the material is concerned, specifically the rights of translation, reprinting,

re-use of illusions, recitation, broadcasting, reproduction on microfilms or in any

other way, and storage in data banks. Duplication of this publication of parts

thereof is permitted only under the provision of the copyright law 1965, in its

current version, and permission of use must always be obtained from CSC

Publishers.

IJDE Journal is a part of CSC Publishers

http://www.cscjournals.org

© IJDE Journal

Published in Malaysia

Typesetting: Camera-ready by author, data conversation by CSC Publishing Services – CSC Journals,

Malaysia

CSC Publishers, 2012

EDITORIAL PREFACE

This is first issue of volume three of the International Journal of Data Engineering (IJDE). IJDE is
an International refereed journal for publication of current research in Data Engineering
technologies. IJDE publishes research papers dealing primarily with the technological aspects of
Data Engineering in new and emerging technologies. Publications of IJDE are beneficial for
researchers, academics, scholars, advanced students, practitioners, and those seeking an
update on current experience, state of the art research theories and future prospects in relation to
computer science in general but specific to computer security studies. Some important topics
cover by IJDE is Annotation and Data Curation, Data Engineering, Data Mining and Knowledge
Discovery, Query Processing in Databases and Semantic Web etc.

The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal.
Starting with volume 3, 2012, IJDE appears in more focused issues. Besides normal publications,
IJDE intend to organized special issues on more focused topics. Each special issue will have a
designated editor (editors) – either member of the editorial board or another recognized specialist
in the respective field.

This journal publishes new dissertations and state of the art research to target its readership that
not only includes researchers, industrialists and scientist but also advanced students and
practitioners. The aim of IJDE is to publish research which is not only technically proficient, but
contains innovation or information for our international readers. In order to position IJDE as one of
the top International journal in Data Engineering, a group of highly valuable and senior
International scholars are serving its Editorial Board who ensures that each issue must publish
qualitative research articles from International research communities relevant to Data Engineering
fields.

IJDE editors understand that how much it is important for authors and researchers to have their
work published with a minimum delay after submission of their papers. They also strongly believe
that the direct communication between the editors and authors are important for the welfare,
quality and wellbeing of the Journal and its readers. Therefore, all activities from paper
submission to paper publication are controlled through electronic systems that include electronic
submission, editorial panel and review system that ensures rapid decision with least delays in the
publication processes.

To build its international reputation, we are disseminating the publication information through
Google Books, Google Scholar, Directory of Open Access Journals (DOAJ), Open J Gate,
ScientificCommons, Docstoc and many more. Our International Editors are working on
establishing ISI listing and a good impact factor for IJDE. We would like to remind you that the
success of our journal depends directly on the number of quality articles submitted for review.
Accordingly, we would like to request your participation by submitting quality manuscripts for
review and encouraging your colleagues to submit quality manuscripts for review. One of the
great benefits we can provide to our prospective authors is the mentoring nature of our review
process. IJDE provides authors with high quality, helpful reviews that are shaped to assist
authors in improving their manuscripts..

Editorial Board Members
International Journal of Data Engineering (IJDE)

EDITORIAL BOARD

Editor-in-Chief (EiC)

Professor. Walid Aref
 Purdue University (United States of America)

EDITORIAL BOARD MEMBERS (EBMs)

Dr. Zaher Al Aghbari
University of Sharjah
United Arab Emirates

Assistant Professor. Mohamed Mokbel
University of Minnesota
United States of America

Associate Professor Ibrahim Kamel
University of Sharjah
United Arab Emirates

Dr. Mohamed H. Ali
StreamInsight Group at Microsoft
United States of America

Dr. Xiaopeng Xiong
Chongqing A-Media Communication Tech Co. LTD
China

Assistant Professor. Yasin N. Silva
Arizona State University
United States of America

Associate Professor Mourad Ouzzani
Purdue University
United States of America

Associate Professor Ihab F. Ilyas
University of Waterloo
Canada

Dr. Mohamed Y. Eltabakh
IBM Almaden Research Center
United States of America

Professor Hakan Ferhatosmanoglu
Ohio State University
Turkey

Assistant Professor. Babu Shivnath
Duke University
United States of America

Dr. Andrey Balmin
IBM Almaden Research Center
United States of America

Dr. Rishi R. Sinha
Microsoft Corporation
United States of America

Dr. Qiong Luo
Hong Kong University of Science and Technology
China

Dr. Thanaa M. Ghanem
University of St. Thomas
United States of America

Dr. Ravi Ramamurthy
Microsoft Research
United States of America

Dr David DeHaan
Sybase
Canada

International Journal of Data Engineering (IJDE), Volume (3), Issue (1) : 2012

TABLE OF CONTENTS

Volume 3, Issue 1, February 2012

Pages

1 - 27 Improved Count Suffix Trees for Natural Language Data

Guido Sautter, Klemens Böhm

G. Sautter & K. Böhm

International Journal of Data Engineering (IJDE), Volume (3) : Issue (1) : 2012 1

Improved Count Suffix Trees for Natural Language Data

Guido Sautter sautter@ipd.uka.de
Researcher
Department of Computer Science
Karlsruhe Institute of Technology
Am Fasanengarten 5, 76128 Karlsruhe, Germany

Klemens Böhm boehm@ipd.uka.de
Full Professor
Department of Computer Science
Karlsruhe Institute of Technology
Am Fasanengarten 5, 76128 Karlsruhe, Germany

Abstract

With more and more text data stored in databases, the problem of handling natural language
query predicates becomes highly important. Closely related to query optimization for these
predicates is the (sub)string estimation problem, i.e., estimating the selectivity of query terms
before query execution based on small summary statistics. The Count Suffix Trees (CST) is the
data structure commonly used to address this problem. While selectivity estimates based on
CST tend to be good, they are computationally expensive to build and require a large amount of
memory for storage. To fit CST into the data dictionary of database systems, they have to be
pruned severely. Pruning techniques proposed so far are based on term (suffix) frequency or on
the tree depth of nodes. In this paper, we propose new filtering and pruning techniques that
reduce the building cost and the size of CST over natural-language texts. The core idea is to
exploit the features of the natural language data over which the CST is built. In particular, we
aim at regarding only those suffixes that are useful in a linguistic sense. We use (well-known) IR
techniques to identify them. The most important innovations are as follows: (a) We propose and
use a new optimistic syllabification technique to filter out suffixes. (b) We introduce a new affix
and prefix stripping procedure that is more aggressive than conventional stemming techniques,
which are commonly used to reduce the size of indices. (c) We observe that misspellings and
other language anomalies like foreign words incur an over-proportional growth of the CST. We
apply state-of-the-art trigram techniques as well as a new syllable-based non-word detection
mechanism to filter out such substrings. – Our evaluation with large English text corpora shows
that our new mechanisms in combination decrease the size of a CST by up to 80%, already
during construction, and at the same time increase the accuracy of selectivity estimates
computed from the final CST by up to 70%.

Keywords: Selectivity Estimation, Count Suffix Tree, Pruning, Text Data

1. INTRODUCTION
With more and more natural language data stored in databases, query processing for this type of
data becomes highly important. To optimize queries over this kind of data, the (sub)string
estimation problem is vital. This is estimating the selectivity of natural language query
predicates, usually term-based before the actual query execution, based on small summary
statistics. The selectivity of a term (or of any substring) is the number of documents in the
underlying collection it appears in. To estimate the selectivity of predicates of the kind
considered here, Count Suffix Trees (CST) are commonly used [8]. According to [8], each CST
node stores the selectivity of the string along the path from the root to the node. The selectivity
of a string can be retrieved in a time linear to its length. A CST built over text data can efficiently
solve the selectivity-estimation problem.

G. Sautter & K. Böhm

International Journal of Data Engineering (IJDE), Volume (3) : Issue (1) : 2012 2

However, CST are computationally expensive to build and have high memory requirements. The
space complexity of a CST is proportional to the size of the underlying alphabet and to the
number of strings stored in the CST1. A CST built over a large amount of text data may well
exceed 1,000,000 nodes. Since the statistics data structures used by the query optimizers of
database systems have to fit in the data dictionary, i.e., in a very limited amount of memory,
CST used for query optimization need to be reduced in size [4]. This is because they always
have to be in physical main memory. If query optimization caused only a single page fault (i.e.,
the need to swap a memory page from on-disk virtual memory back into physical main memory),
this would annihilate the performance advantage database systems gain from query
optimization. One might think that the 1 KB limit from [8], published in 1996, is too strict
nowadays, and that modern database servers can have statistics that are larger by orders of
magnitude. However, not only the amount of memory available to database servers has rapidly
grown since 1996. The amount of data to be handled has grown at a similar rate, both regarding
the number of relations and of attributes per relation. Thus, the data dictionary has to
accommodate significantly more statistics. Consequently, it is not unrealistic to assume that the
statistics for an individual attribute still have to fit into 1 KB with today’s commercial database
servers [24].

To make the CST meet these restrictive memory requirements, a common solution is to apply
pruning rules. Discarding some nodes, for instance those with the lowest selectivities [7, 8],
saves space. But it also affects the accuracy of estimations. To deal with this problem, methods
for estimating the selectivity of strings that are not retained in the Pruned CST (PST) any more
have been proposed. Algorithms like KVI or MO [8, 7] alleviate estimation inaccuracies due to
pruning to some degree, but do not rule out the problem. Pruning becomes even more
problematic with non-static document collections, e.g., journal archives or the Blogosphere.
Estimation errors may arise, due to incorrect node counts [1]. The only solution currently known
is to rebuild the CST over the updated collection. Even though algorithms that reduce space and
time complexity have been proposed [17, 18], CST construction remains computationally
expensive and time consuming.

The goal of our work is finding other ways of reducing the size of the CST, i.e., filtering out
suffixes. We focus on natural-language texts. Our core idea is to find linguistic criteria that let us
decide, prior to insertion in the CST, which strings or suffixes are more likely to be queried. For
the CST, we keep only the latter, and we deal with the rest separately to reduce the size of the
CST during construction already, before the actual pruning. In particular, we apply syllabification,
stemming, and non-word detection. The combination of these mechanisms allows for building a
tree that requires significantly less memory than state-of-the-art CST. More specifically, the
contributions of this paper are as follows:

Design of a New Approximate Syllabification Algorithm for CST-specific Data
Preprocessing
We observe that letter-wise suffixes that do not start at a syllable border carry little semantic
meaning. To filter out these suffixes we propose a fast approximate syllabification routine, based
on the morphological structure of words. In order to avoid filtering too many suffixes, however,
we have to find every syllable boundary, even at the cost of some false positives. Therefore, our
routine is more aggressive than conventional ones. We will show that avoiding the insertion of
suffixes that do not start at syllable borders reduces the size of the CST by much, not only for
storage, but also during construction.

1 Note that this mostly holds for languages in which words tend to consist of many letters, like the
languages written in the Latin, Greek, Cyrillic, Arabic, Hebrew, or Thai writing system – these are the ones
we deal with here For languages written in symbolic writing systems, like Chinese, Japanese, or Korean,
words consist of far fewer symbols, and other data structures are better suited for selectivity estimation
altogether, e.g. histograms.

G. Sautter & K. Böhm

International Journal of Data Engineering (IJDE), Volume (3) : Issue (1) : 2012 3

Design of an Optimistic Suffix and Affix Stripping Algorithm
Stemming, that is conflating different inflections of a term to the same root form, further reduces
the number of suffixes. We observe that traditional stemming algorithms like Porter’s stemmer
[16] are rather conservative, i.e., omit some conflations to avoid errors. We propose a new, more
optimistic stemming procedure. It conflates more terms and thus reduces the number of suffixes
to store. This procedure also includes prefix stripping, which moves the stem up front. The
rationale is that the stem carries the most semantic meaning, and the nodes closest to the root of
a CST are the last ones to be pruned. Note that linguistic errors may occur with this approach.
But we show that their effect on estimation quality is likely to be insignificant.

Non-word Filtering
Experience shows that non-words and foreign words incur an over-proportional number of nodes
in the CST. They also increase the memory consumption in the building phase of the tree. We
therefore deploy a q-gram based algorithm for non-word detection to prevent inserting non-words
in the CST. In particular, we exclude terms including very rare q-grams. To estimate the
selectivity of non-words, we use a variant of what [4] refers to as q-gram estimator instead.
Because we apply this technique only to words with highly distinctive q-grams, we do not
encounter the errors reported in [4]. In contrast, our evaluation shows that the q-gram technique
yields very good selectivity estimates for non-words.

New Node Labeling sStrategy
Traditional CST construction mechanisms suggest labeling each node with a single character
and applying path compression when the tree is completely built. We propose a new node
labeling mechanism which is syllable-based. It results in a more compact CST. In particular, we
use syllables as the atomic node labels, instead of individual characters. While this increases the
fan-out of the tree, it reduces its depth significantly, resulting in more compact CST.

Extensive Performance Experiments and Feasibility Demonstration.
We run a series of evaluations over large English document corpora. It turns out that syllable
CST require significantly less space. For instance, the size of the CST built over datasets from
the Aquaint Corpus [6] is reduced by up to 80%. We also show that the benefit of Syllable CST
over traditional ones grows with the number of non-words and misspellings in the corpus, by
introducing errors into it in a controlled way. Thanks to the reduced memory occupation,
frequency-based pruning can then use lower thresholds. This results in more accurate
estimations. We experimentally verify that, when pruned to meet the same size, Syllable CST
provide significantly better selectivity estimates than standard ones. On average, the relative
estimation error is reduced by up to 80%.

Although we use English language corpora for our experiments, the techniques presented in this
paper are not restricted to English: They are applicable to any character-based language,
provided that a small reference dictionary (for the non-word filtering) and a stemming and
syllabification routine (for building the Syllable CST) are available.

Paper Outline
Section 2 reviews related work. Section 3 describes the syllabification and non-word detection
techniques, Section 4 the design of the Syllable CST, and how to use it for selectivity estimation.
Section 5 features our evaluation. Section 6 concludes. [23] is an shorter, preliminary version of
this paper. This current article features a new node-labeling strategy, a more detailed description
and discussion of our algorithms, and more extensive experiments which assess our techniques
with documents containing spelling errors.

2. RELATED WORK
The Count Suffix Tree (CST) [8] is a data structure commonly used to estimate the selectivity of
string predicates. Given a collection of documents, all strings and their suffixes are stored in the
CST. Each node is labeled with a string and has a counter that stores the number of occurrences

G. Sautter & K. Böhm

International Journal of Data Engineering (IJDE), Volume (3) : Issue (1) : 2012 4

in the collection. Since CST tend to grow quickly in size when built on large text datasets,
pruning strategies are essential to make the data structure meet memory constraints. Pruning
requires estimating the selectivity of those terms whose node has been discarded. Krishnan et al.
[8] has proposed three families of estimation methods. Among these, the KVI algorithm yields
the most accurate results according to experiments. The MO (Maximal Overlap) algorithm,
proposed by Jagadish et al. [7], outperforms KVI when the statistical short memory property
holds for sequences of symbols. According to MO, the searched pattern is parsed in overlapping
(when existing) substrings, which are considered statistically dependent. Since both KVI and MO
tend to underestimate selectivities, Chaudhuri et al. [4] propose a new estimation model based
on q-gram Markov tables and a regression tree. Bae [1] describes which estimation inaccuracies
may arise in the presence of pruning and tries to overcome the problem by building a Count Q-
gram tree. While it is useful for DNA data (alphabet size 5), [1] also shows that it is worse when
the alphabet size increases. It is hardly applicable for natural language data (alphabet size 26).

Statistics on collections of text data [2] must be updated when new document are added to the
collection. Once nodes have been pruned, however, there is no information left on the previous
selectivity of removed strings. If they appear to be frequent in newly added documents, the node
counts are incorrect. This is because they do not include the selectivities before pruning. As
mentioned in Section 1, the only way to solve this problem is to rebuild the CST over the
updated collection. Algorithms have been developed for constructing in-memory suffix trees in
linear time, proportional to the number of strings stored in it, by Weiner [19] and McCreight [15].
Ukkonen [18] later designed an online version. The ever-increasing amount of available text data
however calls for disk-based construction algorithms. The “Top Down Disk-based” strategy by
Tian et al. [17], despite the fact that it runs in quadratic time, is faster than the linear in-memory
alternatives, and its space consumption is lower than that of other algorithms described in
literature. Even if disk-based strategies have significantly decreased time and space building
overhead, the computational effort is still in the way of rebuilding the tree frequently. On the
other hand, the final CST has to fit in main memory to let query optimizers estimate selectivities
in short time. Thus, pruning and its drawbacks cannot be avoided. The goal of our work therefore
is to find pruning strategies that incur less inaccuracy than the existing standard ones.

We will refer to further related work, in particular to algorithms from computational linguistics
which we adapt and deploy in our context, in Sections 3 and 4.

3. SYLLABLE COUNT SUFFIX TREE
This section proposes a new variant of the CST data structure for selectivity estimation on
collections of natural-language texts, the Syllable CST. Section 3.1 explains how syllabification
reduces the size of the suffix tree. Section 3.2 presents our new syllabification routine. Sections
3.3 and 3.4 explain why Porter’s algorithm is not sufficient for our purpose, and why we
implement another stemming routine. Section 3.5 illustrates the drawbacks of inserting non-
words in the data structure and proposes a solution.

3.1 Syllabification
According to the original definition of suffix tree [19], inserting an index term in the tree implies
generating all of its suffixes and inserting them as well. Given a string σ of length n, defined over
the alphabet Σ and a string terminator symbol $ (not in Σ and lexicographically subsequent to
any symbol in it), the i-th suffix is the substring starting with the i-th character of σ and
terminated by $.

Example 1. Given σ = information$, its suffixes are: (information$, nformation$, formation$,
ormation$, rmation$, mation$, ation$, tion$, ion$, on$, n$, $). □

Some of these suffixes are very unlikely to be ever addressed in a user query. The reason is that
they convey very little semantic meaning, e.g., -rmation. Syllables are natural word building

G. Sautter & K. Böhm

International Journal of Data Engineering (IJDE), Volume (3) : Issue (1) : 2012 5

blocks in many languages. Using syllable-division points to compute suffixes reduces their
number. The remaining ones carry an enhanced semantic message at the same time.

Example 2. Given the syllabified string σ = in-for-ma-tion-$, the set of its syllable suffixes is:
(in-for-ma-tion-$, for-ma-tion-$, ma-tion-$, tion-$, $). □

Syllabification proves to be convenient to filter out suffixes that start with unusual combinations
of letters. Since the number of suffixes that need to be stored in the tree decreases, its size is re-
duced as well. Figure 1 contrasts memory requirements of a standard CST built over the string
‘information’ with the equivalent Syllable CST. The number of nodes is more than halved. We
expect a similar size reduction for larger datasets as well. Experimental evaluations will confirm
this hypothesis (see Section 5).

Discussion. Syllabification-based filtering is not limited to English; it is applicable to any
character-based language, provided that there is a syllabification routine. In this paper, we use
English text for the examples and for the experiments.

Clearly, filtering out suffixes with the mechanism described here affects selectivity estimation for
substrings that do not start at syllable boundaries. For instance, the Syllable CST in Figure 1
would not be able to estimate the selectivity of the predicate LIKE ‘%nfo%’. This is not a severe
drawback (we argue). Namely, queries over natural language text, even if it is dirty, are likely to
contain rather “natural” text fragments, e.g., LIKE ‘%info%’ or LIKE ‘%inform%’, as opposed to
‘%nfo%’.

FIGURE 1: Syllable CST on the String information$

3.2 The Syllabification Routine
The problem of syllabification of written words is strictly tied to the hyphenation (or justification)
task [13]. Algorithms for splitting words at syllable boundaries can be classified as rule-based or
dictionary-based. The latter ones provide orthographically correct syllable division points by
performing a lookup in a dictionary. Although they guarantee greater accuracy, there are several
reasons why we did not pursue this option. First, since we want to minimize space requirements,
the overhead of a dictionary is not tolerable. The dictionary size strongly depends on the content

G. Sautter & K. Böhm

International Journal of Data Engineering (IJDE), Volume (3) : Issue (1) : 2012 6

and the size of the corpus. The New York Times dataset of the Aquaint Corpus, for instance,
contains 352404 different terms. The size of the dictionary should be of the same order of
magnitude. Second, no matter the size of the dictionary, there will always be words that are not
contained in it (foreign language words, proper names, etc.). Furthermore, a language keeps
evolving, and new terms constantly enrich the dictionary. Third, since many syllabification rules
are based on how the word is pronounced, there are differences regarding syllabification of the
same term according to different English dictionaries.

Rule-based hyphenation systems, such as the LATEX algorithm [13], are an alternative. They
are typically faster and require less storage space, but they are inherently subject to errors. The
reason is that, even if a set of general rules has been defined, based on sophisticated linguistic
literature, syllabification is not an “exact” process. Most of the rules are based on the sound of
the spoken word and are not easy to implement. The so-called VV rule is an example [5]. It
suggests separating two consecutive vowels in two distinct syllables if they do not form a
diphthong, or considering them as part of the same syllable otherwise. Without any further
phonological information, it is impossible to tell if adjacent vowels form a diphthong or not. Since
our goal is exploiting syllabification to reduce memory requirements of the CST, however, we
have adopted a rule-based solution anyway. It trades grammatical accuracy for a reduction of
computational overhead and extra data required.

Example 3. The diphthong ie is split in sci-ence, since the vowels are pronounced separately.
The same diphthong in re-triev-al belongs to one syllable. □

To achieve high-quality results, the hyphenation routine of LATEX [13] uses close to 5.000 rules
in 5 levels. The representation of these rules alone would consume more than half of the
memory available for a selectivity-estimation data structure. In addition, processing a term
through 5 levels of rules causes more computational effort than acceptable to obtain selectivity
estimates. Further, the LATEX hyphenation algorithm is trimmed towards missing some division
points rather than dividing terms at incorrect positions. Because we remove suffixes not starting
at syllable boundaries, this would result in too many suffixes sorted out. Consequently, we favor
faulty hyphenation over missed division points to some extent. In other words, the design goal
behind our hyphenation routine is different from the one of the routine used in LATEX.

Because we wanted to exploit syllabification to reduce memory requirements of the suffix tree,
we choose a rule-based approach. To minimize the computation effort, we use a very small set
of rules. To miss as few division points as possible, our rules are more aggressive than the ones
in [5]. The basic idea of our syllabification routine is to determine syllabification points matching
regular expressions over the consonant-vowel structure of the word. Function 1 lists the pseudo-
code of the function computing the word structure. The output string is constructed by mapping
each character to V, in case of a vowel (Line 3), and to C otherwise (Line 4). Function 2 contains
the pseudo-code of the syllabification routine. First the algorithm checks the word length (Line 1):
Words shorter than four characters are left unchanged (e.g., box, cat).

Function 1: computeWordStructure

Input: String word

Output: String wordStructure

1 for (I = 0; i < word.length; i++)

2 if (word[i] is vowel)

3 wordStructure[i] = ’V’;

4 else wordStructure[i] = ’C’;

5 return wordStructure;

In English, the number of syllables equals the number of vowel sounds. We assume that a vowel
sound corresponds to a sequence of consecutive vowels. We compute the number of vowel
sounds (Line 2). If it is less than two, the word is returned (Line 3).

G. Sautter & K. Böhm

International Journal of Data Engineering (IJDE), Volume (3) : Issue (1) : 2012 7

Function 2: getSyllables

Input: String word

Output: String syllabifiedWord

1 if (word.length < 4) return word;

2 int vowelSounds = countVowelSounds(word);

3 if (vowelSounds < 2) return word;

4 wordStructure = computeWordStructure(word);

5 if (wordStructure contains consonantBlends) {

6 replace ”CC” with ”DD”;// Check patterns with blends

7 if (wordStructure.match(”VCDDV”))

8 replace ”VCDDV” with “VC-DDV”;

9 if (wordStructure.match(”CVDDV”))

10 replace ”CVDDV” with “CV-DDV”;

11 }

12 // Check common patterns

13 if (wordStructure.match(”VCCV”)

14 replace ”VCCV” with ”VC-CV”;

15 if (wordStructure.match(”VCCCV”)

16 replace ”VCCCV” with ”VC-CCV”;

17 if (wordStructure.match(”CVVCV”)

18 replace ”CVVCV” with ”CVV-CV”;

19

20 sylabifiedWord = getDivisionPoints(wordStructure);

21 return syllabifiedWord;

The following step is the construction of the string describing the structure of the word (Line 4).
To find syllable boundaries, we test the word structure against 5 basic patterns (Lines 13-19).
Table 1 shows the patterns and how we derive syllabification points from them; Table 1a
illustrates the process for one word.

Vowel-Consonant-Vowel Structure Derived Syllabification Examples

VCV V-CV mo-tor, lu-nar

VCCV VC-CV un-der, sub-way

VCCCV VC-CCV im-print, pil-grim

VCCCCV VCC-CCV sand-stone

VCCCCCV VCC-CCCV high-street

TABLE 1: The Basic Syllabification Patterns

Step Word Status Word Structure

Input word undoubtedly -

Line 4 word structure undoubtedly VCCVVCCVCCV

Line 13 found division point (pattern VCCV) un-doubtedly VC-CVVCCVCCV

Line 13 found division point (pattern VCCV) un-doub-tedly VC-CVVC-CVCCV

Line 13 found division point (pattern VCCV) un-doub-ted-ly VC-CVVC-CVC-CV

Line 20 Transfer division points from structure to word un-doub-ted-ly VC-CVVC-CVC-CV

TABLE 1a: Syllabification Algorithm Applied to undoubtedly

Consonant blends and digraphs are couples of consonants that are sounded together and
therefore should not belong to different syllables. However, the common syllabification pattern
VC-CV would incorrectly syllabify words like migration to mig-ra-tion if we did not take the

G. Sautter & K. Böhm

International Journal of Data Engineering (IJDE), Volume (3) : Issue (1) : 2012 8

presence of the consonant blend gr into account. Therefore, we define a set of common English
blends and bigraphs2 and check if any of them appear in the word (Line 5). In case of a match,
we modify the word structure (Line 6) by replacing the bigraph’s consonants CC with DD. We
then test the word structure against 14 specifically designed patterns (Lines 7-10), see Table 1b.
If none of these patterns matches, we use the five basic patterns described above (Lines 13-19).
Finally, we retrieve the division points from the position of the dashes among the word structure
string (Line 20) and return the syllabified word.

Vowel-Consonant-Vowel Structure Derived Syllabification Examples

VDDV V-DDV fa-ther

VCDDV VC-DDV im-print

VDDCV VDD-CV bank-rupt

VDDCCV VDD-CCV -

VCDDCV VC-DDCV un-thrilled

VCCDDV VCC-DDV off-shore

VDDDDV VDD-DDV bank-crush

VDDCCCV VDD-CCCV

VCDDCCV VCDD-CCV

VCCDDCV VCC-DDCV

VCCCDDV VCC-CDDV off-spring

VDDDDCV VDD-DDCV

VDDCDDV VDD-CDDV high-school

VCDDDDV VCDD-DDV worth-while

TABLE 1b: The Special Syllabification Patterns

This approach has a few weaknesses. Compound words, for instance, are potential error
sources. They should be divided between the words that make them up, but the sole analysis of
the word structure cannot tell where the exact division point is located. The word sandbox, for
instance, will be divided according to the syllabification rule that suggests splitting a sequence of
three consonants after the first one (Line 16). This produces the incorrect san-dbox.

However, even if the algorithm does not always detect correct division points, we will
experimentally verify that these inaccuracies hardly affect the quality of selectivity estimates. In
Section 4.3, we will discuss the effect of inaccuracies in more detail.

3.3 Stemming
Morphological variants of the same term (plural, past tense, third person singular, etc.) are
responsible for a considerable growth of the data structure. Figure 2 shows how the size of a
Syllable CST built on the string connect increases when its past tense and continuous forms are
included. A common practice to reduce the size of an index is stemming, i.e., conflating inflected
terms to their root form. Conflating connected and connecting with connect is reasonable since
they convey the same semantic message. Several stemming algorithms have been proposed in
literature [9, 16, 14]. Porter’s stemmer [16] probably is the most popular one. It adopts a longest-
match suffix stripping strategy, through a series of linear steps. Since it is fast and does not
require additional storage, we use Porter’s algorithm as a preprocessing step. However, the
number of stems can be further reduced. Porter’s algorithm does not deal with some common
suffixes (e.g., -less, -ution, -ary, etc.). [9] features a detailed description of errors and wrong
conflations made by Porter’s stemmer. Furthermore, it does not deal well with compound

2 In particular, we check the following bigraphs: bl, cl, dl, fl, pl, gl, br, cr, dr, fr, pr, tr, ch, gh, ph, sh, th, wh,
kn, ck

G. Sautter & K. Böhm

International Journal of Data Engineering (IJDE), Volume (3) : Issue (1) : 2012 9

suffixes, namely suffixes obtained by concatenating more than one suffix. The adverb
increasingly, for instance, is not stemmed. The reason is that the suffix –ly is removed only when
it inflects adjectives ending with -ent or -al. Not conflating increasingly with its stem implies the
generation of more suffixes, i.e., nodes.

FIGURE 2: Effect of Morphological Variants of the same Word on the Syllable CST’s Size

Traditionally, stemming only deals with inflectional or derivational suffixes, but rarely attempts to
remove prefixes [11]. However, we observe that removal of prefixes further reduces the number
of nodes of a suffix tree. If we conflated disconnect with its stem connect, we would save the
space required by the additional suffix dis-con-nect. In Section 3.4, we will illustrate how we
manage to reach this size reduction, without losing the information carried by the prefix. We
propose a more aggressive stemming routine based on Porter’s stemmer that lets us decrease
the CST size, without significantly reducing the accuracy of selectivity estimations.

3.4 Stemming Routine
Function 3 lists the pseudo-code of our stemming routine. Our algorithm invokes Porter’s
algorithm (Line 3), but only as a preprocessing step. It then removes iteratively common English
prefixes and suffixes that Porter’s stemmer may not have stripped. The algorithm places a
condition on the minimum length of the final stem. The affix stripping process stops if no affix is
found, or if the removal of one affix would result in a stem shorter than three characters (Line 4).

We divide suffixes in four classes, depending on their inflectional role (adverbial, noun,
adjective, verbal), and use an out-of-alphabet symbol to identify each of them (Line 6,
suffixCategoryID). Each removed suffix is coded as a string obtained by concatenation of the
category identifier and its length (Line 8-9). The reason is that a code is typically shorter than the
suffix itself. This reduces the number of bytes to store it. We observe that there are not many
suffixes belonging to the same category that can be attached to the same stem, therefore the
probability of conflations due to the same code is low. To reduce it further, we use the
information on the length. This way, even if -less and -ful are both adjective suffixes, we can
distinguish them based on their length.

In contrast, we do not code prefixes, for the following reason. Dividing prefixes in classes to take
advantage of a codified representation is not trivial. Prefixes add a specific connotation to the
meaning of the word. Numerical prefixes, for instance bi-, tri-, give quantitative information;
negative prefixes express the opposite meaning of a term. However, it is more difficult to state
which message is carried by other prefixes and use it to divide them in classes, as we did with
suffixes.

G. Sautter & K. Böhm

International Journal of Data Engineering (IJDE), Volume (3) : Issue (1) : 2012 10

Function 3: Stemming algorithm

Input: word, suffixes[4], prefixes

Output: stemmedWord

1 Array suffixCodes; // Store coded suffixes

2 Array prefixes; // Store removed prefixes

3 word = porterStem(word)

4 while(affixFound and word.length > 3) {

5 if (affix is suffix and word.length-affix.length>2)

6 if (affix in any suffixes[]) {

7 // Check suffix category and code suffix

8 suffixCode = suffixCategoryID + suffixLength;

9 suffixCodes.add(suffixCode);

10 } else {

11 prefixes.add(affix);

12 }

13 word = affix; // Affix stripping

14 }

15 stemmedWord = word + prefixes + suffixes;

16 return stemmedWord;

By reordering prefixes and suffixes, we can further reduce the size of the CST. The algorithm
changes the order of affixes as follows: We syllabify the stem and attach the prefixes and
codified suffixes (Line 15).

Example 4. Suppose that adverbial and adjective suffixes are associated with the respective
symbols. Given the word undoubtedly, Table 2 reports the steps of the algorithm and its output.
Figure 3 shows how the number of nodes of the CST built on un-doubt-ed-ly decreases thanks to
this strategy. We can omit the tree branch generated by the prefix. □

FIGURE 3: Moving the Prefix to the End of the Stem

Moving prefixes behind the stem shows another benefit. In case of pruning, the stem is last to be
pruned. This preserves its distinctive semantics as long as possible. We do not move the
prefixes behind the suffixes, however, because the prefix carries more semantic meaning than
the suffixes and should thus not be pruned before them.

G. Sautter & K. Böhm

International Journal of Data Engineering (IJDE), Volume (3) : Issue (1) : 2012 11

Step Word Status Word Parts Split

Input word undoubtedly

Line 3 Porter stem undoubtedli

Line 6 Suffix found undoubted α2

Line 6 Suffix found undoubt α2, β2

Line 11 Suffix found doubt α2, β2 un

Line 14 String stemmed doubtunα2β2

TABLE 2: Stemming Algorithm Applied to undoubtedly

3.5 Non-Word Detection
Typographical errors are a serious problem regarding CST space requirements. Typos and
misspelled words result in undesirable suffixes, i.e., CST nodes. Figure 4 shows how the CST
grows if the incorrect term developement is added to a CST built on development. We observe
that we can save space by not inserting mistyped variants of index terms in the CST, but storing
them in another way, as explained below. The benefit of non-word detection grows with the
number of misspellings in the text collection. This is because the more misspellings are present
in the document collection, the more nodes are created while building the CST, similarly to the
example in Figure 4. An observation of ours, based on our experiments, is that the probability of
identical accidental misspellings is very low. Consequently, the CST nodes created for the
suffixes of misspelled terms are relatively useless; Due to their low frequency, they will most
likely be pruned after the CST is built. Nevertheless, they require a considerable amount of
memory while building the CST, so it is beneficial to exclude misspelled words right away.

A common technique for detecting misspellings is based on n-gram analysis [10]. Given a string,
an n-gram is any substring of length n. n-gram analysis requires a set of training words which
must be sufficiently representative of the language. From these words, n-grams are extracted
and inserted into a table (Dictionary Table). We investigate four strategies to detect non-words.
Two of them, Trigram Analysis (TA) and Positional Trigram Analysis (PTA), are based on
conventional trigram analysis, the other ones, Syllable Analysis (SA) and Positional Syllable
Analysis (PSA), are more recent and are similar to [3].

FIGURE 4: Inserting developement in the CST

Example 5. Table 3 illustrates which strings will be inserted in the Dictionary Table from the
word inform according to each strategy. □

G. Sautter & K. Böhm

International Journal of Data Engineering (IJDE), Volume (3) : Issue (1) : 2012 12

Trigram analysis (TA) inf, nfo, for, orm

Positional trigram analysis (PTA) inf_0, nfo_1, for_2, orm_3

Syllable analysis (SA) in, form

Positional syllable analysis (PSA) in_0, form_1

TABLE 3: N-Grams Generated from the Stem inform

In our case, the Dictionary Table is a simple set data structure. With TA, the Dictionary Table
contains trigrams. In the positional case (PTA), we attach the information on the position of the
trigrams within the words to the trigram string. Syllable analysis (SA) generates non-overlapping
syllables, not n-grams; in the positional case (PSA), we store the syllable string together with its
position within the word. In order to determine if a given term is a non-word, we extract from it
the trigrams (in TA and PTA) or syllables (in SA and PSA). We then look up these parts in the
Dictionary Table. We consider a term a non-word if it contains at least one trigram (or syllable,
respectively) that is not present in the dictionary. The idea of using syllables to detect non-words
is borrowed from [3]. They demonstrate that syllables are superior to state-of-the-art character n-
grams, using Indonesian texts. However, the effectiveness of the method on English text is
currently unclear. In our evaluation (Section 5), we will therefore test the strength of syllables in
detecting non-words on English texts and compare it to trigram analysis.

n-grams characterize the morphological structure of a language well [20]. However, out-of-
dictionary n-grams do not necessarily identify a mistyped word. Foreign language words, for
instance, show a different morphological structure and could go as errors. Terms like
Albuquerque or Afghanistan, which contain the uncommon trigrams uqu and fgh respectively, are
considered invalid, therefore would not be inserted in the CST, no matter their selectivity. We
therefore propose to deal with non-words as follows. We introduce the so-called Invalid N-gram
Table, to store invalid n-grams and their selectivity. We use the information contained in this
table to estimate the selectivity of non-words, as we will explain in Section 4. Memory
requirements of this additional structure are significantly lower than the overhead of storing non-
words and their suffixes in the CST. Note that the Dictionary Table does not require any memory
after the building phase: It is a temporary data structure for testing the validity of index terms and
is discarded after the CST has been completely built.

4. SYLLABLE CST CONSTRUCTION AND SELECTIVITY ESTIMATION
This section describes how we build the Syllable CST and the additional structures used for
selectivity estimation. Section 4.1 says how we build the Syllable CST and the Invalid N-gram
Table. Section 4.2 presents a new node-labeling strategy, which yields a more concise
representation of the CST. Section 4.3 demonstrates how to estimate the selectivity of strings
with our model. Finally, Section 4.4 presents selectivity estimation in case of pruning.

4.1 Building the Syllable CST
Function 4 is the procedure that inserts index terms in the Syllable CST (SylCST). Prior to the
insertion in the SylCST, every term is decomposed in its trigrams or syllables, according to one
of the strategies described in Section 3.5 (Line 1). The Dictionary Table is checked for the
presence of each n-gram. If at least one is not in the Dictionary Table (Line 3), it is marked as
invalid (Line 4). All invalid n-grams are stored in the Invalid N-gram Table, together with their
selectivity (Line 5). The rationale is that we can identify a non-word with its invalid n-grams and
use their selectivity to estimate the selectivity of the entire word. This is similar to the data
structure [4] refers to as a q-gram estimator. As opposed to [4], however, we do not expect
severe overestimations. This is because we expect the invalid n-grams to be rather distinctive. In
particular, the more characteristic the n-grams of a non-word are, the more accurate is the
estimation. The out-of-dictionary trigram fgh, for instance, strongly identifies Afghanistan,
especially in combination with positional analysis. We can reasonably suppose that its selectivity
will be close to the one of the word itself. At the expense of little estimation inaccuracies, we can

G. Sautter & K. Böhm

International Journal of Data Engineering (IJDE), Volume (3) : Issue (1) : 2012 13

save the space required by suffixes of non-words. This approach also prevents the generation of
isolated tree nodes. Non-words suffixes are unlikely to share nodes with English words (e.g., no
English word starts with fghanistan). Only words that contain no invalid n-grams (valid words) are
inserted in the Syllable CST (Line 8). After stemming, they are syllabified, and syllable suffixes
are generated (Lines 9-11). Finally, all suffixes are inserted in the SylCST (Line 12). This
reduces the size of the CST already during construction. Thus, building the CST becomes less
resource-intensive.

Function 4: BuildCST

Input: word, dictionaryTable

Output: invalidTable, SylCST

1 wordNGrams = generateNgrams(word);

2 for each nGram in wordNGrams {

3 if (nGram not in dictionaryTable) {

4 validWord = false;

5 invalidTable.add(nGram, wordSelectivity);

6 }

7 }

8 if (validWord = true) {

9 stem = stem(word);

10 syllabifiedStem = syllabify(stem);

11 syllableSuffixes = syllableSuffixes(syllabifiedStem);

12 SylCST.add(syllableSuffixes)

13 }

14 return SylCST, invalidTable;

4.2 Node Labeling Strategies
Standard CST construction mechanisms label each node with a single character and then apply
path compression [19], i.e., collapsing unary children with their parent node. We refer to this
mechanism as Standard Labeling (SL). We introduce a new node labeling strategy. When
inserting syllable suffixes in the tree, we label each node with a syllable, instead of a single
character, and then apply path compression. We will refer to our labeling mechanism as Atomic
Labeling (AL). As we will explain later, this approach yields a more compact representation of the
Syllable CST. Since the two structures have the same content, the difference in size is due
exclusively to how syllables drive the path-compression mechanism.

FIGURE 5: Labeling each Node with a Syllable Instead of a Single Character

Example 6. Consider a SylCST that is built over the strings in-ter-net, in-te-ger. Standard
Labeling ignores internal syllable division points of syllable suffixes and inserts the strings

G. Sautter & K. Böhm

International Journal of Data Engineering (IJDE), Volume (3) : Issue (1) : 2012 14

internet, ternet, net, integer, teger, ger. Conversely, nodes created by Atomic Labeling store
syllables and not single characters. Note that we use our optimization introduced before that
uses only syllable suffixes instead of all suffixes, with both Standard Labeling and Atomic
Labeling. The result is that path compression produces two different tree structures. Figure 5
illustrates this. □

The SylCST obtained following standard labelling has a small number of nodes in its first level,
because the fan-out of a node is at most the alphabet size. On the other hand, it is relatively
deep, since the depth is at most the length of the second longest suffix in the CST, and thus has
many internal nodes, such as the one labeled with te. Conversely, Atomic Labeling produces a
Syllable CST which is broader in its first level. The fan-out of the root is equal to the number of
syllables in the tree, the fan-out of other nodes is at most this number. This CST is also
shallower. This is because the depth is at most the number of syllables in the suffix with the
second-most syllables in the CST. Thus, we hypothesize that Atomic Labeling can further reduce
CST size, without affecting selectivity estimation. The reason is that, with Atomic Labeling, the
paths of suffixes with common prefixes, but different syllabification points (e.g. in-te-ger, in-ter-
net) split at the start of the first syllable they do not have in common. This leads to internal nodes
with a high fan-out. With standard labeling, in contrast, the paths split at the first character they
do not have in common, resulting in internal nodes with a lower fan-out. Mathematically, for a
fixed number of leaves (each leaf represents one suffix), the number of internal nodes is
negatively correlated with the average fan-out of the inner nodes: A lower fan-out results in a
deeper tree with more internals nodes, a higher fan-out results in a shallower tree with less
internal nodes. Experimental results will confirm this hypothesis.

Clearly, the atomic labeling strategy prevents estimating substrings that do not start and end at
syllable borders. However, this is not a problem if queries use keywords as predicates. This is
likely for textual data. If other wildcard predicates were frequent, the standard labeling strategy
would be advantageous.

4.3 Selectivity Estimation
Once the CST has been built, it can be used for selectivity estimation. The string in question is
first decomposed in its n-grams. This is to determine if its structure respects the morphological
profile described by n-gram analysis. This means searching for the presence of any of its n-
grams in the Invalid N-gram Table. If no match is found, then the string, if present, must have
been stored in the CST. The tree is traversed from the root to the node labeled with the string,
and its count stores the selectivity sought. Conversely, if the string contains at least an invalid n-
gram, then its selectivity estimate is the minimum of the selectivities of its invalid n-grams.

We expect some estimation errors due to syllabification errors. To illustrate, consider again the
incorrect syllabification of the word sandbox (Section 3.2), which is divided according to the
syllabification rule that suggests splitting a sequence of three consonants after the first one. This
produces the incorrect san-dbox. However, this has no effect at all when estimating the
selectivity of the term sandbox. But the selectivity of the term box will be slightly underestimated.
This is because the occurrences of the suffix box in the term sandbox are not counted due to the
incorrect syllabification. However, we do not expect this effect to induce severe errors. This is
because we expect the selectivity of a basic (non-compound) word w to be much larger than the
selectivity of a specific compound word w is part of. In addition, our experiments will show that,
even if the impact of incorrect syllabifications is non-negligible, the benefit of syllabification
outweighs it by far.

4.4 Pruning
Since both the Invalid N-gram Table and the Syllable CST still have high memory requirements
when built on large text corpora, we cannot do without pruning. We have implemented the
common frequency-based pruning strategy. Given the maximum size of a CST (maximum
number of nodes), we iteratively remove nodes whose count is under a threshold T. In each
iteration, we increase T until the CST has the desired size. To estimate the selectivity of a valid

G. Sautter & K. Böhm

International Journal of Data Engineering (IJDE), Volume (3) : Issue (1) : 2012 15

string that is no longer in the PST, we introduce a syllable-based variant of the MO estimator [7].
If the searched string σ is syllabified as σA-σB-σC, its estimated selectivity (ESel) is:

)Sel(σ

)Sel(σ
)Sel(σESel

B

BC
AB ⋅=

where σAB = σAσB, σBC = σBσC. If any of the previous terms is not in the CST because it has been
pruned, then the selectivity of the string is estimated as the value of the pruning threshold T.
Given a non-word, if the Invalid Table has to be pruned as well, and none of its invalid n-grams
is found, its selectivity is set to the pruning threshold.

5. EXPERIMENTAL EVALUATION
We evaluate the performance of our Syllable CST. In particular, we first assess how
syllabification, atomic node labeling and non-word filtering, reduce the size of the CST. Second,
we compare the selectivity-estimation accuracy of the standard CST and the different variants of
the Syllable CST. Third, we study how pruning affects the accuracy of selectivity estimates for
the different CST types. Finally, we measure the impact of the number of errors in the data; In
particular, we wonder if our linguistics-based optimizations still work well in the presence of many
errors.

For our experiments, we use four English newswire text corpora, Reuters-21578 (Reuters) [12]
and three datasets of the Aquaint Corpus (APW, XIE, NYT) [6]. Since the collections contain
data in SGML format, we first parse them to extract text fields only. We then tokenize them to
extract single words. Stop words are filtered out, and all terms are converted to lowercase. Table
4 contains statistics on the number of documents, the number of distinct terms, and the size of a
complete CST (number of nodes) built on the collection.

 Documents Tokens CST size

Reuters 21578 32554 86772

APW 239576 207616 558633

XIE 479433 243932 633899

NYT 314452 352404 979383

TABLE 4: Corpora Statistics

5.1 Effect of Syllabification
The Syllable CST built on the collections significantly reduces memory requirements compared
to the standard version. Table 5 shows that the size of the statistics data structure is more than
halved. Note that the figures quantify size as the number of nodes in the CST. The memory
footprint resulting from the number of nodes is implementation-specific; the currently optimal
implementation [22] takes 8.5 KB per node.

 CST’s size SL SylCST AL SylCST

Reuters 86772 41565 (52.1%) 37298 (57.0%)

APW 558633 308764 (44.7%) 234047 (58.1%)

XIE 633899 307001 (51.6%) 271018 (57.2%)

NYT 979383 526955 (46.2%) 399432 (59.2%)

TABLE 5: CST size (in nodes) and size reduction

Figure 6 shows graphically that a Syllable CST constructed according to the atomic mechanism
(AL SylCST, see 4.2) always has smaller memory requirements than the tree built according to
the standard algorithm (SL SylCST, see 4.2). This confirms the hypotheses from Section 4.1.

G. Sautter & K. Böhm

International Journal of Data Engineering (IJDE), Volume (3) : Issue (1) : 2012 16

Memory requirements of a CST built on the NYT corpus are 40% of the initial size. This means
both that we need less memory to build the tree, and that we can prune the tree at a lower
threshold. The latter results in higher estimation accuracy.

FIGURE 6: Atomic Labeling Yields a Syllable CST with Reduced Memory Requirements

5.2 Effect of N-gram Analysis
n-gram analysis is initialized on a small reference dictionary of common English words (69004
terms, 650 KB). Each dictionary entry is Porter stemmed, and its n-grams are computed
according to one of the strategies from Section 3.5 and stored in the Dictionary Table. Each
index term is then processed, and out-of-dictionary n-grams are inserted in the Invalid N-gram
Table. Table 6 reports the number of entries of each table.

 TA SA PTA PSA

Dictionary 5888 10305 22880 15101

Invalid Table Reuters 3954 9240 11868 11071

Invalid Table APW 6873 39728 41803 51726

Invalid Table XIE 7517 49179 45601 62277

Invalid Table NYT 8421 68914 63951 88623

TABLE 6: Dictionary and Invalid N-gram Table Size

The Invalid Table in turn is retained since we use it to estimate the selectivity of non-words.
Table 6 shows that the greater the corpus size, the larger is the Invalid N-gram Table, and its
memory requirements can become non-negligible. To limit its size, we set its maximum number
of entries to an eighth of the tree size. This is roughly the acceptable size ratio proposed in [4] for
the n-gram table. We followed the frequency-based approach proposed in [4] to prune the Invalid
Table. I.e., we remove the entries with the lowest frequencies until the n-gram table has at most
one eighth the number of entries as the CST has nodes. This increases the estimation error only
insignificantly (by less than 0.1%) because the pruning threshold is very low, compared to that of
the CST. The reason is that most entries in the Invalid Table are due to misspellings, which
rarely have a frequency above 2. Only few entries represent proper names and therefore have a
higher frequency. By keeping these high-selectivity n-grams, we can compute better estimates
for non-words that turn out to be frequent. This is because of our hypothesis that the selectivity
of invalid n-grams is rather strictly related to the selectivity of the words they have been
generated from (see Section 4.1).

We evaluate the strength of each strategy (trigram and syllable analysis, with and without
considering in-word position) regarding non-word detection and the impact on the size of the
statistics data structure. Figure 7 shows that n-gram analysis alone considerably reduces the size
of the CST, without syllabification in this experiment. An inspection of the corpora reveals that
the size reduction increases with the number of non-words in the corpus: The reduction is highest
for the Aquaint XIE corpus, which contains the most non-English words, and lowest for the

G. Sautter & K. Böhm

International Journal of Data Engineering (IJDE), Volume (3) : Issue (1) : 2012 17

Reuters corpus, which is the cleanest. Thus, non-word filtering is particularly beneficial if the data
is not very clean.

FIGURE 7: Size Reduction due to N-Gram Analysis

 SL SylCST AL SylCST

Reuters

TA 34538 (-60.2%) 30514 (-64.8%)

SA 29191 (-66.4%) 25630 (-70.5%)

PTA 26454 (-69.5%) 23374 (-73.1%)

PSA 25847 (-70.2%) 22721 (-73.8%)

APW

TA 239898 (-57.1%) 178799 (-68.0%)

SA 197059 (-64.7%) 147959 (-73.5%)

PTA 153005 (-72.6%) 110260 (-80.3%)

PSA 154910 (-72.3%) 113454 (-79.7%)

XIE

TA 216907 (-65.8%) 190864 (-69.9%)

SA 179375 (-71.7%) 156724 (-75.3%)

PTA 126221 (-80.1%) 111010 (-82.5%)

PSA 132886 (-79.0%) 116124 (-81.7%)

NYT

TA 419359 (-57.2%) 313492 (-68.0%)

SA 340327 (-73.9%) 256467 (-73.8%)

PTA 255629 (-65.3%) 183295 (-81.3%)

PSA 261281 (-73.3%) 190746 (-80.5%)

TABLE 7: Syllable CST Size (in Nodes) and Size Reduction

We observe that the positional variants are better at detecting and removing non-words. In
particular, positional trigram analysis performs better than the corresponding syllable strategy
and also has a smaller Invalid Table (see Table 6). Figure 7 shows that, for the Aquaint corpora,
more than half of the size of the CST without non-word filtering is attributable to non-words. The
size of the Syllable CST built exclusively over valid words is reported in Table 7. These results
demonstrate that syllable analysis is superior to state-of-the-art techniques in the non-positional
case. It filters out more words and yields a smaller CST. In the positional case, it does not
improve the results obtained with positional trigram analysis.

Figure 8 shows that positional trigram analysis and Atomic Labeling yield a very compact tree.
More specifically, the size of CST built over all three Aquaint corpora is reduced to 20% of its
initial size using positional trigram analysis to filter out non-words. With Standard Labeling, non-
word filtering and syllabification still shrink the CST to at most 35% of its original size (see Table
7).

G. Sautter & K. Böhm

International Journal of Data Engineering (IJDE), Volume (3) : Issue (1) : 2012 18

FIGURE 8: Size Reduction Obtained by Building the Syllable CST over Valid Words only

This means that, compared to existing techniques, (a) building the CST requires significantly less
memory, and (b) for a given memory size, we can significantly lower the pruning threshold,
compared to existing techniques. The latter lets the MO algorithm better estimate the selectivity
of pruned suffixes. The experiments in the next sections will demonstrate this.

5.3 Accuracy of Estimations
The following sections report on experimental results on the accuracy of selectivity estimates
computed on the Syllable CST. Section 5.3.1 presents the metrics used. We follow the approach
adopted in [8, 7, 4] and evaluate positive queries (Section 5.3.2) and negative queries (Section
5.3.3). Positive queries are those that contain terms contained in the corpus, i.e., queries with a
selectivity greater than 0, negative queries, in turn, have a 0 selectivity. Finally, Section 5.4
demonstrates that estimation inaccuracies due to pruning are less severe on the Syllable CST.

5.3.1 Evaluation Metrics
For positive queries, we evaluate the accuracy of our estimation model based on the average
relative error, as suggested in [4]. It is defined as the ratio:

Sel'

|SelESel|
(RE) Error Relative Average

−
= (ARE)

where ESel is the estimated selectivity and Sel the real selectivity of a given string. This
definition of the average relative error metric includes the correction suggested in [4] to
overcome the penalizing effect on low selectivity strings. More specifically, given a corpus of
size C, if the actual selectivity of a string is smaller than 100/|C|, then the denominator is set to
100/|C|, formally:
Sel’ := max(Sel, 100/|C|)

We consider the quartile distributions introduced by the same authors [4] to show how the
accuracy of the estimator is biased. We bucketize the error distribution over the intervals

[-100%,-75%), [-75%,-50%), [-50%,-25%), [-25%,0%), [0,25%), [25%,50%), [50%,75%),
[75%,100%), [100%,∞).

Estimates that fall in the interval [0,25%) are exact estimations and small overestimations,
whereas the ones that fall in the first four buckets are underestimations.

Following again [4], we use the average absolute error and its percentage of the corpus size as
evaluation metric for negative queries.

5.3.2 Positive Queries
Testing the CST against positive queries means estimating the selectivity of strings that are
present in the collection. Unless the tree has been pruned, these strings are in the CST. To
evaluate the accuracy of our estimator for positive queries, we take the corpus terms and
estimate their selectivity as described in Section 4.3. Figure 9 shows the results. The average

G. Sautter & K. Böhm

International Journal of Data Engineering (IJDE), Volume (3) : Issue (1) : 2012 19

relative error for the Syllable CST, without introducing n-gram analysis to skip non-words, is
minimal for Reuters (3.5%) and maximal for Aquaint NYT, where it is slightly over 10%. The
different average errors for the different corpora are due to different average document sizes:
The larger the documents, the more terms are frequent, and the higher are the document
frequencies of the terms, for the same number of documents. This incurs larger absolute errors
(numerator of the relative error) for the same number of documents (a hundredth of it is a lower
bound of the denominator of the relative error, cf. Formula ARE) and yields a higher relative
error. Average document size is highest in the Aquaint NYT corpus and lowest in the Reuters
corpus, Aquaint XIE and APW lie in between. The average relative estimation errors behave
accordingly.

FIGURE 9: Average Relative Error

The experimental results indicate that conflations due to our stemming algorithm do not
introduce significant selectivity-estimation errors. The benefits gained from non-word detection in
turn come at the cost of some errors: The average relative error for the SylCST without non-word
filtering (the leftmost data points in Figure 9) is lower than with any of the non-word filtering
strategies enabled (the TA, SA, PTA, and PSA data points). Further, there are more errors with
n-gram analysis (the TA and PTA data points) than with syllable analysis (the SA and PSA data
points). Overestimations, due to invalid words identified by the same invalid n-gram, penalize the
estimation of non-words (see Example 7). However, the average relative error is always under
20% even for Aquaint NYT, which contains the biggest percentage of non-words. For Reuters,
errors are almost negligible.

Example 7. Consider the two terms Albuquerque and Unterbauquerträger (the latter being a
German word from the civil engineering domain). They both will be identified as non-words due
to trigram uqu. Non-positional trigram analysis conflates these terms in the uqu bucket. In
consequence, the selectivity of both words is over-estimated as the sum of their individual
selectivities. Positional trigram analysis avoids this by taking the in-word position into account:
Albuquerque belongs to the uqu_3 bucket, while Unterbauquerträger belongs to uqu_7. □

Quartile distributions are shown in Figure 10. Each graph refers to a corpus and plots the
distribution of estimation errors according to each n-gram strategy. We normalize the absolute
frequency to the total number of patterns tested and plot the distribution using a logarithmic scale
for the y-axis. A linear scale would not reveal the differences between non-word detection
strategies, since the number of overestimations and underestimations is always negligible. All
the strategies produce an error that is much lower than 10%. The worst case is Aquaint NYT with
non-positional trigram analysis. This is due to two reasons: (a) Non-positional trigram analysis
incurs the most errors of all the non-word filtering strategies, and (b) the Aquaint NYT corpus has
the largest average document size, which generally results in a higher error rate (see above).

G. Sautter & K. Böhm

International Journal of Data Engineering (IJDE), Volume (3) : Issue (1) : 2012 20

However, 92% of estimations still fall in the central bucket. Non-positional trigram analysis yields
less accurate results because it conflates more invalid trigrams (see Example 7). Their number
is insufficient to identify non-words, and estimation errors are more likely. The number of
estimations in the [100, ∞) bucket is interesting: It shows that if overestimations occur, they are
likely to bear a very large error. We think that this effect has to do with the MO algorithm. It
overestimates rare combinations of frequent substrings.

5.3.3 Negative Queries
We test our estimation model with negative patterns, which are strings that are not present in the
indexed collection. The estimation should return selectivities close to zero. In our experiments,
we generate a set of negative strings by randomly introducing errors into corpus words. Table 8
presents the results.

 Reuters Aquaint APW

 Aquaint XIE Aquaint NYT

FIGURE 10: Quartile Distribution of Estimation Accuracy

For Reuters, the error is under 0.02%. We observe that errors tend to become larger the larger
the documents in the corpus, for the reasons explained above. However, they remain below
0.15% even with non-positional trigram analysis to filter non-words. This is four times less than
the 0.6% worst case reported in [4]. This demonstrates that, even though our model does not
return a selectivity of zero, the error induced is not significant.

G. Sautter & K. Böhm

International Journal of Data Engineering (IJDE), Volume (3) : Issue (1) : 2012 21

 Terms SylCST TA SA PTA PSA

Reuters 32,554 2.2 (0.01%) 5.5 (0.02%) 4.2 (0.01%) 4.5 (0.01%) 4.0 (0.01%)

APW 207,616 49.5 (0.02%) 185.6 (0.09%) 126.4 (0.06%) 133.4 (0.06%) 123.6 (0.06%)

XIE 243,932 47.1 (0.02%) 349.7 (0.14%) 211.9 (0.09%) 265.5 (0.11%) 237.0 (0.05%)

TABLE 8: Absolute Error and Percentage of Corpus Size for Negative Queries

Corpus

 CST Type / Non-Word Filtering Strategy

CST size
(nodes)

CST CST-TA CST-PTA SylCST SylCST-TA
SylCST-

PTA

Reuters

32,000 17,4% (7) 18,1% (6) 17,3% (5) 6,56% (1) 7,48% (1) 6,93% (0)

16,000 17,8% (29) 18,2% (27) 17,3% (23) 6,56% (4) 7,47% (3) 6,92% (2)

8,000 19,7% (109) 19,4% (104) 17,9% (97) 6,56% (14) 7,46% (12) 6,91% (10)

4,000 29,4% (332) 26,1% (323) 21,8% (310) 6,56% (53) 7,42% (50) 6,87% (46)

APW

32,000 12,5% (61) 15,6% (55) 11,1% (44) 8,89% (8) 14,8% (6) 13,4% (4)

16,000 48,3% (214) 42,2% (202) 26,5% (179) 17,7% (31) 21,1% (28) 16,4% (22)

8,000
163,0%
(666)

129,0%
(645)

80,1% (607) 49,9% (113) 44,6% (106) 30,0% (95)

4,000
452,0%
(1726)

352,1%
(1688)

227,3%
(1635)

148,8%
(355)

120,1%
(341)

77,2% (319)

XIE

32,000 4,53% (22) 12,5% (18) 14,3% (14) 4,59% (3) 14,0% (2) 16,3% (1)

16,000 19,0% (90) 21,8% (80) 19,1% (68) 7,66% (11) 15,8% (9) 17,0% (6)

8,000 71,6% (313) 57,3% (293) 38,7% (266) 20,7% (44) 24,1% (39) 21,2% (31)

4,000
216,6%
(863)

159,1%
(828)

100,2%
(779)

62,7% (152) 52,7% (144) 37,5% (127)

NYT

32,000 27,6% (122) 27,2% (115) 18,7% (101) 16,1% (16) 21,0% (14) 19,5% (10)

16,000 98,4% (413) 81,3% (396) 50,8% (364) 35,6% (65) 35,7% (61) 27,5% (54)

8,000
303,4%
(1220)

242,6%
(1196)

152,8%
(1142)

99,4% (223) 84,8% (215) 56,5% (199)

4,000
833,5%
(3016)

659,3%
(2981)

413,6%
(2917)

281,2%
(663)

228,6%
(649)

147,4%
(628)

TABLE 9: Average Relative Errors and Pruning Threshold by CST Size (Best Value of Line in
Bold)

5.4 Pruning
Despite all reductions, the Syllable CST for larger corpora still requires too much memory to fit in
the data dictionary, see Table 7 for the exact numbers One might think that the memory
available to database servers nowadays can easily accommodate the complete CST, and that
limits such as the 1KB limit from [8] from 1996 is obsolete. However, not only the amount of
physical memory has grown since 1996, but also the number of relations and attributes that
database servers must handle. The memory available for the data dictionary has to
accommodate statistics for significantly more attributes. Consequently, the memory available for
an individual statistics data structure has grown less than the physical memory available in total.
In commercial database servers, assuming 1 KB as a limit for the statistics for an individual
attribute is not unrealistic [24]. All this means that we cannot do without pruning. Our
experiments will show that the Syllable CST can be pruned at a lower threshold, compared to the
standard CST, because of its inherently reduced size. As a result, the estimations are
significantly more accurate.

We have pruned the CST and the Syllable CST iteratively to meet the same final size of 4,000
nodes. Table 9 contains the average relative error and the respective pruning threshold for each
tree size. For readability, we restrict this table to the standard CST and the Syllable CST with
standard labeling, and we give only the results for trigram analysis. Appendix A provides the
complete results. The Syllable CST is always more accurate than the corresponding standard

G. Sautter & K. Böhm

International Journal of Data Engineering (IJDE), Volume (3) : Issue (1) : 2012 22

version when the tree is pruned. The atomic node labeling strategy gives an additional slight
advantage.

The SylCST provides good estimation results even with the minimum required size for Reuters:
The average relative error is slightly over 40%. In general, the Syllable CST always gives the
best estimations. This is due to considerably lower pruning thresholds: The figures show that the
value of the pruning threshold decreases by up to 80%, compared to standard CST. This leaves
a more accurate basis for the MO algorithm that computes the estimates for pruned strings: The
relative estimation error is reduced by up to 70%, compared to the technique from [4].

5.5 Noisy Data
Because the Syllable CST relies on linguistic features of the documents, it is susceptible to
misspellings. It is unclear how the Syllable CST performs if the documents contain significantly
more errors than a newswire corpus. Such noisy data occurs in the Blogosphere, for instance. To
assess the behavior of the Syllable CST in the presence of many errors, we run experiments on
documents containing errors. In order to control the error rate at arbitrarily fine granularity and to
measure its effect, we use the same corpora as above and introduce artificial errors. To stress
the algorithm, we describe experiments in which we have introduced random misspellings in
10% of the terms. The misspellings we introduce are equally distributed among removal,
insertion, and replacement of a random character within the term.

The standard CST turns out impossible to build over the complete Aquaint corpora with so many
misspellings: The CST grows out of memory due to the suffixes caused by the misspellings. In
particular, the standard CST without non-word filtering grows so large that it exceeds the
memory limits of a JVM running with 1.5 GB. This is by far more than a database server can
allocate for building statistics data structures. The use of another programming language, e.g.,
C++ instead of Java, and a highly memory-optimized CST implementation might mitigate this
problem, but will not do away with it. Thus, for this series of experiments, we only use the first
50,000 documents of each of our test corpora. Table 10 shows the results of a comparison
between the standard CST and the Syllable CST with standard node labeling, each without non-
word filtering and with non-positional and positional trigram analysis.

The numbers show that, somewhat expected, the benefit of n-gram analysis is very high when
the data contains many misspellings: Positional trigram analysis reduces the size of the un-
pruned CST by about 65%, i.e., 65% less memory is required to build the CST. Further, the
results show that misspellings do not affect the benefit of syllabification to a significant degree:
Syllabification still reduces the average relative error of selectivity estimates by about 50% in
most of the cases. Only the error of the 4,000 node SylCST for the XIE branch is in the order of
magnitude of the corresponding standard CST. Furthermore, n-gram analysis affects the
average relative estimation error only negligibly.

In general, the average relative estimation error shows the same tendencies as for the complete
Aquaint corpora without artificial misspellings: (a) Both syllabification and non-word filtering
reduce the size of the un-pruned CST, (b) syllabification reduces the pruning threshold for the
pruned CST, (c) due to (b), syllabification improves selectivity-estimation accuracy significantly,
(d) non-word filtering can incur some estimation errors, but does not decrease overall accuracy
by much. However, the advantage of the Syllable CST over the standard CST is higher for the
16,000 and 8,000 node trees, and lower for the 4,000 node tree. We attribute this effect to local
skews in the distributions of the document frequencies of the terms. With a larger number of
documents, as in the previous experiments, those skews level out and yield a rather predictable
development of the relative estimation error. Conversely, these skews have a more significant
effect in this current experiment, due to the considerably smaller number of documents.

G. Sautter & K. Böhm

International Journal of Data Engineering (IJDE), Volume (3) : Issue (1) : 2012 23

Corpus CST Type CST Size

Average relative error at different CST sizes
(pruning threshold)

16000 8000 4000

APW

CST 1710729 137.9% (1004) 219.3% (2405) 392.3% (4847)

CST-TA 921349 125.6% (904) 186.7% (2231) 303.9% (4607)

CST-PTA 491327 113.7% (795) 174.5% (2058) 263.0% (4389)

SylCST 807641 28.4% (273) 65.8% (774) 201.7% (1887)

SylCST-TA 449642 28.0% (219) 64.5% (677) 171.8% (1753)

SylCST-PTA 227461 26.4% (156) 68.9% (572) 189.0% (1598)

XIE

CST 1065209 146.1% (522) 237.0% (1355) 419.1% (2897)

CST-TA 586189 134.1% (464) 193.9% (1277) 310.3% (2759)

CST-PTA 322911 127.5% (385) 178.2% (1169) 274.4% (2648)

SylCST 493905 34.1% (116) 126.5% (378) 401.4% (1013)

SylCST-TA 282024 26.5% (87) 86.3% (320) 225.1% (947)

SylCST-PTA 148285 26.9% (56) 90.6% (252) 205.9% (854)

NYT

CST 2649161 125.2% (1925) 203.9% (4462) 362.5% (8482)

CST-TA 1436417 118.4% (1799) 182.9% (4282) 310.7% (8212)

CST-PTA 762014 109.2% (1655) 167.9% (4079) 283.2% (7908)

SylCST 1261474 30.8% (558) 51.8% (1534) 115.2% (3688)

SylCST-TA 704858 34.0% (486) 57.5% (1408) 130.7% (3505)

SylCST-PTA 354332 34.4% (390) 54.6% (1272) 143.9% (3356)

TABLE 10: Experiment Results with Noisy Data

6. CONCLUSIONS
Estimating the selectivity of query terms is essential for query optimization and in other contexts.
The estimates have to be available before the actual query processing and need to be based on
small summary statistics. The memory limitations result from the need to permanently hold the
statistics used for query optimization in physical main memory. If query optimization caused only
a single page fault (i.e., the need to swap a memory page from on-disk virtual memory back into
physical main memory), this would annihilate the performance advantage a database system
gains from optimizing query execution.

Selectivity estimation for string predicates frequently relies on Count Suffix Trees (CST) [4, 7, 8].
While they provide good estimates, their storage requirements are prohibitively high. Pruning
tries to solve this problem, by trading estimation accuracy for reduced memory needs. So far,
pruning strategies are mostly based on frequency and tree depth. In this paper, we have
proposed new techniques that reduce the size of CST over natural-language texts. We exclude
suffixes that do not make sense from a linguistic point of view, regardless of their frequency.
Syllabification has proven to be a suitable tool for generating suffixes that carry an enhanced
semantic message, compared to letter-wise suffixes. A more aggressive stemming routine lets
us further reduce the CST size, without affecting the quality of selectivity estimates by much.
Further, a very concise n-gram data structure allows (a) for filtering out non-words during CST
construction already, and (b) for estimating their selectivity precisely.

The various filtering techniques described here are mutually independent. They are applicable to
other languages as well, provided that there is a stemming procedure, a syllabification routine, or
a dictionary of the language for the n-gram filtering. Since all the filtering takes place during CST
construction, significantly less memory is required to build the CST. The combination of these
approaches, together with a new node labeling strategy, yields a much more compact CST: For
English text, estimation accuracy is the same as with a classical CST, with only 20-30% of the
nodes. From another perspective, with the same number of nodes, the new techniques reduce
the average estimation error by up to 70%.

G. Sautter & K. Böhm

International Journal of Data Engineering (IJDE), Volume (3) : Issue (1) : 2012 24

7. REFERENCES
[1] J. Bae and S. Lee. “Substring count estimation in extremely long strings”. IEICE –

Transactions in Information Systems, E89-D(3):1148–1156, 2006.

[2] R. Baeza-Yates and B. Ribeiro-Neto. “Modern information retrieval”. Addison-Wesley
Longman, 1. print. edition, 1999.

[3] S. Bressan and R. Irawan. “Morphologic non-word error detection”. In Proceedings of the
15th International Workshop on Database and Expert Systems Applications (DEXA ’04),
pages 31–35, 2004.

[4] S. Chaudhuri, V. Ganti, and L. Gravano. “Selectivity estimation for string predicates:
Overcoming the underestimation problem”. In Proceedings of ICDE 2004, Boston, MA,
USA, 2004.

[5] D. W. Cummings. “American English spelling: an informal description”. Johns Hopkins
University Press, 1988.

[6] D. Graff. “The Aquaint corpus of english news text”. Linguistic Data Consortium,
Philadelphia, 2002.

[7] H. Jagadish, O. Kapitskaia, and D. Srivastava. “One-dimensional and multi-dimensional
substring selectivity estimation”. The International Journal on Very Large Data Bases, 9(3):
214–230, 2000.

[8] P. Krishnan, J. S. Vitter, and B. Iyer. “Estimating alphanumeric selectivity in the presence
of wildcards”. In ACM SIGMOD International Conference on Management of Data, pages
12–13. ACM, 1996.

[9] R. Krovetz. “Viewing morphology as an inference process”. In Proceedings of the
Sixteenth Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 191–203, 1993.

[10] K. Kukich. “Techniques for automatically correcting words in text”. ACM Computer
Surveys, 24:379–439, 1992.

[11] M. Lennon, D. Pierce, B. Tarry, and P. Willett. “An evaluation of some conflation
algorithms for information retrieval”. Journal of Information Science, 3(177–183), 1981.

[12] D. D. Lewis. Reuters-21578 [online] Available at:
http://www.daviddlewis.com/resources/testcollections/reuters21578/.

[13] F. M. Lian. “Word hy-phen-a-tion by com-put-er”. PhD thesis, Stanford University,
Stanford, August 1983.

[14] J. B. Lovins. “Development of a stemming algorithm”. Mechanical Translation and
Computational Linguistics, 11:22–31, 1968.

[15] E. M. McCreight. ”A space-economical suffix tree construction algorithm”. J. Assoc.
Comput. Mach., 23(2): 262–272, 1976.

[16] M. F. Porter. ”An algorithm for suffix stripping”. Program, 14(3):130–137, 1980.

[17] Y. Tian, S. Tata, R. A. Hankins, and J. M. Patel. “Practical methods for constructing suffix
trees”. The International Journal on Very Large Data Bases, 14(3): 281–299, 2005.

G. Sautter & K. Böhm

International Journal of Data Engineering (IJDE), Volume (3) : Issue (1) : 2012 25

[18] E. Ukkonen. “On-line construction of suffix trees”. Algorithmica, 14(3): 249–260, 1995.

[19] P. Weiner. “Linear pattern matching algorithms”. In Proceedings of the 14th Annual
Symposium on Switching and Automata Theory, pages 1–11, 1973.

[20] E. M. Zamora, J. Pollock, and A. Zamora. “The use of trigram analysis for spelling error
detection”. Information of Processing and Management, 17: 305–316, 1981.

[21] Z. Chen, F. Korn, N. Koudas, S. Muthukrishnan. “Selectivity Estimation for Boolean
Queries”. In Proceedings of PODS 2000, Dallas, TX, USA, 2000

[22] R. Giegerich, S. Kurtz, J. Stoye. “Efficient Implementation of Lazy Suffix Trees”. Software:
Practice and Experience, Volume 33, No 11, John Wiley & Sons Ltd., 2003

[23] G. Sautter, C. Abba, K. Böhm. “Improved Count Suffix Trees for Natural Language Data”.
In Proceedings of IDEAS 2008, Coimbra, Portugal, 2008

[24] Personal communication with Torsten Grabs, Microsoft SQL Server development team.

G. Sautter & K. Böhm

International Journal of Data Engineering (IJDE), Volume (3) : Issue (1) : 2012 26

8. APPENDIX

Corpus / CST Type CST Size (in Nodes)

Reuters 32000 16000 8000 4000

CST 17,4% (7) 17,8% (29) 19,7% (109) 29,4% (332)

CST - TA 18,1% (6) 18,2% (27) 19,4% (104) 26,1% (323)

CST - SA 17,5% (5) 17,5% (24) 18,1% (98) 22,3% (306)

CST - PTA 17,3% (5) 17,3% (23) 17,9% (97) 21,8% (310)

CST - PSA 17,2% (4) 17,3% (22) 17,7% (96) 21,1% (301)

SL SylCST 6,56% (1) 6,56% (4) 6,56% (14) 6,56% (53)

SL SylCST - TA 7,48% (1) 7,47% (3) 7,46% (12) 7,42% (50)

SL SylCST - SA 7,07% (0) 7,10% (2) 7,12% (11) 7,14% (47)

SL SylCST - PTA 6,93% (0) 6,92% (2) 6,91% (10) 6,87% (46)

SL SylCST - PSA 6,15% (0) 7,03% (2) 7,06% (10) 7,09% (45)

AL SylCST 6,73% (1) 7,04% (4) 8,11% (14) 11,1% (54)

AL SylCST - TA 7,91% (1) 7,91% (3) 8,65% (12) 10,7% (50)

AL SylCST - SA 6,22% (0) 7,41% (2) 7,83% (11) 9,45% (48)

AL SylCST - PTA 6,12% (0) 7,40% (2) 7,71% (10) 9,30% (46)

AL SylCST - PSA 6,14% (0) 7,32% (2) 7,69% (10) 8,95% (46)

Appendix A1: Average Relative Errors and Pruning Threshold by CST Size with Reuters

Corpus / CST Type CST Size (in Nodes)

APW 32000 16000 8000 4000

CST 12,5% (61) 48,3% (214) 163,0% (666) 452,0% (1726)

CST - TA 15,6% (55) 42,2% (202) 129,0% (645) 352,1% (1688)

CST - SA 11,8% (48) 31,3% (187) 96,9% (619) 274,5% (1645)

CST - PTA 11,1% (44) 26,5% (179) 80,1% (607) 227,3% (1635)

CST - PSA 10,9% (43) 25,8% (175) 77,5% (598) 218,7% (1608)

SL SylCST 8,89% (8) 17,7% (31) 49,9% (113) 148,8% (355)

SL SylCST - TA 14,8% (6) 21,1% (28) 44,6% (106) 120,1% (341)

SL SylCST - SA 12,7% (5) 17,0% (24) 34,2% (99) 91,8% (329)

SL SylCST - PTA 13,4% (4) 16,4% (22) 30,0% (95) 77,2% (319)

SL SylCST - PSA 13,1% (4) 16,1% (21) 29,1% (92) 74,6% (316)

AL SylCST 7,96% (8) 13,8% (31) 35,8% (113) 105,0% (355)

AL SylCST - TA 14,2% (6) 18,4% (28) 34,6% (106) 86,8% (341)

AL SylCST - SA 12,3% (5) 15,2% (24) 27,2% (99) 67,2% (329)

AL SylCST - PTA 13,1% (4) 15,1% (22) 24,3% (95) 56,6% (319)

AL SylCST - PSA 12,9% (4) 14,9% (21) 23,8% (92) 55,2% (316)

Appendix A2: Average Relative Errors and Pruning Threshold by CST Size with Aquaint APW

G. Sautter & K. Böhm

International Journal of Data Engineering (IJDE), Volume (3) : Issue (1) : 2012 27

Corpus / CST Type CST Size (in Nodes)

XIE 32000 16000 8000 4000

CST 4,53% (22) 19,0% (90) 71,6% (313) 216,6% (863)

CST - TA 12,5% (18) 21,8% (80) 57,3% (293) 159,1% (828)

CST - SA 8,91% (16) 15,5% (73) 41,6% (276) 120,1% (789)

CST - PTA 14,3% (14) 19,1% (68) 38,7% (266) 100,2% (779)

CST - PSA 13,4% (13) 18,2% (66) 37,4% (258) 97,3% (761)

SL SylCST 4,59% (3) 7,66% (11) 20,7% (44) 62,7% (152)

SL SylCST - TA 14,0% (2) 15,8% (9) 24,1% (39) 52,7% (144)

SL SylCST - SA 10,8% (1) 12,1% (7) 17,9% (33) 39,4% (132)

SL SylCST - PTA 16,3% (1) 17,0% (6) 21,2% (31) 37,5% (127)

SL SylCST - PSA 15,3% (1) 16,2% (5) 20,3% (29) 36,2% (123)

AL SylCST 4,26% (3) 6,28% (10) 14,9% (43) 44,4% (150)

AL SylCST - TA 13,8% (2) 15,0% (9) 20,4% (38) 40,4% (140)

AL SylCST - SA 10,7% (1) 11,5% (7) 15,4% (34) 30,3% (134)

AL SylCST - PTA 16,2% (1) 16,6% (6) 19,3% (31) 30,5% (129)

AL SylCST - PSA 15,2% (1) 15,8% (6) 18,6% (30) 29,6% (126)

Appendix A3: Average Relative Errors and Pruning Threshold by CST Size with Aquaint XIE

Corpus / CST Type CST Size (in Nodes)

NYT 32000 16000 8000 4000

CST 27,6% (122) 98,4% (413) 303,4% (1220) 833,5% (3016)

CST - TA 27,2% (115) 81,3% (396) 242,6% (1196) 659,3% (2981)

CST - SA 20,8% (105) 61,0% (371) 185,7% (1146) 502,1% (2910)

CST - PTA 18,7% (101) 50,8% (364) 152,8% (1142) 413,6% (2917)

CST - PSA 16,9% (98) 47,8% (358) 146,7% (1121) 398,2% (2857)

SL SylCST 16,1% (16) 35,6% (65) 99,4% (223) 281,2% (663)

SL SylCST - TA 21,0% (14) 35,7% (61) 84,8% (215) 228,6% (649)

SL SylCST - SA 19,1% (11) 29,4% (56) 65,6% (202) 176,0% (636)

SL SylCST - PTA 19,5% (10) 27,5% (54) 56,5% (199) 147,4% (628)

SL SylCST - PSA 18,0% (10) 25,6% (52) 53,1% (194) 140,8% (619)

AL SylCST 14,1% (16) 27,6% (65) 71,5% (223) 199,4% (663)

AL SylCST - TA 19,6% (14) 29,8% (61) 63,4% (215) 162,9% (649)

AL SylCST - SA 18,1% (11) 25,3% (56) 50,6% (202) 127,0% (636)

AL SylCST - PTA 18,8% (10) 24,2% (54) 44,3% (199) 105,8% (628)

AL SylCST - PSA 17,3% (10) 22,6% (52) 42,0% (194) 102,0% (619)

Appendix A4: Average Relative Errors and Pruning Threshold by CST Sizes with Aquaint NYT

INSTRUCTIONS TO CONTRIBUTORS

Data Engineering refers to the use of data engineering techniques and methodologies in the
design, development and assessment of computer systems for different computing platforms and
application environments. With the proliferation of the different forms of data and its rich
semantics, the need for sophisticated techniques has resulted an in-depth content processing,
engineering analysis, indexing, learning, mining, searching, management, and retrieval of data.

International Journal of Data Engineering (IJDE) is a peer reviewed scientific journal for sharing
and exchanging research and results to problems encountered in today’s data engineering
societies. IJDE especially encourage submissions that make efforts (1) to expose practitioners to
the most recent research results, tools, and practices in data engineering topics; (2) to raise
awareness in the research community of the data engineering problems that arise in practice; (3)
to promote the exchange of data & information engineering technologies and experiences among
researchers and practitioners; and (4) to identify new issues and directions for future research
and development in the data & information engineering fields. IJDE is a peer review journal that
targets researchers and practitioners working on data engineering and data management.

To build its International reputation, we are disseminating the publication information through
Google Books, Google Scholar, Directory of Open Access Journals (DOAJ), Open J Gate,
ScientificCommons, Docstoc and many more. Our International Editors are working on
establishing ISI listing and a good impact factor for IJDE.

The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal.
Starting with volume 3, 2012, IJDE appears in more focused issues. Besides normal publications,
IJDE intend to organized special issues on more focused topics. Each special issue will have a
designated editor (editors) – either member of the editorial board or another recognized specialist
in the respective field.

We are open to contributions, proposals for any topic as well as for editors and reviewers. We
understand that it is through the effort of volunteers that CSC Journals continues to grow and
flourish.

IJDE LIST OF TOPICS
The realm of International Journal of Data Engineering (IJDE) extends, but not limited, to the
following:

• Approximation and Uncertainty in Databases
and Pro

• Autonomic Databases

• Data Engineering • Data Engineering Algorithms
• Data Engineering for Ubiquitous Mobile

Distributed
• Data Engineering Models

• Data Integration • Data Mining and Knowledge Discovery

• Data Ontologies • Data Privacy and Security

• Data Query Optimization in Databases • Data Streams and Sensor Networks
• Data Warehousing • Database Tuning

• Database User Interfaces and Information
Visualiza

• Knowledge Technologies

• Metadata Management and Semantic
Interoperability

• OLAP and Data Grids

• Personalized Databases • Query Processing in Databases

• Scientific Biomedical and Other Advanced
Database

• Semantic Web

• Social Information Management • Spatial Temporal

CALL FOR PAPERS

Volume: 3 - Issue: 3 - June 2012

i. Paper Submission: March 31, 2012 ii. Author Notification: May 01, 2012

iii. Issue Publication: June 2012

CONTACT INFORMATION

Computer Science Journals Sdn BhD

B-5-8 Plaza Mont Kiara, Mont Kiara
50480, Kuala Lumpur, MALAYSIA

Phone: 006 03 6207 1607

006 03 2782 6991

Fax: 006 03 6207 1697

Email: cscpress@cscjournals.org

