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Abstract 
 
Recently a great deal of attention has been paid to modern regression methods such as 
penalized regressions which perform variable selection and coefficient estimation simultaneously, 
thereby providing new approaches to analyze complex data of high dimension. The choice of the 
tuning parameter is vital in penalized regression. In this paper, we studied the effect of different 
tuning parameter choosing criteria on the performances of some well-known penalization 
methods including ridge, lasso, and elastic net regressions. Specifically, we investigated the 
widely used information criteria in regression models such as Bayesian information criterion 
(BIC), Akaike’s information criterion (AIC), and AIC correction (AICc) in various simulation 
scenarios and a real data example in economic modeling. We found that predictive performance 
of models selected by different information criteria is heavily dependent on the properties of a 
data set. It is hard to find a universal best tuning parameter choosing criterion and a best penalty 
function for all cases. The results in this research provide reference for the choices of different 
criteria for tuning parameter in penalized regressions for practitioners, which also expands the 
nascent field of applications of penalized regressions. 
 
Keywords: Penalized Regression, Lasso, Ridge, Elastic Net, AIC, BIC, AICc, Economic 
Modeling.

 
 
1. INTRODUCTION 
Regression analysis is widely used to analyze multi-factor data. One of the most commonly used 
regression methods is linear regression whose estimation can be obtained via ordinary least 
square (OLS). However, when the dimension of explanatory variables is high, the OLS performs 
poorly in both prediction and interpretation because of multicollinearity and overfitting effect. In 
recent years, many admirable penalized regressions have been created and revealed as very 
useful approaches to fit high-dimensional data because of the ability of performing variable 
selection and coefficient estimation simultaneously. Therefore, penalized regression methods can 
find the relationship between the response and explanatory variables and also select out the most 
significant ones, thereby reducing the dimension of the model. As a result, penalized regression 
methods can produce models that have stronger predictive performance for the new data 
because of bias-variance tradeoff (Gunes, 2015). Some popular penalized regression methods 
include ridge regression (Hoerl and Kennard, 1970), lasso regression (Tibshirani, 1996), and 
elastic net regression (Zou and Hastie, 2005). One essential issue of these regularization 
methods is the choice of tuning parameter which controls the strength of the penalty term. To 
select the optimal tuning parameter, two commonly used methods include cross-validation (CV) 
and information criterion such as Akaike’s information criterion (AIC) (Akaike, 1973), Bayesian 
information criterion (BIC) (Schwarz, 1978), or AIC correction (AICc) (Sugiura 1978, Hurvich and 
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Tsai, 1989). However, Chand (2012) showed that the lasso-type methods do not appear to be 
consistent in variable selection when the tuning parameter is chosen by CV. Similar result can be 
found in Wang et al. (2009). And the CV approach can also be computationally expensive for big 
data sets. Thus, it is more interesting to us to investigate the performance of information criteria in 
penalized regressions. Different information criteria were used in various literatures. For example, 
Schwarz (1978) has shown that BIC can achieve a suitable trade-off between simplicity and 
goodness of fit. Shi and Tsai (2002) found that under certain conditions, BIC can consistently 
identify the true model when the number of parameters and the size of the true model are finite. 
Ninomiya (2016) obtain the AIC for the Lasso based on its original definition under the framework 
of generalized linear models. In Fan and Li (2001), both BIC and AIC were applied for tuning 
parameter selection in their examples. Sen and Shitan (2002) showed the probability of the AICc 
criterion picking up the correct model was moderately good. Burnham and Anderson (2002) 
recommended use of AICc as standard compared with BIC and AIC. Due to so many distinct 
results about these criteria and there does not yet appear to be consensus in literature as to the 
right approach, in this paper, we explored the performances of various penalized regressions with 
different tuning parameter choosing criteria in several simulation scenarios and a real data 
example in economic modeling. 
 

In section 2, we introduced methods of different penalized regressions and tuning parameter 
choosing criteria. In section 3, simulation examples were shown and different combination of 
penalized regression and model selection criteria were investigated. Then they were applied in a 
real economic modeling example. Finally, we concluded in section 5. 

 
2. PENALIZED REGRESSION AND TUNING PARAMETER CHOOSING 

CRITERION 
In this section, we will review some frequently used penalized approaches and tuning parameter 
choosing criteria for the estimations in existing literature. We consider the usual linear regression 
model given by 

      
       (1) 

where    
      is the  -th independently and identically distributed (i.i.d.) random vector, for 

         such that               
      is the  -dimensional set of predictor (explanatory) 

variables,       is the response variable, the            
  is vector of i.i.d. random errors with 

mean 0 and variance    and            
  

is the vector of parameter coefficients. Let    

         
  and            

 , the model (1) can be written in its matrix form as
 

          (2) 

The OLS estimates are obtained by minimizing the residual sum of squares. However, OLS often 
does poorly in both prediction and interpretation because of multicollinearity in data and 
overfitting effect. Also, the OLS estimates end up with a large variance if the data contains highly 
correlated explanatory variables (Schreiber-Gregory, 2018). Penalized estimators have been 
proposed to improve OLS, which minimize the loss function subjected to some penalties. 
 
Hoerl and Kennard (1970) introduced the ridge regression which minimizes the residual sum of 
squares subject to a penalty on the coefficients with an   -norm. The ridge estimator is defined 
as 

 

                                  
 

        
       

 

        
 

         

 

   

   

 

   

 

     
 

 

   

  
         (3) 

 
where      is the 2-norm of a vector and     is the tuning parameter. Ridge regression is 
promising if there are many predictors which all have non-zero coefficients and are normally 
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distributed (Friedman et al., 2010). In particular, it performs well with many predictors each 
having small effect and prevents coefficients of linear regression models with many correlated 
variables from being poorly determined and exhibiting high variance (Ogutu et al., 2012). 
However, ridge regression has difficulty in dealing with highly correlated explanatory variables. 
Moreover, it shrinks the coefficients equally towards zero and never sets them to be exactly equal 
to zero. Therefore, the ridge regression will not provide the sparse model. 
 

Tibshirani (1996) introduced an   -norm penalty and constructed the least absolute shrinkage 
and selection operator (lasso) estimator as 
 

 

                                   
 

        
       

        
 

         

 

   

   

 

   

 

       

 

   

  
(4) 

 
where      is the 1-norm of a vector. Unlike ridge regression, the lasso can shrink some 
coefficients to exactly zero. Hence it does both coefficients estimation and automatic variable 
selection simultaneously, thereby obtaining a sparse model. However, the lasso is not consistent 
if there are predictor variables highly correlated. It tends to randomly select one of these variables 
and ignore the rest. 
 

To overcome the selection bias of lasso estimator, Zou and Hastie (2005) proposed the elastic 
net estimator by merging the    penalty and    penalty, which is defined as 
 

 

                              
 

        
               

  

                                      
 

         

 

   

   

 

   

 

        

 

   

      
 

 

   

  
   (5) 

 
The elastic net estimator combines the properties of the ridge estimator and the lasso estimator 
and is able to simultaneously identify and achieve optimal estimation of the nonzero parameters. 
Furthermore, the elastic net can select groups of correlated features together when the groups 
are not known in advance. 
 

Selection of the tuning parameter   is vital for the performance of aforementioned penalized least 
squares estimators. It controls the strength of the penalty. Note that linear regression is obtained 
when    . As λ increases, more coefficients are set to zero (less variables are selected), and 

among the nonzero coefficients, more shrinkage is imposed. When    , all the coefficients are 
zero. Thus, choosing the optimal tuning parameter is crucial for the penalized regressions to 
achieve consistent selection and optimal estimation. There are two typically used approaches to 
select the tuning parameter, i.e., cross-validation (CV) and information-based criterion. As 
discussed in section 1, we will focus on exploring the effects of latter approach including AIC, BIC, 
and AICc on the performance of penalized regressions in this paper. BIC is defined as 
 

                         
(6) 

 

where    is the maximum likelihood estimates of the model parameters,           is the 
corresponding log-likelihood,   is the sample size and   is the number of parameters of the 
model. AIC is defined as 

                       (7) 
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while AICc is 

                    
 

     
     (8) 

 
The final terms in (7), (8), and (9) represent a penalty on the log-likelihood as a function of the 
number of parameters  , which reduce the effects of overfitting. It is not hard to see that the BIC 

has stronger penalty than AIC for any reasonable sample size  . The formula (9) of AICc can be 
rewritten as 

                      
       

     
     

       

     
  (9) 

 
AICc merely has an additional bias-correction term beyond AIC, which adds stronger penalty than 
AIC for smaller sample sizes, and even stronger than BIC for very small sample sizes. So, BIC 
and AICc tend to select smaller models than AIC. Burnham and Anderson (2002) claimed that 
when   is large with respect to  , then the second-order correction is negligible, and AIC should 
perform well. And they recommended the use of AICc when the ratio     is small (say < 40). In 
next section, we explore the prediction performance of different penalized methods with the three 
information criteria in various simulation scenarios. 

 
3. SIMULATION STUDY 
This section assesses the effects of different tuning parameter criteria on the prediction 
performances of aforementioned penalized estimators via various simulation scenarios. All the 
data sets in this section are generated from the true model 

 
 
 

                                                    (10) 

  is drawn from a  -dimensional multivariate normal distribution with mean of zero. Within each 
scenario, the data consists of a training data set and a testing data set. Suppose the size of a 
training data set is  , then a testing data set of size     is generated from the same setting as 
training data for estimating the prediction performance of the model. To evaluate the performance 
of penalized estimators, one of the most frequently used measures is the model prediction error 
(ME) for a model selection procedure which is defined as 
 

          
 
              (11) 

 
We use the median of the ME (MME) to evaluate the performances of the model selection 
estimators for a given number of Monte Carlo replications. Specifically, the scenarios which have 
been investigated are simulated with 50 data sets which is the same number used in Zou and 
Hastie (2005). The R package “glmnet” is used to find the penalized estimators and       is 
used for the elastic net in the package. Here are the details of the simulation scenarios. 
 
Scenario 1: 
This example was first used in Fan and Peng (2004). Similarly, we let 

   
  

 
  

  

 
 
  

  
  

  

 
 
 

 
      

   

 

,  and    . Hence the number of variables in the true model is 

     We set the sample size       for each of          and    . The covariance matrix of 

the predictor variables is set to                if     and                for            In 

this example, although the dimension of the full model is diverging, the value of     is fixed as 
100. 
 
The detailed results of scenario 1 is summarized in table 1. As one can see, when all the 
predictors are correlated and every one of them has effect on the response variable, for example 
when     in this scenario, the ridge regression performs the best, which is consistent with the 
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results in Ogutu et al., (2012). Speaking of the ridge regression, one can see that the parameters 
selected by BIC, AIC, and AICc are the same. This is because the ridge does not produce sparse 
model. All the predictors are included in the ridge estimators. Thus, the penalties on the number 
of parameters in the model imposed by these ICs has limited roles. Therefore, they are much 
likely to select the same estimators. Even for the other two penalized regressions, in many cases 
the AIC and AICc select the same parameters respectively, see results when       and        
of lasso and elastic net. This is consistent with the findings in Burnham and Anderson (2002) that 
if the ratio     is sufficiently large, then AIC and AICc are similar and will strongly tend to select 

the same model. In this example 
 

 
     which is much larger than the threshold (40) given by 

them. Moreover, from this example we can also see that when there are many redundant 
variables in the model, the lasso regression with BIC as the tuning parameter choosing criterion 
outperformed the other penalized methods and criteria, see the results when       which has 
95 redundant variables. Also, for a given penalized regression, the BIC has better performance 
than AIC and AICc when the data contains unimportant variables, for example, when        for 
lasso and        for elastic net. This is consistent with the property of BIC that it has larger 

penalty on the dimension of the model than AIC and AICc for large   and can produce a sparser 
model. 
 
Scenario 2: 

In this example, we consider the cases in which 
 

 
  also diverges. Similar to Wang et al. (2009), 

we set      
 

   and    
 

 
 , where     is the largest integer less than or equal to  . We let 

                for         and    . For sample size                 the respective 

dimensions of the full model and true model are           , and          . Thus the 

corresponding floor number of 
 

 
 are  

 

 
            . The covariance matrix of the predictor 

variables is the same as scenario 1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
TABLE 1: MME values for the simulated scenario 1. 

 
The results of scenario 2 is shown in table 2. Depending on the value of    , the performances 
of AIC and AICc are different. For small    , see        in the example, AICc outperforms 

AIC. When     is large, see         in the example, the results of AIC and AICc are the same. 
This agrees with the advocate given by Burnham and Anderson (2002) that AICc is preferred to 
AIC when the ratio     is small (say < 40). However, when     is sufficiently large, AIC and 
AICc strongly tend to select the same model. BIC has slight better performance than AIC and 

Method True model 
dimension 

MME for following IC criteria 

BIC AIC AICc 

Ridge   = 5  8.937 8.937 8.937 

  = 20  9.393 9.393 9.393 

  =100  11.277 11.277 11.277 

Lasso   = 5  9.191 9.191 9.191 

  = 20  9.195 9.213 9.213 

  =100  10.192 10.731 10.695 

Elastic 
net 

  = 5  9.139 9.139 9.139 

  = 20  9.297 9.332 9.332 

  =100  10.768 11.199 11.087 
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AICc for lasso and elastic net in this example. This is because if the variables have taping effects, 
which means some   coefficients have real effects but the others taper off quickly to very small 

values, for example in this scenario there are   coefficients are nonzero and the remains are all 
zero, then AIC will often choose the very weak effects in a taper. These effects can be estimated 
very poorly for small sample size. Then zero could be a better estimate for the coefficient, which 
makes the BIC has a relatively better prediction performance. For the ridge regression, similar 
results can be seen as from scenario 1 that all IC criteria select out the same parameters. 
 
The following scenarios 3 and 4 were used in the original lasso paper (Tibshirani, 1996) and 
elastic net paper (Zou and Hastie, 2005), to compare the prediction performance of the lasso and 
ridge regression systematically. 
 
Scenario 3: 

In this example,   is specified as           for                       and      The pairwise 

correlation was set to                        In this example, the sample size is relatively small 

and the correlation between variable  i and  j decreases as         increases. 
 
There are no redundant variables in the true model in this example, which means all the 

coefficients of the parameters are nonzero. However, unlike the scenario 1 when      , the 
 

 
 

here only equals 2.5 which is much smaller than that of the former (100). The result of this 
example, presented in table 3, reconfirms our finding in scenario 2 when          that AICc 

performs better than AIC when     is small. And the ridge estimator outperforms the lass and 
elastic net because all the predictors have effect on the response and the ridge regression does 
not eliminate any variables. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
TABLE 2: MME values for the simulated scenario 2. 

 

 
 
 
 
 
 
 
 
 
 

TABLE 3: MME values for the simulated scenario 3. 

Method          
 

 
 MME for following IC criteria 

BIC AIC AICc 

Ridge 14  10.975 10.975 10.975 

40  9.697 9.697 9.697 

114  9.213 9.213 9.213 

Lasso 14  10.638 10.908 10.676 

40  9.596 9.689 9.680 

114  9.210 9.237 9.237 

Elastic 

net 

14  11.174 11.384 11.277 

40  9.668 9.712 9.689 

114  9.220 9.249 9.249 

 

Method 
MME for Following IC criteria 

BIC AIC AICc 

Ridge 10.928 10.928 10.928 

Lasso 12.618 13.241 11.985 

Elastic net 11.631 11.997 11.134 
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Scenario 4: 
This example was created in Zou and Hastie (2005) which contains a grouped variable situation. 
With       , the true model has more redundant variables than example 5. Specifically, we set 
 

               
  

             
  

 

 
and σ = 15. The predictors are given by 
 
                    

                                      

 

                    
 
                                

 

                    
                                       

 

                                                            

 

where   
   

     
 

          , for             50 observations are generated in each Monte Carlo 

repetition. It is easy to see that there are three equally important groups which have five variables 
within each group and 25 noise features in the model. This example was created to show the 
superiority of elastic net over lasso when there is group effect among the predictor variables. This 
can be seen from its result in table 4 that the elastic net outperforms the lasso. We can also see 
that the AICc has a better performance than AIC and BIC for small sample size and     is small 

(          in this example). 
 

 
 
 
 
 
 
 

 

 
TABLE 4: MME values for the simulated scenario 4. 

 
4.  REAL DATA EXAMPLE 
In this section, we investigate a real data application and explore the performances of penalized 
approaches with different IC criteria. We consider the data from Stock and Watson (2005) which 
contains 540 monthly observations on 131 U.S. macroeconomic time series. Eight of ten major 
categories of economic indicators are represented within the data. We use the housing starts 
which is a key economic indicator as an illustration. Specifically, the housing starts of northeast 
U.S. (HSNE) is set as the response variable. Thus, there are 130 predictor variables. The data is 
divided into training and testing data sets with the latter has 50 observations. Table 5 reveals the 
effecting predictor variables selected by lasso and elastic net regressions. We did not list the 
variables from ridge in the table because it contains all the 130 predictors as the ridge regression 
does not produce sparse model. The interesting part we found from the result is that all the IC 
criteria selected the same tuning parameter value in the same penalized regression. Thus, the 
predictor variables selected by lasso with BIC, AIC, and AICc respectively are the same. So does 
elastic net. Based on our analysis, we found the reason is the likelihoods produced by lasso and 
elastic net in this example dominate the penalty terms in the IC criteria formulas. Thus, the 
penalties imposed on the model size by BIC, AIC and AICc play very limited roles in selection of 
the tuning parameter. Therefore, they return the same coefficients estimator. 
 

Method 
MME for Following IC criteria 

BIC AIC AICc 

Ridge 431.653 431.653 431.653 

Lasso 520.568 520.568 512.569 

Elastic net 423.631 423.631 420.772 
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Nevertheless, they provided very meaningful results in this example. For example, as one can 
see, the variables selected by both lasso and elastic include the housing starts of midwest, south, 
and west, which means housing starts of the four regions in U.S. are highly correlated to each 
other. This is consistent with the results in Anaraki (2012) in which the influence of HSNE on 
housing starts of other regions is described. The Napm Vender Delivery index measures the time 
for suppliers to deliver essential parts and materials for production. Pring (1992) pointed out that 
both production index and Napm Vendor Deliveries index have a strong relationship with HSNE 
and we see both indexes were selected by the lasso and elastic net. Mutikani (2015) showed that 
an increase in the work force can lead to a growth in house starts. And we see the employment 
variables in both of the penalized regression. The result also reveals the ability of elastic net to 
select the grouping variables together. For example, the elastic net includes all the Houses 
Authorized by Build. Permits of the four regions in U.S.. However, the lasso only contains two of 
them. 
 
Table 6 displays the prediction mean squared errors of ridge, lasso, and elastic net regression. It 
can be seen that the lasso selects the least number of predictor variables which is 14, while 
elastic net has 38 variables in their models. Furthermore, the lasso estimator has the best 
prediction performance. Its prediction error is as small as 1.995. The ridge regression selects all 
the 130 predictors and its prediction performance are the worst among them because of 
overfitting effect. 

 
5. CONCLUSION 
In this paper, we investigated the effects of different tuning parameter choosing criteria including 
BIC, AIC, and AICc, on the prediction performance of some of the most widely used penalized 
regression approaches such as ridge, lasso, and elastic net, aiming to supplement the existing 
model selection literature. Both our simulation and real application results support the conclusion 
in existing literature and provide some guidance to researchers and practitioners who are 
considering different penalized methods. Using Monte Carlo simulation studies, we compared the 
prediction performances of the reviewed penalized estimators with different criteria for the choice 
of tuning parameter. From the simulation results, we find that in general when there are many 
redundant variables in the model and sample size   is large, then lasso is preferred and BIC is 
recommended to be used as the tuning parameter choosing criterion for the penalized regression. 
Because BIC has larger penalty on model dimension than AIC and AICc for large  . It tends to 
produce a sparser model and can consistently identify the true model for a finite sample size. If 
grouped effect is found among the predictor variables, then elastic net should be used as it can 
select all the grouped parameters together while lasso tends to randomly choose one of them. If 
many predictors have effects on the response variable, one should apply the ridge regression 
with AIC for large sample size and AICc for small sample size. Because it can keep coefficients of 
the linear regression model with many correlated featuring lower variance.  
 
We also found that one can use the sample size and the number of nonzero parameters in the 
model to choose proper criterion for the tuning parameter. When the sample size   or its ratio to 

the number   of parameters included in the model (i.e.    ) are small (Burnham and Anderson 
2002 used 40 as the threshold for    ), AICc is recommended for the penalized methods since it 
has stronger penalty on model size than BIC and AIC under these cases. However, when the 
ratio     is sufficiently large, then AIC and AICc are similar and will strongly tend to select the 

same model. One shortcoming of using the value of     to choose the criterion in practice is that 
it is hard to know the exact value of   before the regression model is computed. However, it can 
be used as a supplementary approach for the choice of tuning parameter choosing criterion when 
the value of   is known. Then our results about it can be used as reference. 
 
We also explored the effect of the tuning parameter choice on variable selection outcomes and 
prediction results of penalized estimators with a real example in economic modeling. Our result is 
consistent with existing conclusions found in the study of HSNE. From the real application 
example,  
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Table 5: Variables selected by lasso and elastic net with BIC, AIC and AICc. 

 
 
 
 
 
 
 

 
 

 
 

TABLE 6: Prediction Error of Penalized Regression. 

 
we can see that problems from real practice can be very complex. In practice, we are not likely to 
make the collected data exactly satisfy the data structures in simulation cases. Based on our 
results, we suggest that if the practitioner intends to get a sparse model with good prediction 
performance, the lasso estimator is preferred. If the practitioner does not want to ignore any 
variables in the same group, then elastic net should be used. BIC can be used as the tuning 

Economic Indexes Selected 

Both in lasso and elastic net Elastic net only 

1.Industrial. Pro. Index…D.C.G 

2.Industrial. Pro. Index…Fuels 

3.NAPM. Pro. Index… Percent 

4.Empl.On.Nonfarm.payroll…N.G 

5.AVE.W.H.of.Pro.Or.Nonsup.W.O.P.NF 

6.H.S.Nonfarm.1947...T.F. N1959…Thous.SA 

7.H.S.Midwest.thous.U...S.A. 

8.H.S.South..Thous.U…S.A. 

9.H.S. West..Thous.U…S.A. 

10.H.Auth.By.Build…Permits,Northeast.Th.U..S.A. 

11.H.Auth.By.Build…Permits.Midwest.Th.U…S.A. 

12.NAPM.Vendor.Delveries.Index.Percent. 

13. Mfrs.new.order.Nondef.capital.g.mil.cha.1982 

14.fygm3.fyff 

1.Industial.Pro.index.D.G.M 

2.Industrial.Pro..Index.Res.UTL. 

3.Index.Of.W.Adv.In.News.1967.100.SA. 

4.Emp.Ra.He.W.ADS.No.Unemp.CLF 

5.UNEM.B.Dura.Per.Unemp.27.wks. 

6.AVE.W.Initial.cla.unemp.insur.thous 

7.Employ.on.Nonf.Payrolls.Dura.G. 

8.Employ.on.Nonf.Payrools.NonDura.G. 

9.Ave.weekly.hours..mfg.hours. 

10.H.Author.By,Build.Permit.S.Thou.U.S.A 

11.H.Author.By.Build..Permits.W.Thou.U..S.A 

12.NAPM.New.Deliveries.Index..percent. 

13.NAPM.Inventories.Index..percent 

14.Com.Industr.Loans.Oustanding.In.1996.Dol 

15.WKLY.RP.LG.Com.L.Ban.Net.Cha..Indus.L.B 

16.S.P.S.Compo.Comm.Stock..Divid.Yie.Per.AN 

17.Inte. Rate..U.S.Trea.Bill.SEC.M.3.Mo..P.A.N 

18.Inte.Rate..U.s.Trea.Con.Matur.1.YR..P.A.N 

19.fygt1.fyff 

20.fybaac.fyff 

21.United.States.Eff.Exchan.Rate.M..Index.NO.. 

22.Foreign.Exchange.rate.JAPAN..Yen..Per.U.S. 

23.Foreign.Exchange.rate.Unite.Kingdon..C.P.P 

24.U..Of.Mich.Index.Of.Consumer.Expecta.BCD.83 

 

TABLE 5: Variables selected by lasso and elastic net with BIC, AIC and AICc. 

Method  Number of selected 

Variables 

 Prediction Error of Test Data 

Ridge  130  362.156 

Lasso  14  1.995 

Elastic Net  38  2.408 
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parameter choosing criterion in the penalized regression in order to obtain a sparser model for a 
large sample size and AICc for a small sample size. Through this paper, we focused on data with 
univariate response. To investigate the effects of different tuning parameter choosing criteria on 
various regularization methods when the data contains multivariate response variables will be an 
important area for our future work. Moreover, we will expand this research to more regression 
models, for example, logistic regression and Poisson regression models. These future researches 
can have significant meanings in theoretical analysis and real applications in this area.  
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