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Abstract 

 

It has been already revealed that the daily Solar Irradiance Data during the time 
period from October, 1984 to October, 2003 obtained by Earth Radiation Budget 
Satellite (ERBS) exhibits an Anti-persistent trend having multi-periodic 
phenomena. The solar irradiance time series data being a complex non linear 
signal in this paper we have tried to detect the irregularity and multifractality in 
the signal using continuous wavelet transform modulus maxima (WTMM) 
algorithm. Singularity spectrum of the signal has been obtained to measure the 
degree of multifractality of the Solar Irradiance signal. The qualitative measure of 
the degree of multifractality of the Solar Irradiance signal will help us to decide 
the nature of the signal processing tools that can be used to extract the features 
of the signal in our future work. This may also give an input to the research work 
of researchers on the solar physics and geophysics. 
 
Keywords: ERBS, Wavelet transform, WTMM, scaling exponent, multifractal 
dimension, Hölder exponent, singularity spectrum 

 

1. INTRODUCTION 

Total solar irradiance describes the electromagnetic radiant energy emitted by the sun over all 
wavelengths that falls each second on 1 square meter outside the earth's atmosphere. Solar 
refers to electromagnetic radiation in the spectral range of approximately 1–9ft (0.3–3m), where 
the shortest wavelengths are in the ultraviolet region of the spectrum, the intermediate 
wavelengths in the visible region, and the longer wavelengths are in the near infrared. Total solar 
irradiance means that the solar flux has been integrated over all wavelengths to include the 
contributions from ultraviolet, visible, and infrared radiation. The solar irradiance had been 
monitored with absolute radiometers since November 1978, on board six spacecraft (Nimbus-7, 
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SMM, UARS, ERBS, EURECA, and SOHO), outside the terrestrial atmosphere (Fröhlich and 
Lean, 1998). Before measuring it from space, this quantity was thought to be constant, because 
the precision of the ground-based instruments at that time was not high enough to detect such a 
small variation. It consequently got the name of “solar constant”, which had a value of only 1,353 
W/m

2
,
 
as a part of the solar radiation is absorbed by the Earth’s atmosphere. But from the data 

sent by the mentioned spacecraft it reveals that the solar irradiance varies about a small fraction 
of 0.1% over solar cycle being higher during maximum solar activity conditions. [1] 
It is suggested that the solar variability is due to the perturbed nature of the solar core and this 
variability is provided by the variability of the solar neutrino flux from the solar neutrino detectors 
i.e., Homestake, Superkamiokande, SAGE and GALLEX-GNO. A major part of the Solar 
Irradiance variation is explained as a combined effect of the sunspots blocking and the 
intensification due to bright faculae and plages, with a slight dominance of the bright features 
effect during the 11-year solar cycle maximum. Solar Irradiance variation within solar cycle is 
thought to be due to the changing emission of bright magnetic elements, including faculae and 
the magnetic network. [2] 
It has been revealed that the variation of the solar irradiance is anti-persistent and shows multi-
periodicity. [3] The periods of the solar irradiance variation detected are 9.08-9.35, 13.53-14.03, 
27.50-28.17, 30.26, 35.99-36.37, 51.14-51.52, 68.27-68.60, 101.15, 124.85, 150.63-153.98, 
659.90, 729.37, 1259.82, 3464.50 and 4619.33 days.[4]. In this paper we would like to 
characterize the complex behaviour of the solar irradiance fluctuation by i) tracing the existence 
of multifractality and ii) scanning the singularities of the time series signal. Here we have 
computed the signal parameters like scaling exponents τ (q), multifractal scaling exponents h(q) 
and generalized multifractal dimensions D(q) which quantifies the multifractality of the signal. For 
tracking the singularities in the time series signal we have computed the singularity strength or 
Hölder exponent (α) and obtained the Hausdorff dimension or singularity spectrum f (α). The use 
of monofractal methods to extract quantitative information from signals is well known. 
Monofractals are homogeneous objects, in the sense that they have the same scaling properties, 
characterized by a single singularity exponent. Generally, there exist many observational signals 
which do not present a simple monofractal scaling behaviour. The need for more than one scaling 
exponent can derive from the existence of a crossover timescale, which separates regimes with 
different scaling behaviours. Different scaling exponents could be required for different segments 
of the same time series, indicating a time variation of the scaling behaviour. Furthermore, 
different scaling exponents can be revealed for many interwoven fractal subsets of the time 
series; in this case the process is not a monofractal but multifractal. Thus, multifractals are 
intrinsically more complex and inhomogeneous than monofractals and characterize systems 
featured by very irregular dynamics, with sudden and intense bursts of high-frequency 
fluctuations. The simplest type of multifractal analysis is given by the standard partition function 
multifractal formalism, developed to characterize multifractality in stationary measures. This 
method does not correctly estimate the multifractal behaviour of signal affected by trends or non-
stationarities. But the solar irradiance time series signal is non stationary in nature. To analyze 
non-stationary signal wavelet transform based tool are more suitable compared to the traditional 
Fourier based tools [5]. Hence to characterize the multifractality of non-stationary signals another 
multifractal method based on the wavelet analysis named as Wavelet Transform Modulus 
Maxima (WTMM) method is being used in this paper. [6, 7] This method involves tracing the 
maxima lines in the continuous wavelet transform over all scales. WTMM allows one to detect 
scaling by means of the maxima lines of the continuous wavelet transform on different scales. 

2. THEORY 

 CONTINUOUS WAVELET TRANSFORM 

 The continuous wavelet transform (WT) is a mathematical technique introduced in signal 
analysis in the early 1980s. Since then, it has been the subject of considerable theoretical 
developments and practical applications in a wide variety of fields. The WT has been early 
recognized as a mathematical microscope that is well adapted to reveal the hierarchy that 
governs the spatial distribution of singularities of multifractal measures. The wavelet transform is 
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a convolution product of the data sequence (a function f(x), where x, referred to as “position”, is 
usually a time or space variable. In this study x is referred as time (t) and hence the data 
sequence is time series) with the scaled and translated version of the mother wavelet, ψ(x). The 
scaling and translation are performed by two parameters; the scale parameter s stretches (or 
compresses) the mother wavelet to the required resolution, while the translation parameter b 
shifts the analyzing wavelet to the desired location: 

)1(,)(
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∞
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 −
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bsWf ψ  

where s, b are real, s > 0 for the continuous version (CWT). ),( bsWf are the wavelet transform 

coefficients .The wavelet transform acts as a microscope: it reveals more and more details while 
going towards smaller scales, i.e. towards smaller s values [8]. 
The mother wavelet ψ(x) is generally chosen to be well localized in space (or time) and 
frequency. Usually, ψ(x) is only required to be of zero mean, but for the particular purpose of 
multifractal analysis ψ(x) is also required to be orthogonal to some lower order polynomials, up to 
the degree n: 

)2(0,,0)( nmmdxxx
m

<≤∀=∫ ψ  

Thus, while filtering out the trends, the wavelet transform can reveal the local characteristics of a 
signal, and more precisely its singularities. The Hölder exponent can be understood as a global 
indicator of the local differentiability of a function. 
By preserving both scale and location (time, space) information, the CWT is an excellent tool for 
mapping the changing properties of non-stationary signals. A class of commonly used real-valued 
analyzing wavelets, which satisfies the above condition (2), is given by the successive derivatives 
of the Gaussian function: 
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Note that the WT of a signal )(xf with )(
)( xnψ in Eq. (3) takes the following simple expression:  
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Equation (4) shows that the WT computed with )(
)( xnψ at scale s is nothing but the n

th 
derivative 

of the signal )(xf smoothed by a dilated version )/(
)0( sxψ of the Gaussian function. This 

property is at the heart of various applications of the WT microscope as a very efficient multi-
scale singularity tracking technique. Thus, the higher derivatives, the more vanishing moments, 
that is, the local polynomial trends of higher order would be eliminated. We choose the third 
derivative of a Gaussian   
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which is insensitive to trends up to a quadratic one. 

WAVELET TRANSFORM MODULUS MAXIMA (WTMM) 

The WTMM method inherits the advantages of the wavelet transform analysis and was developed 
to deal with strongly non-stationary data. It has an important ability to reveal hierarchical structure 
of singularities and therefore proves useful in analyzing self-similar structures like fractals. In 
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small-scale levels s of wavelet transform, sharp hidden transitions (singularities) in Solar 
Irradiance dynamics would be extracted. 
The continuous wavelet transform described in Eq. (1) is an extremely redundant representation, 
too expensive for most practical applications. To characterize the singular behaviour of functions, 
it is sufficient to consider the values and position of the Wavelet Transform Modulus Maxima 
(WTMM). The wavelet modulus maxima is a point (s0, x0) on the scale-position (or time) plane, (s, 
x), where |Wf(s0, x)| is locally maximum for x in the neighborhood of x0. These maxima are 
disposed on connected curves in the scale position (s, x) (or scale-time) half-plane, called 
maxima lines. An important feature of these maxima lines, when analyzing singular functions, is 
that there is at least one maxima line pointing towards each singularity The WTMM 
representation has been used for defining the partition function based multifractal formalism. 
Let {un(s)}, where n is an integer, be the position (time) of all local maxima at a fixed scale s. By 
summing up the q’s power of all these WTMM, we obtain the partition function Z:[9] 

  

∑=
n

q

nusWfsqZ )6(|),(|),(  

where q can be any real value except zero.  

TRACING SINGULARITIES 

The rapid changes in a time series f(x) are called singularities and a characterization of their 
strength is obtained with the Hölder exponents. The strength of the singularity of a function 

)(xf at point x0 is given by the Hölder exponent α, i.e., the largest exponent such that  )(xf is 

Lipchitz at x0 .There exists a polynomial )( 0xxPn − of order n and a constant C, so that for any 

point x in a neighborhood of x0, one has:  
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α
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where is )( 0xn α≤ and 0>C . 

The Hölder exponent measures the degree of irregularity of )(xf at the point x0.When a broad 

range of exponents is found, signals are considered as multifractal. A narrow range implies 

monofractality. Let us assume that according to Eq.(7), )(xf has, at the point x0, a local scaling 

(Hölder) exponent )( 0xα ; then, assuming that the singularity is not oscillating, one can easily 

prove that the local behaviour of )(xf is mirrored by the WT which locally behaves as per the 

power law:  

)8(,~),(
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Taking the log-log plot on both sides of the Eq. (8) Hölder exponent α can be estimated. A very 
important point (at least for practical purpose) rose by Mallat and Hwang is that the local scaling 

exponent )( 0xα can be equally estimated by looking at the value of the WT modulus along a 

maxima line converging towards the point x0. Indeed one can prove that Eqs. (8) still holds when 

following a maxima line from large down to small scales. Depending on the value of )( 0xα at 

every x0 we can scan the points of irregularity (opposite of regularity) or singularity. 
 

If )( 0xα is Regularity of 

)(xf at x0 

Singularity of 

)(xf at x0 

Higher More Less 
Lower Less More 
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 MULTIFRACTAL ANALYSIS 
A natural way of performing a multifractal analysis of a function lies in generalizing the multifractal 
formalism using wavelets. From the deep analogy that links the multifractal formalism to 

thermodynamics [10], one can define the scaling exponent )(qτ from the power-law behavior of 

the partition function as given in Eqs (6): 

)9(~),(
)(q

ssqZ
τ

 

Here we have varied the value of q from -20 to 20 with an increment of 0.2.Taking the log of the 

Eq.(9), )(qτ is being estimated for each value of q. The singularity spectrum )(αf is related 

to )(qτ by Legendre Transform as follows:   a) from the plot of )(qτ vs. q the Hölder exponents α 

as a function of q can be determined from the relationship: 
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b) Singularity spectrum )(αf is calculated from the equation  

)11()()( qqf ταα −=  

From the properties of the Legendre transform, it is easy to see that homogeneous mono-fractal 

functions that involve singularities of unique Hölder exponent )(qα  are characterized by a 

)(qτ spectrum which is a linear function of q. On the contrary, a nonlinear )(qτ curve is the 

signature of non-homogeneous functions that exhibit multifractal properties, in the sense that the 

Hölder exponent )(qα is a fluctuating quantity. The singularity spectrum )(αf of a multifractal 

function displays a single humped shape that characterizes intermittent fluctuations 

corresponding to Hölder exponent values spanning a whole interval [ ]maxmin ,αα , where minα and 

maxα are the Hölder exponents of the strongest and weakest singularities respectively.  

Other than the signal parameters like scaling exponent )(qτ , Hölder exponents )(qα and 

singularity spectrum )(αf as described above, multifractality can also be detected from the 

multifractal scaling exponent or generalized Hurst exponent  )(qh  and the generalized 

multifractal dimension )(qD . Both )(qh and )(qD can be calculated from the scaling exponent 

)(qτ as below: 
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For monofractal time series )(qh is independent of q whereas )(qD depends on q. But for 

multifractal time series there is significant dependence of )(qh on q. If q is positive, large 

fluctuations are characterized by a smaller values of )(qh ) for multifractal time series. And, for 

negative q values, small fluctuations are usually characterized by larger values of )(qh . 

From Eq.10, 11 and 12 Hölder exponent )(qα and Singularity spectrum )(αf can also be 

expressed in terms of the multifractal scaling exponent )(qh as follows: 

)14(
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and 
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)15(1)]([)( +−= qhqf αα  

  

Here we like to mention that multifractal scaling exponent or generalized Hurst exponent )(qh is 

related to Hurst exponent H by the equation 
  

)16(1)2( −== qhH  

  

3. RESULTS 

Fig.1 represents the original signal of the daily Solar Irradiance from October, 1984 to October, 
2003 obtained by ERBS after simple exponential smoothing which is being denoised using 
DWT thresholding and the denoised signal is obtained as in fig.2.[3].  

1360

1361

1362

1363

1364

1365

1366

1367

1368

10
/2
5 /
19
84

10
/2
5 /
1 9
85

10
/2
5/
1 9
86

10
/2
5 /
1 9
87

10
/2
5 /
1 9
88

10
/2
5 /
1 9
89

10
/2
5/
1 9
90

10
/2
5 /
19
91

10
/2
5 /
1 9
92

10
/2
5 /
1 9
93

10
/2
5 /
1 9
94

10
/2
5/
1 9
95

10
/2
5 /
19
96

10
/2
5 /
1 9
97

10
/2
5 /
1 9
98

10
/2
5 /
1 9
99

10
/2
5 /
2 0
00

10
/2
5 /
2 0
01

10
/2
5/
2 0
02

Ye a r ----->

S
o

la
r 

Ir
ra

d
ia

n
c

e
(W

a
tt

s
/S

q
r.

 m
tr

)

F ig .1:Daily T S I data from O c tober 1984 to O ctober 2003
 

 

 

 



K. Mofazzal Hossain, Dipendra N. Ghosh and Koushik Ghosh 

Signal Processing: An International Journal (SPIJ) Volume (3): Issue (4) 89 

CWT, ),( bsWf of this data is being taken. The absolute values of the coefficients i.e. 

|),(| bsWf is plotted with color coding, independently at each scale s , using 128 colors from 

deep brown ( 0|),(| =bsWf ) to white ( |),(|max bsWf ) as shown in fig.3. Scale and time are on 

the vertical and horizontal axis, respectively. The plot was obtained by using the “Wavelet 
toolbox” of Matlab software. 

 
 
Fig.4 represents the WT skeleton defined by the set of all maxima lines. 

 

 
 

The plot of )(qτ vs q for the scale, s=3, 65,127 are being shown in fig.5 
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The singularity spectrum i.e αα .)( vsf for the scales s=3, 65, 127 is represented in fig.6. 
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Fig.7 represents the D(q) vs.q curve for the scales s=3,65 and 127 as shown below. 

 
 
Fig.8 represents the h(q) vs.q curve for the scales s=3,65 and 127 as shown below. 
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The plot of D (h) vs. h for the scale, s=3, 65,127 are being shown in fig.9. 

 
 

Fig.10: )(qα vs.q curve for the scales s=3,65 and 127 as shown below 
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4. CONCLUSIONS 

WTMM method allows us to determine the multifractal characterization of the nonstationary solar 
irradiance time series. The concept of WTMM of the solar irradiance time series is used here to 
have a deeper insight into the process occurring in nonstationary dynamical system such as 

multi-periodic fluctuation in solar irradiance values. The dependency of the )(qτ and )(qh on q as 

observed in fig.5 and fig.8, indicates that the solar irradiance variation has multifractal behavior. 
This behavior of exhibiting multifractal characteristics can be more established from the 
singularity spectrum as in fig.6. The multifractal analysis gives information about the relative 
importance of various fractal exponents present in the series. In particular, the width of the 
singularity spectrum indicates the range of present exponents. To get the quantitative 
characterization of multifractal spectra, the singularity spectrum is fitted to a quadratic 
function around the position of its maximum at α0, i.e. f(a)  =  A(α  -  α0)

2
  +  B(α  -  α0)  +  C. The 

coefficients can be obtained by an ordinary least-squares procedure. [11]In this fitting the additive 
constant C =  f(α0) . With low α0, the process becomes correlated; for example if the process had 
the tendency to move upward in the past, it will move upward with a probability larger than 1/2 in 
the next time step. Roughly speaking, a small value of α0 means that the underlying process is 
more regular in appearance. From the fig.6 we observe that the value of α0 is very high for lower 

scales and decreases with increase in the scale. It means that the signal is correlated at higher 
scales.  
To obtain an estimate of the range of possible fractal exponents, we measured the width of the 
singularity spectrum, extrapolating the fitted curve to zero. The width of the spectrum was then 

defined as minmax αα −=W with 0)()( minmax == αα ff . The width of the spectrum W is a 

measure of how wide the range of fractal exponents found in the signal and thus it measures the 
degree of multifractality of the series. The wider the range of possible fractal exponents, the 
`richer' is the process in structure. From the fig.6 we observe that W is decreasing with increase 
in the scale size i.e. solar irradiance signal is richer in structure at lower scales. 
Finally, parameter B serves as an asymmetry parameter, which is zero for symmetric shapes, 
positive or negative for a left- or right-skewed (centered) shape, respectively. B captures the 
dominance of low- or high-fractal exponents with respect to the other. A right-skewed spectrum 
indicates relatively strongly weighted low-fractal exponents, and for left-skewed spectrum 
indicates relatively strongly weighted high-fractal exponents. From fig.6 we observe that for scale 
65 and 127 the singularity spectrum is left skewed whereas for scale 3 the singularity spectrum is 
more or less symmetrical. Hence we can say that with increasing scales the signal is found to 
have high fractal exponents. The parameter scale(s) in the wavelet analysis also has a significant 
role. The high scales correspond to a non-detailed global view (of the signal), whereas the low 
scales correspond to a detailed view. Similarly, in terms of frequency, low frequencies (high 
scales) correspond to a global information of a signal (that usually spans the entire signal), 
whereas high frequencies (low scales) correspond to a detailed information of a hidden pattern in 
the signal (that usually lasts a relatively short time).So the above discussion regarding the values 
of α0, W, B at various scales give a measure of the detailed or non-detailed global view of the 
signal. 
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