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Abstract 

 
Molecular similarity searching is a process to find chemical compounds that are 
similar to a target compound. The concept of molecular similarity play an 
important role in modern computer aided drug design methods, and has been 
successfully applied in the optimization of lead series. It is used for chemical 
database searching and design of combinatorial libraries. In this paper, we 
explore the possibility and effectiveness of using Inference Bayesian network for 
similarity searching. The topology of the network represents the dependence 
relationships between molecular descriptors and molecules as well as the 
quantitative knowledge of probabilities encoding the strength of these 
relationships, mined from our compound collection. The retrieve of an active 
compound to a given target structure is obtained by means of an inference 
process through a network of dependences. The new approach is tested by its 
ability to retrieve seven sets of active molecules seeded in the MDDR. Our 
empirical results suggest that similarity method based on Bayesian networks 
provide a promising and encouraging alternative to existing similarity searching 
methods. 
 
Keywords: Bayesian networks, molecular similarity searching, chemical databases, inference network, 

drug discovery. 

 
 

1. INTRODUCTION  

The term chemoinformatics was coined only a few years ago, but it rapidly gained widespread 
use. Chemoinformatics is the use of informatics methods to solve chemical problem [42]. 
Chemoinformatics is now being extensively used by pharmaceutical and agrochemical 
companies. The pressure to find new active compounds and bring them to market as quickly as 
possible has led many pharmaceutical and agrochemical companies to use information 
technology in their product discovery and development processes. Database searching can be 
divided into three distinct classes of problem: exact-match searching for the database record that 
is identical to the query record, partial-match searching for those database records that contain 
the query and best-match searching for those database records that are most similar to the query 
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record. In chemoinformatics, the first two classes correspond to structure searching and 
substructure searching, respectively. The provision of best-searching facilities for chemical 
database is normally referred to as similarity searching, which involves quantifying the similarity 
of a target molecule with all others in the chemical database in terms of a chosen descriptor or 
set of descriptors. It is used whenever a potential drug compound, a lead, has been found. The 
lead can be further optimised by finding similar compounds to it, with the hope that a similar, but 
better drug can be synthesised.  
 
The virtual screening (VS) is widely used to enhance the cost-effectiveness of drug-discovery 
programmes by ranking database of chemical structures in decreasing probability of activity, this 
prioritisation then means that biological testing can be focused on just those few molecules that 
have significant a priori probabilities of activity. There are many different ways in which a 
database can be prioritized, here we focus on similarity searching methods. Similarity searching 
is one of the most widely used VS approaches. The basic idea underlying similarity searching 
based VS is a very simple idea that similar property principle states that structurally similar 
molecules tend to have similar properties [1]. According to this principle, any molecule that has 
not been tested for biological activity but is structurally similar to a target molecule that is exhibit 
the interest activity is also expected to be active. Furthermore the molecules will be ranked in 
decreasing order, so that first molecule is more expected to be active than others and so on.  
 
One objective of the computational tools which applied in chemoinformatics was to finding leads 
early in a drug discovery project. The effectiveness of any similarity method can vary greatly from 
one biological activity to another in a way that is difficult to predict. Moreover, any two similarity 
methods tend to select different subsets of actives from a database, consequently it is advisable 
to use several similarity search methods where possible [2]. 
 
In essence, most of the molecular similarity measures used originates from areas outside 
chemoinformatics, particularly from text retrieval. Although chemical structures differ greatly from 
other entities that are commonly stored in database, some parallels can be drawn between 
chemical database searches and searches on words or documents [3]. The many similarities 
between information retrieval and chemoinformatics that have already been identified suggest 
that chemoinformatics is a domain of which information retrieval researchers should be aware 
when considering the applicability of new techniques that they have developed [4]. During last 
two decades many researches has been done to develop different textual information retrieval 
techniques. Currently, Bayesian network the best approach to managing probability and to solve 
the uncertainty problem in textual information retrieval. 
 

2. MOLECULAR SIMILARITY SEARCHING 

In similarity searching, a query involves the specification of an entire structure of a molecule. This 
specification is in the form of one or more structural descriptors and this is compared with the 
corresponding set of descriptors for each molecule in the database [5]. A measure of similarity is 
then calculated between the target structure and every database structure. Similarity measures 
quantify the relatedness of two molecules with a large number (or one) if their molecular 
descriptions are closely related and with a small number (large negative or zero) when their 
molecular descriptions are unrelated. The results of the similarity measure will be used to sort the 
database structures into the order of decreasing similarity with the target. The resulting ranked list 
of structures will then be returned to the user. There is an extensive and continuing debate about 
what sorts of measures are most appropriate [46]. The similarity measure based on the number 
of substructural fragments common to a pair of molecules and a simple association coefficient are 
the most common at least until now [46]. The performance of different similarity coefficients with 
regard to their use in molecular similarity searching has earlier been analyzed. Several methods 
have been used to further optimise the measures of similarity between molecules, which include 
weighting [49], standardisation [47] and data fusion [46, 48]. Probability-based similarity 
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searching [50] has also been developed on top of the industry-standard vector-space models 
(VSM). 
 
A common application of similarity searching is in the rational design of new drugs and pesticides 
where the nearest neighbours for an initial lead compound are sought in order to find better 
compounds. Similarity searching is also used for property prediction purposes [7], where the 
properties of an unknown compound are estimated from those of its nearest neighbours. 
Underpinning these applications of molecular similarity measure is the similar property principle 
[1], which states that structurally similar molecules will exhibit similar physiochemical and 
biological properties. Related to the similar property principle is the concept of neighbourhood 
behavior [8], which states that compounds within the same neighbourhood or similarity region 
have the same activity. Unknown biological or physicochemical properties of a molecule can be 
predicted from the properties of molecules that lie within the same neighbourhood region. In lead 
finding, selection of compounds whose neighbourhood regions overlap one another should be 
avoided. In lead optimisation, if a particular compound is found to be active, compounds that lie in 
the same neighbourhood region can be tested to find one with the most optimum activity. 
 
The first reports on similarity searches appeared in the mid-1980s, based on the work carried out 
at Lederle Laboratories [7] and Pfizer [9]. In the Lederle study, molecules were represented by 
their constituent atom pairs, where an atom pair is a substructural fragment comprising two non-
hydrogen atoms together with number of intervening bonds. The similarity search allowed users 
to request either some number of the top-ranked molecules or all those that had a similarity with 
the target structure greater than a minimal value. In the Pfizer system, together with a 
conventional substructural query, a user can submit a target molecule typical of the type of the 
structure that was required. The conventional screen search and atom-by-atom search were used 
to identify matches in the substructure searching, after which a similarity measure based on the 
screens common to the target and the matches was used to rank the substructure search output. 
The subsequent development of a faster, inverted-file-based, nearest neighbour search algorithm 
allowed the ranking of the entire database against the target structure in real time, without the 
need for the specification of the initial substructural query. Since the Lederle and Pfizer systems, 
similarity searching has undergone further development. An example is Hagadone’s work on 
substructure similarity searching [10]. Substructure similarity searching is used to identify 
molecules containing a substructure similar to a target structure or substructure. Another 
extension of similarity search was described by Fisanick et al. [11] on facilities developed for 
Chemical Abstracts Service (CAS) Registry File. It focuses on different types of similarity 
relationships that can be identified between a structure in the query and a database structure. 
This study found that different representations could give different measures of structural 
resemblances between compounds, which suggest that a further analysis into a combined 
approach could give a more comprehensive similarity measure between them. The use of 
similarity calculations between molecules have since been used not only in similarity searching, 
but also in applications like compounds selection [12, 13] and molecular diversity analysis [14, 15, 
16]. Three principal tools used for the similarity calculations are the representation that is used to 
characterize the molecules that are being compared, the weighting scheme that is used to assign 
differing degrees of importance to the various components of these representations, and the 
coefficient that is used to determine the degree of relatedness between two structural 
representations [17]. 
 
2.1 Molecular descriptors 
Molecular descriptors are vectors of numbers, each of which is based on some pre-defined 
attributes. They are generated from a machine-readable structure representation like a 2D 
connection table or a set of experimental or calculated 3D co-ordinates. Molecular descriptors 
can be classified into 1D descriptors, 2D descriptors and 3D descriptors. 2D descriptors are 
based on information derived from the traditional 2D structure diagram. Examples of 2D 
descriptors are 2D fingerprint and topological indices, which are our focus as they play a 
prominent role in the experimental work of this paper. 
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2D fingerprints are the most commonly used descriptors. These descriptors were initially 
developed to provide a fast screening step in substructure search systems in which bit strings are 
used to represent molecules. They have also proved very useful for similarity searching. There 
are two different types of 2D fingerprints: dictionary-based bit strings and hashed fingerprints. In 
dictionary-based bit strings, a molecule is split up into fragments of specific functional groups or 
substructures. The fragments used are recorded in a predefined fragment dictionary that specifies 
the corresponding bit positions of the fragments in the bit string. Bits either individually or as a 
group represent the absence or presence of fragments. Examples of dictionary-based 
assignment are the CAS ONLINE Screen Dictionary for substructure searching [18], Barnard 
Chemical Information system [19, 20] and MDL MACCS key system [21, 22]. In hashed 
fingerprints, all the unique fragments that exist in a molecule are hashed using some hashing 
function to fit into the length of the bit string. This approach allows for more generalisations 
because it does not depend on a predefined list of structural fragments. The fingerprints 
generated are characterised by the nature of the chemical structures in the database rather than 
by the fragments in some predefined list. This approach is used in the Daylight Chemical 
Information Systems [24] and Tripos systems [23]. 
 
Topological indices characterise the bonding pattern of a molecule by a single value integer or 
real number, obtained from mathematical algorithms applied to the chemical graph representation 
of the molecules. Each index thus contains information not about fragments or some locations on 
the molecule, but rather about the molecule as a whole. Simpler descriptors include the number 
of atoms and bonds and the number of rotatable bonds. 
 
Similarity measures based on bit strings are currently the most widely used approach for 
database searching [25]. One of the principal applications of bit string based searching is in the 
selection of compounds for inclusion in biological screening programs. This is largely due to the 
low processing requirements needed to calculate the similarities between a target structure and a 
large number of structures. 
 
2.2 Weighting schemes  
A weighting scheme is used to differentiate between different features in a molecule, based on 
how important they are in determining the similarity of that molecule with another molecule. 
Certain molecular features can be emphasised by associating higher weights with them when 
calculating similarity. Different types of statistical information can be extracted from computerised 
representations of molecules to form the basis for a fragment weighting schemes. These are 
follows, (a) Fragment Frequency (ff), is the number of occurrence of a particular fragment within a 
molecule, with high frequently occurring fragments being given a greater weight than those that 
occur less frequently. (b) Inverse Fragment Frequency (iff), is the frequency of the fragment in the 
molecule collection, with less frequently occurring fragment being given a greater weight than 
those that occur high frequently throughout the molecule collection. (c) Molecule size (mz), is the 
number of the fragments assigned to a molecule, with a fragment in small molecule being 
assigned a greater weight than the same fragment in a large molecule. One more weighting 
scheme can be used whenever we can differentiate between active and inactive molecules within 
dataset. Unfortunately, limited studies have been done on the effect of applied weighting 
schemes on molecular similarity searching methods. All of the above mentioned considerations 
have been used for assigning weights at the National Cancer Institute [26]. Willett and Winterman 
have found that giving more weight to fragments that occur more frequently in a molecule did 
seem to give good results, but other weighting schemes had little significance [27]. 
 
2.3 Similarity Coefficients 
Similarity coefficients are used to obtain a numeric quantification to the degree of similarity 
between a pair of structures [28]. There are four main types of similarity coefficients [29, 30, 31] : 
distance coefficients, association coefficients, correlation coefficients and probabilistic 
coefficients. Association coefficients are commonly used with binary representations and are 
often normalized to lie within the range of zero (no similar features in common) and unity 
(identical representations). However, they can be used with non-binary representations, in which 
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case the range may be different. Correlation coefficients measure the degree of correlation 
between sets of values characterizing a pair of objects. Distance coefficients quantify the degree 
of dissimilarity between two objects and, when normalized and using binary data, range between 
zero (identity) and unity (no similar features in common). Probabilistic coefficients, whilst not 
much used in measuring molecular similarity, focus on the distribution of the frequencies of 
descriptors over the members of a data set, giving more importance to a match on an infrequently 
occurring variable. Examples of these coefficients can be found elsewhere [29]. Assume SK,L is 
the similarity between molecules K and L, both molecules described by binary representation. For 
bit string descriptors, n is the total bit positions in the bit strings representing the two molecules 
compared. b is the number of bit positions set in only one of the two molecules whilst c is the 
number of bit positions set in only the other molecule. d of the n bits are not set in either one of 
the molecules and a is the number of bits set in both molecules. Thus, n = a + b + c + d. The 
origins of the coefficients can be found in a review paper by Ellis et al. [31]. Examples of some of 
the coefficients that were used are listed in Table 1. 
 

Continuous Binary 
Coefficient 

Formula Range Formula Range 

Tanimoto 

 

-0.3 to 1 
cba

a

++  
0 to 1 
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))(( caba
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n

a
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Dice 
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cba

a

++2

2
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TABLE 1: Examples of Association Coefficients. 

 
Tanimoto coefficient in Eq. 1 is the most popular coefficient used by similarity methods. If two 
molecules K and L have b and c bits set in their fragment bit-strings, with a of these bits being set 
in both of the fingerprints, then the similarity between these two molecules using Tanimoto 
coefficient is defined to be: 
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The Tanimoto coefficient is widely used in molecular similarity methods and was becomes the 
best choice in both in-house and commercial software systems for chemical information 
management. 
 

3. BAYESIAN NETWORKS 

Recent research in information retrieval has proved that retrieval models based on Bayesian 
network give significant improvements in retrieval performance compare to conventional models 
[36, 37, 38, 43]. It is therefore likely that Bayesian network is able to represent the main 
(in)dependence relationships between molecular descriptors as conditional probabilities with the 
degree of resemblance between pairs of such descriptors computed to represent the probability. 
Molecular similarity will be regarded as an inference or evidential reasoning process in which the 
probability that a given compound met the requirements of a query is estimated and used as 
evidence. Network representations have show promise as mechanisms for inferring these kinds 
of relationships.  In this paper, we explore the possibility and effectiveness of using such 
networks for similarity searching. 
 
A Bayesian network (BN) is graphical model of a probability distribution [33]. A Bayesian network 
is a directed acyclic graph (DAG) in which the nodes represent random variables and the arcs 
show causality, relevance or dependency relationships between them. The variables and their 
relationships comprise the qualitative knowledge stored in a Bayesian network. The strength of 
the relationships, measured by means of probability distributions, is also stored in the DAG. 
Associated with each node is a set of conditional probability distributions, one for each possible 
combination of values that its parents can take. A Bayesian network can be considered an 
efficient representation of a joint probability distribution that takes into account the set of 
independent relationships represented in the graphical component of the model. In general terms, 
given a set of variables {X1, . . . , Xn} and a Bayesian network G, the joint probability distribution in 
terms of local conditional probabilities is obtained as follows: 
 

))((),...(
1

1 i

n

i

in XXPXXP π∏
=

=

 
 
where π(Xi) is any combination of the values of the parent set of Xi. If Xi has no parents, then the 
set π(Xi) is empty, and therefore P(Xi|π(Xi)) is just P(Xi). Once completed, a Bayesian network 
can be used to derive the posterior probability distribution of one or more variables in the network, 
or to update previous conclusions when new evidence reaches the system. 
 

4. SIMILARITY INFERENCE NETWORK MODEL 

The basic model for similarity inference network, shown in Fig.1, consists of two component 
networks: a compound network and a query network. The compound network represents the 
compound collection. The compound network is built once for a given collection and its structure 
does not change during query processing. The query network consists of a single node, which 
represents the target molecule and one or several query molecules, which express the target 
molecule. A query network is built for each target molecule and modified during query processing 
as the query is refined or additional representations are added in an attempt to better 
characterize the target molecule. The compound and query networks are connected though links 
between their descriptor nodes. 
 
4.1 Compound Network 
 
The compound network shown in Fig. 1 is a simple direct acyclic graph (DAG) consisting of 
compound nodes (cj) as roots, and descriptor nodes (di) as leaves. Each compound node 
represents a compound in the collection. Each compound node has a prior probability associated 
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with it that describes the probability of observing that compound. This prior probability will 
generally be set to 1/(collection size) and this probability will be small for real collections. 
 
Compound nodes have one or more descriptor nodes as children. The descriptor nodes can be 
divide into several subsets, each corresponding to a single descriptor technique that has been 
applied to the compound. When 1052 bits are used to describe the compounds using BCI 
fingerprint, 1052 nodes are used to represent these bits. If 10 topological indices are used to 
describe the compounds, 10 nodes are used to represent these numerical values. We represent 
the assignment of a specific descriptor to a compound by draw a directed arc to the descriptor 
node from each compound node corresponding to a descriptor node. Each descriptor node 
contains a specification of the conditional probability associated with the node given its set of 
parent compound nodes. This specification incorporates the effect of any weighting scheme 
associated with the descriptors node. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 1: Similarity inference network model. 

 
4.2 Query Network 
The query network is an “inverted” DAG with a single leaf that corresponds to a target molecule 
and multiple roots that correspond to the descriptors that express the target. If there is only one 
query molecule, the target molecule node and query molecule node coincide. In addition, the 
query network is intended to allow us to combine several query molecules to form a single query 
molecule. The roots of the query network are query descriptors; they correspond to the 
descriptors used to express the target molecule. A single query descriptor node has a single 
compound descriptor node as parent. Each query descriptor node contains a specification of its 
dependence on a single parent compound descriptor node. The query descriptor nodes define 
the mapping between the descriptor layer used to represent the compound collection and the 
descriptor layer used to describe target molecule. In our model, the relation between query and 
compound descriptors is 1:1 and completely depends. Thus, in order to simplify and reduce our 
model, the query descriptors are the same as the compound descriptors. The attachment of the 
query descriptors nodes to the compound network has no effect on the basic structure of the 
compound network. None of the existing links needs change and none of the conditional 
probability specifications stored in the nodes are modified. 
 
To produce a ranking of the compounds in the collection with respect to a given target molecule 
T, we compute the probability that this target molecule is satisfied given that compound cj has 
been observed, P(T|cj). This is referred to as instantiating cj and corresponds to attaching 
evidence to the network, by stating that cj = true, whereas the rest of the compound nodes are set 
to false. When the probability P(T|cj) is computed, this evidence is removed and a new compound 
cj, i ≠ j , is instantiated. By repeating this computation for the rest of the compounds in the 
collection, the ranking is produced. 
 

 
C1 C2 Cj CM 

d1 d2 d3 di dN 

Q 
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The similarity inference network is intended to capture all of the significant probabilistic 
dependencies among the random variables represented by nodes in the compound and query 
networks. If these dependencies are characterised correctly, then the results provided are good 
estimates of the probability this target molecule is met. Given the prior probabilities associated 
with the compounds (roots) and the conditional probabilities associated with the interior nodes 
(descriptor nodes), we can compute the posterior probability associated with each node in the 
network. Further, if the value of any variable represented in the network becomes known we can 
use the network to recompute the probabilities associated with all remaining nodes based on this 
“evidence”. The query network is first built and attached to the compound network, and then the 
belief associated with each node in the query network computed. All compounds are equally likely 
(or unlikely). 
 
4.3 Probabilities Estimation 
For any of the non-root nodes A of the network, the dependency on its set of parent nodes {P1, 
P2,…,Pn}, quantified by the conditional probability P(A|P1,P2,..,Pn), must be estimated and 
encoded. Link matrices are used to encode the probability value assigned to a node A given any 
combination of values of its parent nodes. However, all the random variables (di, q, T), 
represented by the non-root nodes in the network, are binary and therefore, when a node has n 
parents, the link matrix associated with it is of size 2 x 2

n
. 

 
Canonical link matrix forms allow us to compute for A any value LA[i, j] of its link matrix LA, where 
i Є {0,1} and 0 ≤ j ≥ 2

n
, will be used [36, 40]. The row number {0,1} of the link matrix corresponds 

to the value assigned to the node A, whereas the binary representation of the column number is 
used so that the highest order bit reflects the value of the first parent, the second highest order bit 
the value of the second parent and so on. The weighted-sum canonical link matrix form [36] 
allows us to assign a weight to the child node A, which is, in essence, the maximum belief that 
can be associated with that node. Furthermore, weights are also assigned to its parents, 
reflecting their influence on the child node. Consequently, our belief in the node is determined by 
the parents that are true. For instance if node A has two nodes as parent P1, P2 and that the 
weight assigned to them w1, w2 respectively and wA is weight for node A, now suppose 
P(P1=true)=p1 and P(P1=true)=p2, then the link matrix LA is as follows: 
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The evaluation for this link matrix is as following: 
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In the more general and complicated case of the node A having n parents, the link matrix at Eq. 2 
cannot be evaluated because become NP hard, therefore the derived link matrix can be 
evaluated using the following closed form expression: 
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For our similarity inference network model, estimates for the (dj, q, T) random variables that 
characterise the following three dependencies are provided 
 

• The dependence of the descriptor nodes upon the compound nodes which containing them 

• The dependence of the query molecule nodes upon the descriptor nodes which containing 
them. 

• The dependence of the target molecule upon the different query node. 
 
In case one query molecule node is used in the model, then the target molecule node coincide 
with query molecule node. Therefore, we only need to estimate the first two probabilities. The 
only roots in Fig. 1 are the compound nodes, therefore the prior probability associated with these 
nodes is set to 1/(collection size). Compound and query descriptor nodes are viewed as identical 
under the assumption that the user knows the set of compound descriptors and can formulate 
queries using the compound descriptors directly. 
 
To estimate the probability that a descriptor node is good for discriminating a chemical 
compound’s structure, a weighting function can be incorporated in the weighted-sum link matrix. 
We will use the weighting schemes mentioned in section 2.2 above and difference between 
values of descriptors nodes for compound and query as weighting function. For instance, 
molecular descriptors such as topological indices values and bit frequency of fingerprints can be 
used for weighting function. For normalized topological indices descriptor, this estimate is given 
by: 
 

)1()1()(
2

'

iiji ddtruecdP −−×−+== αα    (6) 

 
where α is a constant and experiments using the inference network show that the best value for α 
is 0.4 [36, 40], di  is the value of compound descriptor and dj’ is the value of query descriptor. For 
bit string molecular descriptors, the molecule size (mz) and inverse fragment frequency (iff) as 
weighting functions. This estimate is given by: 
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Where kjq is the no of common bits between q and cj, mzj is the size of compound cj and iffi is the 
inverse fragment frequency of fragment i in the compound collection. 
 
The target molecule can be expressed as a small number of queries. These can be combined 
using a weighted-sum link matrix in Eq. 3 with weights adjusted to reflect any user judgments 
about the importance or completeness of the individual queries. We only have one query node, 
so the wA in probability function in Eq. 5 will omit and wi is set to 1 that’s for topological indices 
and incorporated with weighting function given below for bit strings 
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where kjq is same as in Eq. 7, mzq is the size of query q and iffi is the inverse fragment frequency 
of fragment i in the compound collection. The kjq factor is normalizing to the range [0, 1] by 
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dividing kjq by the maximum possible kjq value (mzj and mzq are the maximum values of kjq in Eq. 
7 and Eq. 9 respectively). The inverse fragment frequency is given by 
 

)log(
frequencyfragment

sizecollection
iff =     (10) 

 
We will normalize iff to the range [0, 1] by dividing iff by the maximum possible iff value in the 
collection (the iff score for a fragment that’s occurs once). 
 

)log(

)log(

sizecollection

frequencyfragment

sizecollection

iff =     (11) 

 

5. EXPERIMENTAL DESIGN 

In this study a subset of the MDDR database comprised of around 15 biologically active groups of 
compounds have been used. Most of the activities chosen are highly diverse whereas the first 
four categories can be regarded as the most heterogeneous as compared to the rest of the 
compounds. The experiments were conducted using a collection of 1360 compounds from the 
MDL’s Drug Data Report (MDDR) database [44]. For the first experiment developed to test our 
similarity inference model with 2D fingerprint descriptors. We used bit string descriptors from 
Barnard Chemical Inc (BCI) fingerprint generation software based on BCI dictionaries bci1052 
[41] for 1052 bit-strings. Unfortunately this type of fingerprint only represents the fragment 
presence without frequency counts. Therefore, fragment frequency for any fragment in the 
compound is set to 1. We used 9 targets molecules as queries for each of the 7 activity groups. 
The main groups, their subgroups and their aggregate activity are summarized in Table 2 
 

S.No Activity 
No. 

Molecules 

1 

Interacting on 5HT receptor 
5HT Antagonists  
5HT1 agonists 
5HT1C agonists 
5HT1D agonists 

 
48 
66 
57 

100 

2 
Antidepressants 

Mao A inhibitors 
Mao B inhibitors 

 
84 

148 

3 
Antiparkinsonians 

Dopamine (D1) agonists 
Dopamine (D2) agonists 

31 
103 

4 
Antiallergic/antiasthmatic 

Adenosine A3 antagonists 
Leukotine B4 antagonists 

73 
150 

5 
Agents for Heart Failure 

Phosphodiesterase inhibitors 
 

100 

6 
AntiArrythmics 

Potassium channel blockers 
Calcium channel blockers 

 
100 
100 

7 
Antihypertensives 

ACE inhibitors 
Adrenergic (alpha 2) blockers 

 
100 
100 

Total molecules 1360 

 
TABLE 2: Groups and activities of the dataset. 
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For the second experiment developed to test our similarity inference model with topological 
indices, we generated around 100 topological indices using the Dragon software [45], out of 
which only 10 have been selected, accounting for around 98% of the variance in the dataset. A 
list of the 10 topological indices selected is shown in Table 3. Results were compared with the 
industry standard Tanimoto measure [46]. 
 

TI Description 

Gnar Narumi geometric topological index 

Xt Total structure connectivity index 

Dz Pogliani index 

SMTI Schultz Molecular Topological Index 

PW3 path/walk 3 – Randic shape index 

PW4 path/walk 4 – Randic shape index 

PW5 path/walk 5 – Randic shape index 

PJI2 2D Petitjean shape index 

CSI eccentric connectivity index 

D/Dr03 distance/detour ring index of order 

 
TABLE 3: Selected Topological Indices. 

 

6. RESULT AND DISCUSSION 

Our similarity inference approach and industry standard Tanimoto measures conducted on the 
same database and queries. Same evaluation method used for both. Result from the first 
experiment is shown in Fig. 2, which shows the average number of similarly active compounds to 
the target structures among the top 5% compounds retrieved. We found that our approach was 
surpasses the industry standard Tanimoto measure in Antidepressants, Antiallergic/antiasthmatic, 
AntiArrythmics and Antihypertensives activity groups tested. In Interacting on 5HT receptor, 
Antiparkinsonians and Agents for Heart Failure activity groups our approach was found inferior to 
the industry standard Tanimoto measures. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 2: Performance of Similarity Inference Network Compared to Performance of 
Industry Standard Tanimoto Measure using BCI 2D bit string. 
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FIGURE 3: Performance of Similarity Inference Network Compared to Performance of 
Industry Standard Tanimoto Measure using Topological Indices. 

 
Fig. 3 shows result from the second experiment. We found that our approach was surpasses the 
industry standard Tanimoto measures in Interacting on 5HT receptor, Antidepressants and 
AntiArrythmics activity groups tested. In Antiparkinsonians and Agents for Heart Failure activity 
groups our approach was found inferior to the industry standard Tanimoto measures. In 
Antiallergic/antiasthmatic and Antihypertensives activity groups, we found that both of the 
approaches perform similarly. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 4: Performance of Similarity Inference Network Using BCI Compared to 
Performance of Similarity Inference Network Using Topological Indices. 

 
Fig. 4 shows the average number of similarly active compounds to the target structures among 
the top 5% compounds retrieved. We found that our approach with bit-string descriptors from BCI 
was performing better than when used with topological indices. 
 
There are two distinct factors influence on the result produced by our approach. For 2D bit-string, 
the no of common bits between compound and query (kjq), and the inverse fragment frequency 
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(iff) of the fragment in the collection. For topological indices, the distance between descriptors 
values of query and compound, and weight of query descriptor nodes (wi). 
 
These factors constitute the weighting functions used in our approach. These weighting function 
are intended to increase the influence of fragments and descriptors that are believed to be 
important on quantifying the similarity. The basic ideas are that 
 

• Many bits share by compound and query lead to  increase the similarity score of this 
compound 

• Those fragments that occurs infrequently in the collection are more likely to be important than 
frequent fragments and increase the similarity score of this compound. 

• Slight distance between descriptor values lead to  increase the similarity score of this 
compound 

 

7. CONSLUSION & FUTURE WORK 

We have notice that the existing molecular similarity searching methods suffer from problems like 
instability, unstandardize and poor results. The instability appears because no judgment can be 
made about which best coefficients can be used for all biological activities. The similarity method 
can start with little information, and as a general rule, the molecular similarity concept is most 
often applied when knowledge of the system is sparse. This one of the advantage of molecular 
similarity method but at the same time is disadvantage to these methods. 
 
In this work we are proposing Bayesian inference networks for molecular similarity searching. We 
have developed a novel approach for molecular similarity based on Bayesian inference networks, 
which can resolve these problems. Our approach can comprise belief, weights and any other 
evidences in the problem of molecular similarity. Overall results show the networks performed 
slightly improvement than industry standard Tanimoto measures. We foresee that the result can 
be much better when a better weighting function can be devised. Currently, we are working on 
developing new weighting functions which include the frequency of each fragment in compound 
to use in our similarity inference network. 
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