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EDITORIAL PREFACE 

 
This is the Second Issue of Volume Fourteen of International Journal of Biometric and 
Bioinformatics (IJBB). The Journal is published bi-monthly, with papers being peer reviewed to 
high international standards. The International Journal of Biometric and Bioinformatics is not 
limited to a specific aspect of Biology but it is devoted to the publication of high quality papers on 
all division of Bio in general. IJBB intends to disseminate knowledge in the various disciplines of 
the Biometric field from theoretical, practical and analytical research to physical implications and 
theoretical or quantitative discussion intended for academic and industrial progress. In order to 
position IJBB as one of the good journal on Bio-sciences, a group of highly valuable scholars are 
serving on the editorial board. The International Editorial Board ensures that significant 
developments in Biometrics from around the world are reflected in the Journal. Some important 
topics covers by journal are Bio-grid, biomedical image processing (fusion), Computational 
structural biology, Molecular sequence analysis, Genetic algorithms etc.   

 
The initial efforts helped to shape the editorial policy and to sharpen the focus of the journal. 
Started with Volume 14, 2021, IJBB appears with more focused issues related to biometrics and 
bioinformatics studies. Besides normal publications, IJBB intend to organized special issues on 
more focused topics. Each special issue will have a designated editor (editors) – either member 
of the editorial board or another recognized specialist in the respective field. 

 
The coverage of the journal includes all new theoretical and experimental findings in the fields of 
Biometrics which enhance the knowledge of scientist, industrials, researchers and all those 
persons who are coupled with Bioscience field. IJBB objective is to publish articles that are not 
only technically proficient but also contains information and ideas of fresh interest for International 
readership. IJBB aims to handle submissions courteously and promptly. IJBB objectives are to 
promote and extend the use of all methods in the principal disciplines of Bioscience. 

 
IJBB editors understand that how much it is important for authors and researchers to have their 
work published with a minimum delay after submission of their papers. They also strongly believe 
that the direct communication between the editors and authors are important for the welfare, 
quality and wellbeing of the Journal and its readers. Therefore, all activities from paper 
submission to paper publication are controlled through electronic systems that include electronic 
submission, editorial panel and review system that ensures rapid decision with least delays in the 
publication processes.  

 
To build its international reputation, we are disseminating the publication information through 
Google Scholar, J-Gate, Docstoc, Scribd, Slideshare, Bibsonomy and many more. Our 
International Editors are working on establishing ISI listing and a good impact factor for IJBB. We 
would like to remind you that the success of our journal depends directly on the number of quality 
articles submitted for review. Accordingly, we would like to request your participation by 
submitting quality manuscripts for review and encouraging your colleagues to submit quality 
manuscripts for review. One of the great benefits we can provide to our prospective authors is the 
mentoring nature of our review process. IJBB provides authors with high quality, helpful reviews 
that are shaped to assist authors in improving their manuscripts.   
 
 
Editorial Board Members 
International Journal of Biometric and Bioinformatics (IJBB) 
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Abstract 
 
Background: Severe Acute Respiratory Syndrome (SARS) corona virus (CoV) infections are a 
serious public health threat because of their pandemic-causing potential. This work examines 
pathway signatures derived from mRNA expression data as a measure of differential pathway 
activity between SARS and mock infection using a meta-analysis approach to predict pathways 
associated with SARS infection that may have potential as therapeutic targets to preclude or 
overcome SARS infections. This work applied a GSEA-based, meta-analysis approach for 
analyzing pathway signatures from gene expression data to determine if such an approach would 
overcome FET limitations and identify more pathways associated with SARS infections than 
observed in our previous work using gene signatures. 
 
Methods: This work defines 37 pathway signatures, each a ranked list of pathway activity 
changes associated with a specific SARS infection. SARS infections include seven SARS-CoV1 
strains with established mutations that vary virulence (infectious clone SARS (icSARS), Urbani, 

MA15, ORF6, Bat-SRBD, NSP16, and ExoNI), MERS-CoV, and SARS-CoV2 in human lung 
cultures and/or mouse lung samples. To compare across signatures, positive and negative 
icSARS pathway panels are defined from shared leading-edge pathways identified by Gene Set 
Enrichment Analysis (GSEA) between two icSARSvsmock signatures, both from human cultures. 
GSEA then assesses enrichment in all 37 signatures and identifies leading-edge icSARS panel 
pathways for each analysis. A meta-analysis across identified leading-edge pathways reveals 
commonalities which are ranked by Stouffer’s method for combining p-values. 
 
Results: Significant enrichment (GSEA p<0.001) is observed between the two icSARSvsmock 
signatures used to define positive (195 pathways) and negative (173 pathways) icSARS panels. 
Consistent, non-random (null distribution p<0.01), significant enrichment of the positive icSARS 
pathway panel in all pathway signatures is observed but significant enrichment is inconsistent for 
the negative icSARS panel. After meta-analysis, 11 pathways are found in all GSEA-identified 
leading-edges from the positive icSARS panel. Identified pathways are involved in the immune 
system with response to type I interferon ranked highest. 
 
Conclusion: This GSEA-based meta-analysis approach identifies pathways with and without 
reported associations with SARS infections, highlighting this approach’s predictability and 
usefulness in identifying pathway activity changes. 
 



Amber Park, Marius Nwobi, & Laura K. Harris 

International Journal of Biometrics and Bioinformatics (IJBB), Volume (14) : Issue (2) : 2021 15 
ISSN: 1985-2347, https://www.cscjournals.org/journals/IJBB/description.php 

Keywords: Pathway Activity, Meta-analysis, Gene Set Enrichment Analysis, SARS, Interferon. 

 
 
1. INTRODUCTION 

A group of positive-sense RNA viruses that infect humans and a variety of animal species, known 
as human β-coronaviruses (CoV), typically cause mild upper respiratory distress referred to as 
the common cold. Many professionals viewed this viral group as non-lethal and no great concern 
for several decades [1]. This view changed in 2002 with a novel CoV that caused a life-
threatening disease called severe acute respiratory syndrome (SARS). The SARS-CoV1 
epidemic infected over 8,400 people and had over a 9% mortality rate. In 2012, another CoV 
emerged causing Middle East Respiratory Syndrome (MERS), which had an over 30% mortality 
rate [2]. However, it has been noted that MERS-CoV is part of CoV lineage C which is 
phylogenetically different from other human CoV including SARS-CoV1 and utilizes dipeptidyl 
peptidase 4 (DPP4) rather than angiotensin-converting enzyme 2 (ACE2) for cellular entry [3]. 
Thankfully both SARS-CoV1 and MERS-CoV epidemics were contained by countries who took 
with advanced technological collaborations and regulated animal husbandry practices [4]. 
SARS-CoV2, the causative agent of CoV disease 2019 (COVID-19), is responsible for over 3.7 
million deaths across the globe by early June 2021 and continues to cause a raging pandemic [5]. 
SARS-CoV2 has an 80% genome similarity to SARS-CoV1 and a 50% similarity to MERS-CoV 
[6, 7]. New variants of SARS-CoV2 are reported regularly, and some variants like B.1.1.7 are 
reported to have increased infectiousness compared to older variants, forcing scientists to 
consider outbreaks of a future SARS-CoV3 strain [8-11]. 
 
Successfully treating SARS-infected patients is crucial to improving patient conditions and 
restoring communities. Unfortunately, there were limited therapies for SARS-CoV1 and 
MERS-CoV infections available. Corticosteroids, RNA-dependent RNA polymerase inhibitors, and 
nucleoside antimetabolite drugs like ribavirin were the main treatments against SARS-CoV1; 
however, these specific drugs have displayed poor efficacy or questionable effectiveness [12-14]. 
Remdesivir is a nucleotide analogue that inhibits viral RNA synthesis in SARS by interfering with 
RNA polymerase and evading viral exoribonuclease [15]. Remdesivir has shown inconsistent 
results with some studies not showing ay clinical benefits or difference in 5- or 10- day regiments 
with a potential stronger effect in severe versus moderate patients. Treatments applied for 
SARS-CoV1, including ribavirin and remdesivir, were utilized on MERS-CoV with little investment 
into developing new therapeutic options. Despite existing drugs being repurposed to target 
MERS-CoV replication in vitro, there were limited treatment options available for patients at the 
time. The urgency to develop therapies against SARS increased substantially after the 
appearance of SARS-CoV2 as demonstrated through the execution of over 284 clinical trials with 
the goal to examine the efficacy and safety of repurposed and novel drugs to treat SARS 
infections [4]. A few treatment options include repurposing past drugs that displayed high 
potential efficacy against SARS-CoV1 and MERS-CoV infections [16]. Specific drugs such as 
remdesivir, favipiravir, ivermectin, lopinavir/ritonavir, arbidol, and others that inhibit membrane 
fusion, viral replicases, and human and viral proteases also have been under consideration as 
ways to manage and treat SARS-CoV2 [17, 18]. Newer therapies are incorporating 
immunotherapy with some therapeutics specifically targeting the cytokine storm consistently 
reported in COVID 19 patients. For example, interferon (IFN) and interleukin (IL)-6 receptor 
antagonist therapies are beginning to emerge as strong clinical options [12-14, 18-21]. Regarding 
preventative measures, several novel and traditional vaccinations have been approved for 
administration with many other vaccine candidates currently in clinical trials [18, 20]. Despite 
current vaccinations having high efficacy, no definite treatment option is available to consistently 
treat SARS-CoV2 infections as death tolls from the virus continue to increase [19]. New 
therapeutic strategies are vital to successful treatment of current and future SARS infections. 
 
Analyzing pathway activity changes associated with SARS infection can identify new targets for 
the development of new therapies to combat COVID-19 and future SARS outbreaks [22]. Several 
studies have examined pathway activity changes in SARS infections by analyzing gene 
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expression data [3, 23-30]. Pathway activity changes usually are identified individually using a 
hypergeometric test variation, such as Fisher’s Exact Test (FET), or Gene Set Enrichment 
Analysis (GSEA) [22]. FET calculates enrichment of a pathway (i.e., established list of genes 
associated with a certain cellular product or change) in a researcher-defined gene subset, such 
as differentially expressed genes identified via statistical cut-offs such as fold change>2 and/or 
T-test p-value<0.05. Pathway enrichment analysis using hypergeometric test variation on 
differentially expressed genes identified from SARS data has revealed increased immune 
response, chemokine, and cytokine pathway activities, particularly IL-6 and IL-8 pathways, in 
SARS-CoV1 infected human lung cultures and mouse lung samples [26], increased inflammatory, 
coagulation, and apoptotic pathway activity and decreased IFN-I signaling pathway activity in 
SARS-CoV2 infected human lung cell cultures and COVID-19 patients [23-25, 27, 28]. While 
hypergeometric tests are commonly used, GSEA has become a preferred method to calculate 
pathway enrichment because it considers all genes in an expression dataset rather than only 
differentially expressed genes meeting an established statistical cut off [22, 31]. GSEA 
accomplishes this through examination of gene signatures, which are ranked lists of expression 
dataset genes based on differential gene expression [31]. Enrichment of individual innate immune 
response pathways taken from public knowledgebases (e.g., Gene Ontology (GO) [32], Kyoto 
Encyclopedia of Genes and Genomes (KEGG) [33], and/or MSigDB [34]) was found consistently 
in the positive tails of SARS gene signatures derived from blood, lung, and airway samples of 
COVID-19 patients [29, 30]. Comparative transcriptome analysis across SARS strains identified 
similarities and differences in which pathways were significant individually; for example, finding 
increased phagosome pathway in MERS-CoV and not SARS-CoV1 or SARS-CoV2 [3]. While 
these pathway enrichment approaches have been successful in identifying cellular mechanisms 
driving SARS infections, the approaches are limited because they consider each pathway 
individually. New computational approaches that consider activity changes of all pathways 
simultaneously may offer a new perspective into how SARS alters a cell, potentially leading to 
identification of new therapeutic strategies. 
 
In a prior work, we compared gene signatures across SARS strains using a GSEA-based meta-
analysis approach [35]. This approach successfully identified differentially expressed genes with 
and without prior association to SARS infections with five IFN-induced genes consistently 
identified across 37 SARS gene signatures. Our prior study expanded upon previous work by 
overcoming limitations of single-gene analysis (e.g., T-test) through using GSEA to identify 
genes. However, pathway analysis on identified genes in that study was limited by use of a FET-
variant to identify pathway activity changes associated with SARS infection. To overcome that 
FET limitation, in this work we performed a GSEA-based meta-analysis that used pathway 
signatures to identify pathways associated with SARS infections from mRNA expression 
datasets. By comparing pathway signatures using GSEA we can consider all pathways 
simultaneously and acquire a more complete understanding of cellular changes that occur during 
SARS infection. Further, this improved understanding could reveal molecular insights for the 
development of therapeutic strategies against COVID-19 and future SARS outbreaks though we 
acknowledge that this work is entirely computational so further experimental and clinical work will 
be needed to properly validate and implement our findings. 

 
2. METHODS 

2.1 mRNA Expression Resources and Previously Defined Gene Signatures 
In our recent gene expression study [35], we selected 17 datasets from Gene Expression 
Omnibus (GEO) [36] that contained SARS or mock infected human lung cell cultures or mouse 
lung samples collected at the 48hr time point post-infection. To briefly describe these datasets, 11 
datasets contained SARS-CoV1 cultures and samples across seven strains with varying virulence 
levels and infectious doses [26, 37-39]. These strains included a(n) 1) wild-type highly virulent 
strain Urbani, 2) infectious clone of SARS-CoV1 Urbani (icSARS), 3) MA15, a mouse adapted 
SARS-CoV1 strain, 4) attenuated icSARS with a genetic deletion causing lack of expression of 
IFN antagonist protein ORF6, 5) SARS-CoV1 like virus isolated from bats that was synthetically 
modified to contain the spike receptor binding domain (SRBD) from wild type Urbani for infection 
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of human cells (BatSRBD), 6) icSARS with a genetic modification of NSP16 (deltaNSP16) that 
encodes a non-structural 2’O methyltransferase whose disruption increases sensitivity to type I 
and III IFN responses, and 7) SARS-CoV1 with a genetic modification of ExoNI, which has no 
formal description in public knowledgebases. Three datasets contained MERS-CoV cultures and 
samples with varying infectious doses, and three datasets contained SARS-CoV2 cultures, 
presumably with the same infectious dose [40]. These datasets were selected so all available 
GEO datasets containing SARS and mock samples collected at 48hrs post infection were 
included in our meta-analysis. 
 
Our prior study used these 17 datasets to define 37 gene signatures which we used as previously 
described to define pathway signatures in this study [35]. To briefly describe these gene 
signatures, there were 29 SARS-CoV1 gene signatures which included 17 gene signatures from 
human lung cultures and 12 signatures from mouse lung samples. Specifically, we used seven 
icSARSvsmock signatures (six in human cultures, one in mouse samples), one 
UrbaniSARSvsmock signature with the Urbani strain in human cultures, eight MA15vsmock 
signatures doses in mouse samples representing varying inoculation, five ORF6vsmock 
signatures (four in human cultures, one in mouse samples), five BATvsmock signatures (four in 
human cultures, one in mouse samples), two NSP16vsmock signatures (one in human cultures, 
one in mouse samples), and one ExoNIvsmock signature from human cultures. For MERS-CoV 
datasets, we utilized three datasets to define five gene signatures that included two gene 
signatures from human lung cultures and three signatures from mouse lung samples. For 
SARS-CoV2 datasets, we used three datasets to define three gene signatures, all from human 
lung cultures. We further adopted the same research design, data collection, and data analysis as 
our prior study to inductively determine if a pathway signature meta-analysis approach would 
include and expand upon our previous gene expression based IFN findings. 
 

2.2 Defining Pathway Signatures using Gene Set Enrichment Analysis 
To measure pathway activity changes from a gene signature, we converted each gene signature 
into a pathway signature using Gene Set Enrichment Analysis (GSEA). GSEA is a statistical 
method that estimates enrichment between a query gene set (i.e., unranked list of genes) and a 
reference gene signature [31]. GSEA uses the statistical metric used to rank genes in the 
reference signature to calculate a running summation enrichment score where hits (i.e., matches 
between query set and reference signature) increase the enrichment score proportional to the 
ranking statistical metric and a miss (i.e., non-matches between query set and reference 
signature) decreases the enrichment score. From this, GSEA determines a maximum enrichment 
score for the specific query set and reference signature. Leading-edge genes contribute to 
reaching the maximum enrichment score, indicating leading-edge genes are associated with 
cellular response to a specific SARS infection. Further, GSEA calculates a normalized enrichment 
score (NES) from 1000 permutations of the reference signature to estimate the significance of 
enrichment between a specific query set and reference signature. By using the gene lists from an 
established pathway knowledgebase, pathway activity changes can be estimated by NES and 
ranked accordingly. Therefore, we examined available gene sets in the Molecular Signatures 
Database (MSigDB) version 7.2, which is curated by the Broad Institute, and found the GO BP 
collection had the most with 7573 gene sets. We used these GO BP gene lists as individual query 
sets (Supplemental Material STable 1) for GSEA against each gene signature (reference) to 
generate NES. Pathway signatures (i.e., a list of pathways ranked from high to low differential 
activity between two groups, such as SARS and mock infected lung cells) were generated by 
ranking pathways by NES while removing pathways that were under-represented in the gene 
signature (i.e., pathway with less than 15 genes in the gene signature). Pathways that were 
up-regulated in SARS compared to mock infected samples (e.g., positive NES, red color) fall 
within the positive tail of the pathway signature while down-regulated pathways (e.g., negative 
NES, blue color) fall in the negative tail (Figure 1). Pathways with no substantial change in activity 
between SARS and mock infected samples (e.g., NES around 0) were located toward the middle 
of the pathway signature. Therefore, pathways that fall within the tails of a pathway signature 
likely changed in response to a specific SARS infection. Pathway signature information was 
included in Tables 1 and 2. The same mock samples were used across signatures in same 
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dataset. Values in Length column were total number of pathways in the signature and Cross 
column reflected where midpoint was in the signature. This work used the javaGSEA Desktop 
Application release 3.0 version of GSEA available from Broad Institute. 
 

 
 

FIGURE 1: Schematic Definition of a Pathway Signature. 
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Dataset Group 1 (number 
of samples) 

Group 2 (number 
of samples) 

Pathway signature Use Max 
NES 

Minimum 
NES 

Length Cross 

GSE47960 icSARS (4) mock (3) icSARSvsmock Identification 2.48 -2.55 3871 2141 

dORF6 (4) mock (3) ORF6vsmock Comparison 2.47 -2.69 3871 2760 

BatSRBD (3) mock (3) BATSRBDvsmock Comparison 2.05 -2.14 3871 1668 

GSE47961 icSARS (4) mock (3) icSARSvsmock Identification 2.81 -2.74 3893 1541 

dORF6 (4) mock (3) ORF6vsmock Comparison 2.56 -2.94 3893 2292 

BatSRBD (4) mock (3) BATSRBDvsmock Comparison 2.43 -2.45 3893 1588 

GSE47962 icSARS (3) mock (3) icSARSvsmock Verification 2.18 -2.68 3861 2462 

dORF6 (3) mock (3) ORF6vsmock Comparison 2.07 -3.00 3861 2515 

BatSRBD (3) mock (3) BATSRBDvsmock Comparison 2.24 -2.84 3861 2607 

GSE37827 icSARS (3) mock (3) icSARSvsmock Verification 3.00 -2.41 4112 2313 

BatSRBD (3) mock (3) BATSRBDvsmock Comparison 3.02 -2.20 4112 2597 

GSE48142 icSARS (3) mock (3) icSARSvsmock Verification 3.31 -2.49 3880 2140 

ExoNI (3) mock (3) ExoNIvsmock Comparison 3.29 -2.54 3880 1978 

dNSP16 (3) mock (3) NSP16vsmock Comparison 3.26 -2.21 3880 2085 

GSE33267 icSARS (3) mock (3) icSARSvsmock Verification 3.31 -2.84 4109 2642 

dORF6 (3) mock (3) ORF6vsmock Comparison 2.57 -3.07 4109 2974 

GSE17400 Urbani (3) mock (3) Urbanivsmock Comparison 3.05 -2.35 4129 1360 

GSE50000 icSARS (5) mock (4) icSARSvsmock Comparison 2.57 -2.15 3914 1541 

MA10
5
 (4) mock (4) MA10

5
vsmock Comparison 3.25 -2.70 3914 2025 

MA10
4
 (4) mock (4) MA10

4
vsmock Comparison 2.71 -2.17 3914 2093 

BatSRBD (5) mock (4) BATSRBDvsmock Comparison 2.34 -1.92 3914 1875 

GSE33266 MA10
5
 (5) mock (3) MA10

5
vsmock Comparison 2.50 -2.07 3745 3140 

MA10
4
 (5) mock (3) MA10

4
vsmock Comparison 2.81 -2.47 3745 3276 

MA10
3
 (5) mock (3) MA10

3
vsmock Comparison 2.73 -1.97 3745 3407 

MA10
2
 (5) mock (3) MA10

2
vsmock Comparison 2.74 -2.12 3745 3149 

GSE49262 MA10
5
 (3) mock (3) MA10

5
vsmock Comparison 2.73 -2.13 3914 2599 

dORF6 (3) mock (3) ORF6vsmock Comparison 2.80 -2.03 3914 2675 

GSE49263 MA10
5
 (4) mock (3) MA10

5
vsmock Comparison 2.69 -2.11 3914 2572 

dNSP16 (4) mock (3) NSP16vsmock Comparison 2.74 -2.22 3914 2550 
 

TABLE 1: SARS-CoV1 Pathway Signatures Defined in this Study. 
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Dataset Group 1 (number 

of samples) 
Group 2 (number 

of samples) 
Pathway 
signature 

Use Max 
NES 

Minimum 
NES 

Length Cross 

GSE81909 icMERS (5) mock (5) icMERSvsmock Comparison 2.96 -1.80 4124 3048 

GSE100504 icMERS (5) mock (5) icMERSvsmock Comparison 2.81 -2.75 4125 2735 

GSE108594 MERS (4) mock (4) MERS10
4
vsmock Comparison 2.60 -2.09 3923 2290 

MERS (4) mock (4) MERS10
5
vsmock Comparison 2.54 -2.06 3923 2153 

MERS (4) mock (4) MERS10
6
vsmock Comparison 2.57 -2.15 3923 1804 

GSE152586 SARS2 (3) mock (3) SARS2vsmock Comparison 2.57 -2.56 4180 2218 

GSE160435 SARS2 (5) mock (5) SARS2vsmock Comparison 2.65 -2.05 4210 2992 

GSE155518 SARS2 (3) mock (3) SARS2vsmock Comparison 2.95 -0.54 4210 2095 
 

TABLE 2: MERS-CoV and SARS-CoV2 Gene Signatures Defined in this Study.
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2.3 Identification of icSARS Associated Pathways 
To identify pathway activity changes associated with SARS infection, we generated two icSARS 
pathway panels (Figure 2). To do this, we selected 500 pathways from the positive and negative 
tails from the GSE47960-derived icSARSvsmock pathway signature and used them to form two 
individual query pathway sets. We chose 500 pathways to capture maximum coverage of the 
signature that was allowable by GSEA [31]. GSEA compared each query pathway set to the 
GSE47961-derived icSARSvsmock pathway signature (reference). Leading-edge (LE) pathways 
from each analysis were collected, one group of pathways per tail. To make our pathway panels 
more robust, this process was reversed using GSE47960-derived icSARSvsmock pathway 
signature as reference and GSE47961-derived icSARSvsmock pathway signature for query 
pathway sets. We defined icSARS pathway panels from the pathways in common between 
leading-edge pathways from the same tail collected from both groups. 
 

 
 

FIGURE 2: Generation of icSARS Pathway Panels. 

 
2.4 Random Model Verification of icSARS Pathway Panel Enrichment 
To verify pathway activity changes that we identified as associated with icSARS infection by 
inclusion in our icSARS pathway panels, we performed GSEA using icSARS pathway panels 
(individual queries) and six icSARSvsmock pathway signatures derived from human lung 
cultures, including the GSE47960-derived and GSE47961-derived icSARSvsmock signatures 
from which we generated the icSARS panels (individual references). To assess if results 
generated from GSEA could be achieved randomly, we randomly selected 1000 pathway panels 
consisting of 184-pathways from the 7573 GO BPs used to define pathway signatures (queries) 
for GSEA against 37 pathway signatures defined earlier (references). We selected 184 pathways 
for the query set size since this was the average icSARS pathway panel size, and our previous 
gene expression study observed no substantial difference in range of achieved NES generated 
from this random model approach when the query set size changed [35]. These analyses 
generated a null distribution of NES to which we compared the NES achieved by icSARS 
pathway panels for each reference pathway signature and count the number of equal or better 
NES to estimate significance (i.e., distribution p-value). Box and whiskers plots were calculated 
using XLStat version 2020.3 [41]. 
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2.5 Comparison of icSARS-induced Pathway Activity Changes to Changes in Specific 
SARS Strains and Models 

We then extended our analysis to compare icSARS pathway panels to 19 pathway signatures 

derived from human lung cultures infected with other SARS strains (Urbani, BatSRBD, ORF6, 

NSP16, ExoNI, icMERS or SARS-CoV2). To examine if the pathway activity changes 
associated with SARS infection in human lung cultures also were associated with infection in 
infected mice, we used GSEA to compare icSARS pathway panels to 12 pathway signatures 

derived from lung samples of mice infected with icSARS, MA15, ORF6, BatSRBD, or NSP16. 
Heat maps were generated by Morpheus, https://software.broadinstitute.org/morpheus. 
 
2.6 Meta-analysis Across SARS Strains and Models 
To identify pathways generally associated with SARS infection, we collected same-tailed, leading-
edge pathways generated by GSEA using our icSARS panel, and performed a meta-analysis 
retaining pathways in common across leading-edges. Pathways associated with SARS infection 
were identified by pathway membership across leading-edges identified in these 37 analyses. 
Pathways were not excluded from further consideration in our meta-analysis if they were not 
included in a leading-edge due to lack of representation in that dataset’s platform. To determine 
which identified pathways were most associated with SARS infection, Stouffer’s z scores were 
calculated using GSEA p-values from all pathway signature comparisons of selected pathways 
using the stats.combine_pvalues command from the scipy package in Python 3.8. 

 
3. RESULTS 
3.1 Meta-analysis Across SARS Strains and Models 
To identify pathways associated with response to an icSARS infection, we began by defining the 
GSE47960-derived icSARSvsmock and GSE47961-derived icSARSvsmock pathway signatures 
(Table 1) We used these signatures to generate four pathway sets, each containing the 500 most 
differentially active pathways from the positive or negative tails of GSE47960-derived 
icSARSvsmock (NES>1.3 and <-1.1 for positive and negative tails, respectively) or GSE47961-
derived icSARSvsmock (NES>1.3 and <-1.3 for positive and negative tails, respectively). To 
assess similarity between these two pathway signatures, we first calculated enrichment using 
GSEA between either GSE47960-derived icSARSvsmock positive or negative tail pathway sets 
and the GSE47961-derived icSARSvsmock and achieved NES=5.50 and NES= 5.17 for positive 
and negative tail query pathway sets, respectively, both with a GSEA p-value<0.001. We 
observed similar findings when GSEA calculated enrichment between either GSE47961-derived 
icSARSvsmock positive (NES=6.0) or negative (NES= 5.0) tail pathway sets and the GSE47960-
derived icSARSvsmock (p-value<0.001). We defined separate positive and negative icSARS 
pathway panels from common leading-edge pathways identified from analyses (Supplemental 
Material STable 2), representing up- and down-regulated pathways associated with icSARS 
infection. 
 
Among pathways in positive icSARS panel, there were 100 pathways (51.0% of the panel) 
associated with regulation of cellular processes and 26 pathways (13.3% of the panel) associated 
with cellular response. We noted 71 pathways (36.2% of the panel) associated with the immune 
system or viral processes with 29 of those pathways (14.8% of the panel) not directly related to 
regulation or cellular response (e.g., neutrophil homeostasis, GO BP 0001780). Of the positive 
icSARS panel pathways, 17 pathways were identified by our prior gene expression meta-analysis 
[35]. Those pathways included negative regulation of viral genome replication (GO BP 0045071), 
response to type I IFN (GO BP 0034340), defense response to virus (GO BP 0051607), response 
to virus (GO BP 0009615), circadian regulation of gene expression (GO BP 0032922), circadian 
rhythm (GO BP 0007623), negative regulation of viral transcription (GO BP 0032897), positive 
regulation of PRI miRNA transcription by RNA polymerase II (GO BP 1902895), response to 
muscle stretch (GO BP 0035994), negative regulation of DNA binding (GO BP 0043392), 
epithelial tube branching involved in lung morphogenesis (GO BP 0060441), negative regulation 
of DNA binding transcription factor activity (GO BP 0043433), response to cAMP (GO BP 
0051591), positive regulation of p38MAPK cascade (GO BP 1900745), response to 
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corticosterone (GO BP 0051412), positive regulation of DNA binding transcription factor activity 

(GO BP 0051091), and positive regulation of NF-B transcription factor activity (GO BP 
0051092). These results demonstrated the predictive ability of our pathway signature approach. 
In the negative icSARS pathway panel, we found 54 pathways (31.0% of the panel) associated 
with regulation of cellular processes, 19 pathways (10.1% of the panel) related to ciliary action, 28 
pathways (16.1% of the panel) associated with nucleotide and protein production and 
modification, and 29 pathways (16.7% of the panel) connected to either mitotic or meiotic cell 
division. Of the negative icSARS panel pathways, no pathways were identified by our prior gene 
expression meta-analysis [35]. We speculated that these identified pathways without previously 
reported associations with icSARS infections also were associated with an icSARS infection. 
 
To assess if our pathway signature approach was better able to identify pathway activity changes 
associated with icSARS infection than our previous gene signature approach [35], we compared 
icSARS panel pathways to pathways identified by FET previously. Our current pathway signature 
analysis identified 386 pathways with a nominal p-value<0.05 (Supplemental Material STable 2) 
whereas FET found only 59 significant GO-BP pathways (EASE score p-value<0.05) from 
icSARS gene panel [35]. We found 17 pathways in common between these analyses: negative 
regulation of viral genome replication (GO BP 0045071), response to type I IFN (GO BP 
0034340), defense response to virus (GO BP 0051607), response to virus (GO BP 0009615), 
circadian regulation of gene expression (GO BP 0032922), circadian rhythm (GO BP 0007623), 
negative regulation of viral transcription (GO BP 0032897), response to muscle stretch (GO BP 
0035994), negative regulation of DNA binding (GO BP 0043392), epithelial tube branching 
involved in lung morphogenesis (GO BP 0060441), negative regulation of DNA binding 
transcription factor activity (GO BP 0043433), response to cAMP (GO BP 0051591), positive 
regulation of p38MAPK cascade (GO BP 1900745), response to corticosterone (GO BP 
0051412), positive regulation of DNA binding transcription factor activity (GO BP 0051091), and 

positive regulation of NF-B transcription factor activity (GO BP 0051092) and positive regulation 
of PRI miRNA transcription by RNA polymerase II (GO BP 1902895). These results demonstrate 
the expanded ability of pathway signatures to identify established and new pathway activity 
changes associated with SARS infection. 
 
3.2 Enrichment of icSARS Pathway Panels and Specific icSARS Panel Pathways Verified 

in Independent Datasets 
To verify our icSARS pathway panels were associated with response to an icSARS infection, we 
used GSEA to calculate enrichment between our icSARS panels and four icSARSvsmock 
verification pathway signatures from human cell cultures (Table 1). We began by performing 
GSEA between our icSARS panels and the two identification icSARSvsmock signatures used to 
define the panels to determine the potential range of achievable NES for the panels. We found 
NES from the identification signatures were >8 or <-8 for positive and negative icSARS panels, 
respectively, all with GSEA p-value<0.001 (Figure 3A). GSE47962 was conducted using the 
same experimental conditions as the two identification datasets, so GSE47962 is a true validation 
dataset for our icSARS pathway panels. Therefore, we compared the icSARS pathway panels to 
the GSE47962-derived pathway signature and achieved significant enrichment (NES=5.44 and 
-5.56, both GSEA p-value<0.001) for both panels (Figure 3B). We then repeated GSEA with our 
icSARS pathway panels and three other verification signatures derived from experiments using a 
different lung culture cell type. We observed significant enrichment (NES > 5 for the positive 
icSARS panel and <-4 for the negative icSARS panel, Figure 3C, all with GSEA p-value<0.001) 
like what we observed with GSE47962. To determine how likely the NES achieved for icSARS 
panels would be achieved by random chance, we generated 1000 randomly selected 184-
pathway panels from shared pathways between the GSE47960-derived and GSE47961-derived 
icSARSvsmock signatures to match the potential composition of our icSARS panels. We then 
repeated GSEA using these randomly generated pathway panels and identification and 
verification signatures to generate a null distribution of NES achieved via random chance. From 
this, we found random NES ranged from 2.08 to -2.20 (Figure 3D) and there was no distinction in 
NES range among icSARSvsmock signatures, illustrating that NES achieved by our icSARS 
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panels are non-random (null distribution p-value<0.001). Taken together, we concluded that the 
enrichment achieved from our icSARS panels was true and reproducible. 
 

 
FIGURE 3: Verification of icSARS Pathway Panels in Independent Datasets. 
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To determine which icSARS panel pathways were verified across all signatures, we examined 
leading-edge pathways identified by GSEA for each identification and verification signature. 
Across six icSARSvsmock signatures in human cell cultures, 115 pathways were included in all 
leading-edges (Supplemental Materials STable 3). Of the positive icSARS panel pathways, 
13 pathways were identified by our prior gene expression meta-analysis [35]. Those pathways 
included negative regulation of viral genome replication (GO BP 0045071), response to type I IFN 
(GO BP 0034340), defense response to virus (GO BP 0051607), response to virus (GO BP 
0009615), circadian regulation of gene expression (GO BP 0032922), circadian rhythm (GO BP 
0007623), negative regulation of viral transcription (GO BP 0032897), positive regulation of PRI 
miRNA transcription by RNA polymerase II (GO BP 1902895), response to cAMP (GO BP 
0051591), positive regulation of p38MAPK cascade (GO BP 1900745), response to 
corticosterone (GO BP 0051412), positive regulation of DNA binding transcription factor activity 

(GO BP 0051091), and positive regulation of NF-B transcription factor activity (GO BP 
0051092). These data supported the conclusion that our shared leading-edge pathways were 
associated with icSARS infection in human lung cultures and supported the hypothesis that 
identified pathways without previously reported associations also were involved in icSARS 
infection in human lung cultures. 
 
3.3 Positive icSARS Pathway Panel Significantly Enriched Across Models and SARS 

Strains 
To determine if icSARS pathway panels were associated with response to an icSARS infection in 
vivo, we extended our analysis to a mouse model by using GSEA on icSARS pathway panels and 
an icSARSvsmock signature derived from mouse lung samples (Table 1). We found significant 
enrichment for the positive icSARS panel (NES=3.99, GSEA p-value<0.001, Figure 4A) that was 
non-random (null distribution p-value<0.001, Figure 4B). However, for the negative icSARS 
panel, we observed positive enrichment of the negative icSARS panel (NES=1.45, 
p-value=0.041), indicating that the negative icSARS panel was not reproducible in a mouse 
model. Taken together, these results demonstrated that the enrichment achieved from our 
positive icSARS panel was true for icSARS infection, but the same is not true for our negative 
icSARS panel. 
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FIGURE 4: Non-random Enrichment of Positive icSARS Pathway Panel Across SARS Infected Cultures and 

Samples Revealed Pathway Activity Changes Associated with SARS Infection. 

 
Next, we expanded our analysis to include other SARS-CoV1 strains, starting with the other fully 
virulent strains, Urbani and its mouse adapted strain MA15 (Table 1). For human cell cultures, we 
found non-random (NES range 1.86 to -2.05, null distribution p-value<0.001, Figure 4B) 
enrichment between the Urbanivsmock pathway signature and both positive (NES=5.52, GSEA 
p-value<0.001) and negative (NES= 3.16, p-value<0.001) icSARS pathway panels (Figure 4A). 
For mouse samples, we found consistent non-random (NES range 2.05 to -1.97, null distribution 
p-value<0.001, Figure 4B) enrichment for the positive icSARS panel (NES range 4.03 to 2.16, 
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null distribution p-value<0.001, Figure 4A). We found inconsistent enrichment for the negative 
icSARS panel, with the GSE33266-derived MA15(10

2
)vsmock pathway signature achieving 

significant positive enrichment (NES=1.72, p-value=0.001), similar to what we previously 
observed in the icSARSvsmock signature from mice. 
 

We then examined pathway activity in attenuated SARS-CoV1 strains (ORF6, BatSRBD, 

NSP16, and ExoNI, Table 1). We again found consistent enrichment despite model (e.g., human 
or mouse) when comparing the positive icSARS panel to pathway signatures derived from 
attenuated SARS-CoV1 strains, achieving NES ranging from 8.32 to 4.00 with GSEA 
p-value<0.001 (Figure 4A) that was non-random (NES range 2.27 to -2.32, null distribution 
p-value<0.001, Figure 4B). As seen with icSARS in the mouse model, inconsistent negative 
enrichment was observed for the negative icSARS panel. Taken together, these results 
demonstrated that the enrichment achieved from our positive icSARS panel, but not our negative 
icSARS panel, was consistent across infections of different SARS-CoV1 strains in both human 
and mouse models. 
 
We further expanded our analysis to include other SARS strains, specifically MERS and 
SARS-CoV2 (Table 2). We again found consistent enrichment for the positive icSARS panel 
when performing GSEA on MERSvsmock and SARS2vsmock pathway signatures (NES ranging 
5.60 to 1.54, GSEA p-value<0.005, Figure 4A) that was non-random (NES ranging 2.02 to -2.15, 
null distribution p-value<0.005, Figure 4B). However, inconsistent enrichment was observed 
again for the negative icSARS panel with GSE155518-derived SARS2vsmock achieving 
significant positive enrichment (NES=2.08, GSEA p-value<0.001) and GSE108594-derived 
MERS(10

5
)vsmock failing to achieve significant enrichment (NES= 1.14, p-value=0.249). Overall, 

these results demonstrated that the enrichment achieved from our icSARS positive panel was 
consistent across SARS infections regardless of strain in both human and mouse models. 
 
3.4 Meta-analysis of Positive icSARS Panel Leading-edge Pathways Revealed Eleven 

Top Pathways 
To determine which pathways were most relevant to SARS infection, we performed a meta-
analysis of leading-edge pathways identified by GSEA with each SARS pathway signature and 
the positive icSARS pathway panel. Pathways identified through leading-edge intersections 
represent pathways associated with infection of that specific SARS strain. We then find shared 
leading-edge pathways across SARS strains to identify top pathway candidates to potentially 
target therapeutically. We chose not to perform the same analysis with the negative icSARS 
pathway panel due to its inability to consistently achieve non-random enrichment across SARS 
pathway signatures. 
 
We began by performing meta-analysis across signatures between icSARS infected human and 
mouse models. For the icSARSvsmock signature from mice, 95 pathways were identified in the 
leading-edge and 65 of those pathways were shared with leading-edge pathways across all six 
signatures from human cell cultures (Supplemental Materials STable 4). We further considered 
leading-edge pathways that were consistently identified by GSEA when sufficiently represented in 
the dataset’s platform to determine 66 pathways are associated with icSARS infection regardless 
of model (Figure 5A). For the eight MA15vsmock signatures from mice, 85 leading-edge 
pathways were shared across all eight signatures (Supplemental Materials STable 5). The 
Urbanivsmock signature from human cell cultures had 112 leading-edge pathways (Supplemental 
Materials STable 6) with 79 pathways in common with shared leading-edge pathways from 
MA15vsmock signatures. We further considered leading-edge pathways that were consistently 
identified by GSEA when sufficiently represented in the dataset’s platform to detect a total of 88 
pathways (Figure 5B). Across five ORF6vsmock signatures in human cell cultures, 111 pathways 
were included in all leading-edges (Supplemental Materials STable 7). For the icSARSvsmock 
signature from mice, 129 pathways were identified in the leading-edge with 83 pathways shared 
with human cell cultures (Supplemental Materials STable 8). We further considered leading-edge 
pathways that were consistently identified by GSEA when sufficiently represented in the dataset’s 
platform to identify a total of 84 pathways (Figure 5C). Across five BATvsmock signatures in 
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human cell cultures, 71 pathways were included in all leading-edges (Supplemental Materials 
STable 9). For the one BATvsmock signature from mice, 129 pathways were identified in the 
leading-edge with 83 pathways shared with human cell cultures (Supplemental Materials STable 
10). We further considered leading-edge pathways that were consistently identified by GSEA 
when sufficiently represented in the dataset’s platform to find a total of 59 pathways (Figure 5D). 
There were two NSP16vsmock signatures, one in human cell cultures and the other in mice. 
From these, 153 pathways were included in the human-derived leading-edge (Supplemental 
Materials STable 11) and 120 pathways were identified in the mouse-derived leading-edge 
(Supplemental Materials STable 12) with 115 shared between the two leading-edges. We further 
considered leading-edge pathways that were consistently identified by GSEA when sufficiently 
represented in the dataset’s platform to reveal a total of 117 pathways (Figure 5E). For the 
ExoNIvsmock signature, 106 pathways were identified in the leading-edge (Supplemental 
Materials STable 13). Across two MERSvsmock signatures in human cell cultures, 126 pathways 
were included in all leading-edges (Supplemental Materials STable 14). For the three 
MERSvsmock signatures from mice, 105 pathways were included in all leading-edges with 91 
pathways shared with human cell cultures (Supplemental Materials STable 15). We further 
considered leading-edge pathways that were consistently identified by GSEA when sufficiently 
represented in the dataset’s platform to find a total of 93 pathways (Figure 5F). For SARS-CoV2, 
we found 28 pathways shared across three SARS2vsmock signatures (Supplemental Materials 
STable 16). Supplemental Materials STable 17 details pathway inclusion for each dataset 
specifically. 
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FIGURE 5: Meta-analysis of Leading-edge Positive icSARS Panel Pathways Across Pathway Signatures 

Revealed Eleven Up-regulated Pathways Associated with SARS Infection. 

 
Now that pathways associated with individual SARS strains had been identified across models, 
we performed meta-analysis on these pathway lists across SARS strains to find pathways 
associated with SARS infection generally. Across 29 SARS-CoV1 pathway signatures spanning 
seven strains with varying levels of virulence and inoculating doses, we found 29 pathways 
associated with SARS-CoV1 infection (Figure 5G). When considering leading-edge pathways 
from the five MERS-CoV and three SARS-CoV2 pathway signatures, we found 11 pathways were 
shared across MERS-CoV and SARS-CoV2 infections also (Figure 5H). The 11 pathways were 
described briefly in Table 3 with more detail found in Supplemental Materials STable 1.
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GO BP Pathway Name Pathway Description Number 
of Genes 

2000516 Positive regulation of CD4 
positive alpha beta T-cell 

activation 

Any process that activates or increases the frequency, rate, or extent of CD4-positive, alpha-
beta T cell activation. 

36 

0034340 Response to type I 
interferon 

Any process that results in a change in state or activity of a cell or an organism (in terms of 
movement, secretion, enzyme production, gene expression, etc.) because of a type I 

interferon stimulus. 

99 

0002286 T-cell activation involved in 
immune response 

The change in morphology and behavior of a mature or immature T cell resulting from 
exposure to a mitogen, cytokine, chemokine, cellular ligand, or an antigen for which it is 

specific, leading to the initiation or perpetuation of an immune response. 

109 

0043367 CD4 positive alpha beta T-
cell differentiation 

The process in which a relatively unspecialized T cell acquires specialized features of a 
mature CD4-positive, alpha-beta T cell. 

78 

0001818 Negative regulation of 
cytokine production 

Any process that stops, prevents, or reduces the rate of production of a cytokine. 368 

0002292 T-cell differentiation 
involved in immune 

response 

The process in which an antigenically naive T cell acquires the specialized features of an 
effector, regulatory, or memory T cell as part of an immune response. Effector T cells include 

cells which provide T cell help or exhibit cytotoxicity towards other cells. 

71 

0002287 Alpha beta T-cell activation 
involved in immune 

response 

The change in morphology and behavior of an alpha-beta T cell resulting from exposure to a 
mitogen, cytokine, chemokine, cellular ligand, or an antigen for which it is specific, leading to 

the initiation or perpetuation of an immune response. 

63 

2000514 Regulation of CD4 positive 
alpha beta T-cell activation 

Any process that modulates the frequency, rate or extent of CD4-positive, alpha-beta T cell 
activation. 

65 

0042092 Type 2 immune response An immune response which is associated with resistance to extracellular organisms and 
pathological conditions, which is orchestrated by the production of cytokines by any of a 

variety of cell types resulting in enhanced production of certain antibody isotypes and other 
effects. 

39 

0046631 Alpha beta T-cell activation The change in morphology and behavior of an alpha-beta T cell resulting from exposure to a 
mitogen, cytokine, chemokine, cellular ligand, or an antigen for which it is specific. 

146 

0035710 CD4 positive alpha beta T-
cell activation 

The change in morphology and behavior of a CD4-positive, alpha-beta T cell resulting from 
exposure to a mitogen, cytokine, chemokine, cellular ligand, or an antigen for which it is 

specific. 

97 

 

TABLE 3: Top Pathways Associated with SARS Infection Identified in this Study. 
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3.5 Type I Interferon Pathway Identified as Most Associated with SARS Infection 
To determine which of the 11 identified pathways were the most associated with SARS infection, 
we collected p-values generated by GSEA for each pathway and signature. From these p-values, 
we performed Stouffer’s z score analysis for combined p-values. We found that the response to 
type I IFN pathway had the highest Stouffer’s z-score (Figure 6), indicating that pathway was the 
most associated with SARS infection. We also noticed that all pathways had at least one 
signature where GSEA p-value>0.05, highlighting the advantage of a meta-analysis approach 
reliant on enrichment (i.e., leading-edge membership) rather than statistical significance 
(i.e., p-value). When comparing these 11 pathways to those previously identified by our prior 
gene expression meta-analysis [35], we found only one icSARS panel pathway, response to 
type I IFN, in common. These findings demonstrate the ability of our pathway signature meta-
analysis approach in identifying pathway activity changes not previously identified via Fisher’s 
Exact Test methods. 
 

 
 

FIGURE 6: Enrichment examination for Eleven Identified Pathways Reveals Type I IFN as Most 

Consistently Up-regulated Across SARS Strains. 
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4. DISCUSSION 
SARS infections remain a serious public health threat due to their strong pandemic causing 
potential. While efforts have gone into developing effective therapeutics for SARS-infected 
patients, treatment options are still limited, due in part to an incomplete understanding of the 
molecular changes driving SARS infections. Identification of differentially regulated pathways 
associated with SARS infections can improve our understanding of SARS-induced molecular 
changes, potentially contributing to the development of new therapeutic options to use in the fight 
against SARS and future SARS outbreaks. This work performed a GSEA-based, meta-analysis of 
pathway signatures generated from mRNA expression data across SARS-CoV1, MERS-CoV, 
and SARS-CoV2 infections to reveal differentially regulated pathways associated with SARS 
infections. 
 
Our approach identified response to type I IFN as the top of 11 immune system pathways found 
consistently across SARS strains (Figure 6). Type I IFNs are a large group of proteins that assist 
in regulating innate immune system activity and activating adaptive immunity [42, 43]. Type I IFNs 
are directly connected with immune response toward a wide variety of bacterial and viral 
infections, including hepatitis C virus, human immunodeficiency virus, varicella-zoster virus, and 

SARS‐CoV2 [42, 44]. Prior reports demonstrated the release of pro-inflammatory cytokines, 
especially IFN-α and IFN-γ, was correlated with lethality in SARS patients [45]. Other reports 
found that levels of IFN-γ were lower in CD4+ T-cells from patients with severe versus mild 
symptoms and suggested that the infection may initially affect CD4+ and CD8+ T-cells, reducing 
the production of IFN-γ [46]. This work here is not the first time that computational analysis 
predicted the involvement of type I IFNs in SARS infection. Our previous examination of gene-
expression changes associated with icSARS infections identified the response to type I IFNs 
pathway through enrichment analysis using a Fisher’s Exact Test variant [35]. GSEA-based 
meta-analysis of the gene signatures we used to define pathway signatures used in this study 
found five genes involved in type I IFN response. We were not surprised to find four of those five 
identified genes (XAF1, OASL, OAS3, and IFIT3) included among the 99 genes used by the GO 
BP knowledgebase to define the response to type I IFNs pathway (Supplemental Material 
STable 1). Therefore, we concluded that targeting IFN response therapeutically might improve 
outcomes for patients with SARS infections. Our conclusion supports several reports that 
examined the success of IFN therapy for SARS-CoV2 patients with promising results though 
details of therapeutic timing, type of IFN, and administration route are still highly debated [12-14, 
18]. 
 
While the connection between Type I IFNs and SARS-CoV2 infections is well established, our 
GSEA-based meta-analysis approach improves upon our prior gene signature method by also 
identifying 10 immune system pathways that were not previously identified (Table 3). Those 
pathways included the type 2 immune response pathway, the negative regulation of cytokine 
production, and eight pathways involved in T-cell activation or differentiation with four pathways 
specifically related to CD4+ immune cells. We were not surprised by these findings due to the 
extensive literature documenting the cytokine storm classically associated with SARS-CoV2 
infections [47-51]. The type 2 immune response is an adaptive response where differentiated T 
helper (CD4+) cells drive eosinophil recruitment, maturation of killer T cells (CD8+), and antibody 
production via secretion of a distinct selection of cytokines including IL-4, IL-5, and IL-13 [52, 53]. 
Previous reports have shown CD4+ T cells are activated from SARS-CoV2 infection as seen by 
increased expression of cellular markers like HLA-DR, CD25, CD38 and Ki-67 [54]. While these 
results demonstrate the predictability of our approach, many pathways with reported connections 
to SARS were not detected as top pathway candidates. For example, no pathways related to 
CD8+ cells were found despite one pathway 
(CD8_POSITIVE_ALPHA_BETA_T_CELL_ACTIVATION, GO:0036037) being included in the 

positive icSARS pathway panel (Supplemental Material STable 2). Another example is NF-B 
signaling which has reported associations with SARS-CoV2 infection and pharmacological 

inactivation of the phosphorylation of inhibitor of NF-B kinase subunit beta has shown promise 

as an effective treatment for COVID-19 symptoms [55-57]. There were eight NF-B pathways in 
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our defined positive icSARS pathway panel (Supplemental Material STable 2), but none were 
detected among top pathway candidates (Table 3). While our meta-analysis approach was able 
to detect known pathways associated with SARS infection, clearly further efforts are needed to 
optimize our approach’s detection ability. 
 
In this study, we observed some interesting pathway detection threshold findings that may have 
biological implications. We noted that consistent enrichment of the negative icSARS pathway 
panel could not be achieved across SARS strains and models (Figure 4). This finding was not 
surprising since we also could not achieve consistent enrichment of the negative icSARS gene 
panel across SARS strains and models in our prior GSEA-based gene expression meta-analysis 
[35]. This observation may have biological implications since several reports show characteristic 
changes in gene expression when cells of different types are infected with SARS-CoV2 and could 
be related to the intense immune response seen in some COVID-19 patients [23, 30, 58-60]. We 
also noted that our pathway meta-analysis approach was able to calculate enrichment between 
the positive icSARS pathway panel and the positive tail of the pathway signature with the lowest 
inoculation dose, GSE33266 MA15(10

2
)vsmock, which is better that what we observed for the 

GSE33266 MA15(10
2
)vsmock gene signature in our gene expression meta-analysis study [35]. 

This finding suggests that use of pathway signatures may be better than gene signatures at 
detecting molecular changes early in a patient’s infection, an improvement over our prior 
approach. 
 
While this meta-analysis revealed pathways with already well-established associations to SARS 
infections, the work has some limitations. Our study is limited by the need of our GSEA-based 
meta-analysis approach for control samples to establish differential activity for pathway signature 
definition. The requirement for mock-derived data limits the ability to use our approach on other 
datasets and limited us to the use of specific publicly available mRNA expression data. Datasets 
selected for this study contained human lung cultures or mouse lung samples due to their public 
availability at the time this study was conducted and focus on 48hr time point data only. This 
study could be enhanced if mRNA expression data from SARS and mock infected lung samples 
from human patients was available for examination. Currently mRNA expression data is available 
from autopsy lung samples from SARS patients only. Further, this purely bioinformatic work was 
limited by a lack of direct experimental evidence. We were unable to conduct follow-up 
experiments using other techniques, such as pathway reporter assays, Western blotting, ELISA, 
or qRT-PCR, to confirm our top pathway candidate predictions that were generated only from 
mRNA expression data. Experimental work will be a necessary step to implementing results 
obtained in this work. 
 
Based on the results from this study, future directions should examine the potential of IFN as a 
therapeutic option for SARS infections. For example, gene expression data from IFN-treated and 
untreated SARS-CoV2 human cell cultures or mouse lung samples would be of particular interest 
for future studies. We predict IFNtreatedSARSvsuntreatedSARS pathway signatures would be 
reversed (i.e., positive icSARS panel achieves significant enrichment with a negative NES), 
indicating IFN-treated samples looked more like untreated cultures and samples from this study, 
supporting the conclusion of targeting IFN as viable therapeutic option for SARS infections. 
Future directions also could include a more in-depth computational analysis of gene inclusion and 
overlap among pathways identified here. Such an analysis could improve our understanding of 
mechanisms behind SARS infections which could lead to a more specific determination of 
molecular targets for therapeutic development. 
 
This work applied a GSEA-based, meta-analysis approach for analyzing pathway signatures from 
gene expression data to determine if such an approach would overcome FET limitations and 
identify more pathways associated with SARS infections than observed in our previous work 
using gene signatures. By using pathway signatures, we confirmed our prior gene expression 
findings by identifying response to type I IFN as the top pathway candidate most associated with 
SARS infection and expanded upon our prior gene expression findings by identifying 10 
consistently up-regulated pathways also associated with SARS infection that were not previously 
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identified using a FET-variant. Our results support prior reports that targeting type I IFN response 
as a solo or co-therapy could be an effective therapy for SARS infections as IFN therapy has 
been noted to successfully treat patients with moderate COVID-19 infections. Further, our results 
identified immune system pathways involved in T-cell activation and differentiation with a specific 
focus on CD4+ immune cell activity that were not previously identified using FET. These 
pathways could be further examined to identify new targets for treatment of COVID-19 patients. 
Overall, this study displayed our pathway signature approach’s ability to consistently detect new 
and established biologically important pathways and its potential as a beneficial computational 
approach to discover new molecular insights with therapeutic promise that can directly impact 
how clinicians treat COVID-19 infections and improve COVID-19 patient outcomes. 
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