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Abstract 

The split population model postulates a mixed population with two types of individuals, the 
susceptibles and long-term survivors. The susceptibles are at the risk of developing the event 
under consideration, and the event would be observed with certainty if complete follow-up were 
possible. However, the long-term survivors will never experience the event. We known that 
populations are immune in the Stanford Heart Transplant data. This paper focus on the long term 
survivors probability vary from individual to individual using logistic model for loglogistic survival 
distribution. In addition, a maximum likelihood method to estimate parameters in the split 
population model using the Newton-Raphson iterative method.  
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1. INTRODUCTION 
Split population models are also known as mixture model. The data used in this paper is Stanford 
Heart Transplant data. Survival times of potential heart transplant recipients from their date of 
acceptance into the Stanford Heart Transplant program [3]. This set consists of the survival times, 
in days, uncensored and censored for the 103 patients and with 3 covariates are considered 
Ages of patients in years, Surgery and Transplant, failure for these individuals is death. Covariate 
methods have been examined quite extensively in the context of parametric survival models for 
which the distribution of the survival times depends on the vector of covariates associated with 
each individual. See [6] for approaches which accommodate censoring and covariates in the 
ordinary exponential model for survival. 
 
Currently, such mixture models with immunes and covariates are in use in many areas such as 
medicine and criminology. See for examples [4][5][7].  In our formulation, the covariates are 
incorporated into a split loglogistic model by allowing the proportion of ultimate failures and the 
rate of failure to depend on the covariates and the unknown parameter vectors via logistic model. 
Within this setup, we provide simple sufficient conditions for the existence, consistency, and 
asymptotic normality of a maximum likelihood estimator for the parameters involved. As an 
application of this theory, the likelihood ratio test for a difference in immune proportions is shown 
to have an asymptotic chi-square distribution. These results allow immediate practical 
applications on the covariates and also provide some insight into the assumptions on the 
covariates and the censoring mechanism that are likely to be needed in practice. Our models and 
analysis are described in section 5.  

 
2. PREVIOUS METHODOLOGY AND DISCUSSION 
[2] was the first to publish in a discussion paper of the Royal Statistical Society. He used the 
method of maximum likelihood to estimate the proportion of cured breast cancer patients in a 
population represented by a data set of 121 women from an English hospital. The follow-up time 
for each woman varied up to a maximum of 14 years. [2] approach was to assume a lognormal 
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distribution as the survival distribution of the susceptibles, although, curiously he noted that an 
exponential distribution is in fact a better fit to the particular set of data analyzed, and to treat 
deaths from causes other than the cancer under consideration as a censoring mechanism.  
 
[8] used a model consisting of a mixture of the exponential distribution and a degenerate 
distribution, to allow for a cured proportion, they fitted this model to a large data set consisting of 
2682 patients from the Mayo clinic who suffered from cancer of the stomach. The follow-up time 
on some of their patients was as much as 15 years. They noted that a correct interpretation of the 
existence of patients cured of the disease should be that the death rates for individual with long 
follow-up drop to the baseline death rate of the population.  
 
[9] applied a Weibull mixture model with allowance for immunes to a prospective study on breast 
cancer. Information on various factors was collected at a certain time for approximately 5000 
women, of whom 48 subsequently developed breast cancer. [9] wished to estimate that 
proportion and to investigate how it may be influenced by risk factors, as well as to investigate 
how risk factors might affect the time to development of the cancer, if this occurred. 
 
Similarly above, we will allow the covariates associated with individuals, relate the loglogistic with 
long term survivors, and relate to the probability of being immune in  logistic model. 

 
3. SPLIT MODELS 
In this section, we will consider ‘split population models’ (or simply ‘split models’) in which the 
probability of eventual death is an additional parameter to be estimated, and may be less than 
one. Split models in the biometrics literature, i.e., part of the population is cured and will never 
experience the event, and have both a long history [2] and widespread applications and 
extensions in recent years [4]. The intuition behind these models is that, while standard duration 
models require a proper distribution for the density which makes up the hazard (i.e., one which 
integrates to one; in other words, that all subjects in the study will eventually fail), split population 
models allow for a subpopulation which never experiences the event of interest. This is typically 
accomplished through a mixture of a standard hazard density and a point mass at zero [6]. That 
is, split population models estimate an additional parameter (or parameters) for the probability of 
eventual failure, which can be less than one for some portion of the data. In contrast, standard 
event history models assume that eventually all observations will fail, a strong and often 
unrealistic assumption. 
 
In standard survival analysis, data come in the form of failure times that are possibly censored, 
along with covariate information on each individual. It is also assumed that if complete follow-up 
were possible for all individual, each would eventually experience the event. Sometimes however, 
the failure time data come from a population where a substantial proportion of the individuals 
does not experience the event at the end of the observation period. In some situations, there is 
reason to believe that some of these survivors are actually “cured” or “long–term survivors” the 
sense that even after an extended follow-up, no further events are observed on these individuals. 
Long-term survivors are those who are not subject to the event of interest. For example, in a 
medical study involving patients with a fatal disease, the patients would be expected to die of the 
disease sooner or later, and all deaths could be observed if the patients had been followed long 
enough. However, when considering endpoints other than death, the assumption may not be 
sustainable if long-term survivor are present in population. In contrast, the remaining individuals 
are at the risk of developing the event and therefore, they are called susceptibles.  
 

Using the notation of [7], we can express a split model as follows. Suppose that )(tFR is the 

usual cumulative distribution function for death only, and ω  is the probability of being subject to 

reconviction, which is also usually known as the eventual death rate. The probability of being 
immune is (1-ω ), which is sometimes described as the rate of termination. This second group of 
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immune individuals will never reoffend. Therefore their survival times are infinite (with probability 
one) and so their associated cumulative distribution function is identically zero, for all finite t  > 0. 

If we now define )(tFS =ω )(tFR , as the new cumulative distribution function of failure for the 

split-population, then this an improper distribution, in the sense that, for  0 < ω  < 1, )(∞SF = ω < 

1. 
 

Let Yi be an indicative variable, such that  

  Yi =  





faileventuallywillindividualith;1

failneverwillindividualith;0
 

 
and follows the discrete probability distribution 
               Pr[Yi = 1] = ω  

and  
   Pr[Yi = 0] = (1-ω ). 

 
For any individual belonging to the group of death, we define the density function of eventual 

failure as )(tFR with corresponding survival function ),(tSR while for individual belonging to the 

other (immune) group, the density function of failure is identically zero and the survival function is 
identically one, for all finite time t. 
 
Suppose the conditional probability density function for those who will eventually fail (death) is  

  === )()1|( tfYtf R  )(' tFR  

wherever )(tFR is differentiable. The unconditional probability density function of the failure time 

is given by  

                       
]1Pr[)1|(]0Pr[)0|()( ==+=== YYtfYYtftf s

 

                              = 0 (1-ω ) + )(tf R ω  = ω )(tf R . 

Similarly, the survival function for the recidivist group is defined as  

  ∫
∞

===>=
t

R duYufYtTtS )1|(]1|Pr[)(              

                                                               = ).(1)( tFduuf R

t

R −=∫
∞

      

The unconditional survival time is then defined for the split population as 
 

∫
∞

==+===>=
t

S duYYufYYuftTtS ]}1Pr[)1|(]0Pr[)0|({]Pr[)(    

                             = (1-ω ) +ω )(tSR  

which corresponds to the probability of being a long-term survivor plus the probability of being a 
recidivist who reoffends at some time beyond t. 
In this case, 

   )()( tFtF RS ω=
 

 
is again an improper distribution function for ω  < 1.  
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4. THE LIKELIHOOD FUNCTION 
The likelihood function can then be written as  

  ∏
=

−+−=
n

i

iRiR
ii tStfL

1

1
)]()1[()]([),(

δδ ωωωθω  

and the log-likelihood function becomes 

∑
=

+−−++==
n

i

iRiiRi tStfLl
1

)]}()1[(ln)1()](ln[ln{),(ln),( ωωδωδθωθω  

where iδ  is an indicator of the censoring status of observation ti, and θ  is vector of all unknown 

parameters for )(tf R  and )(tSR . The existence of these two types of release, one type that 

simply does not reoffend and another that eventually fails according to some distribution, leads to 

what may be described as simple split-model. When we modify both )(tf R and )(tSR  to include 

covariate effects, )|( ztf R and )|( ztS R  respectively, then these will be referred to as split  

models. 
 
 We fit split models to our data using the same three distributions as were considered in the 
section (exponential, Weibull and loglogistic). The likelihood values achieved were -511.21, -
495.60 and -489.17, respectively. The loglogistic model fits the estimation better than other two 
distributions, while the exponential model better than weibull model. The value of  the ‘splitting 
parameter’ ω  implied by our models were 0.81, 0.84 and 0.78 for the exponential, Weibull and 

loglogistic distributions, respectively. 

 
5. MODEL WITH EXPLANATORY VARIABLES 
We now consider models with explanatory variables. This is  obviously necessary if we are to 
make predictions for individuals, or even if we are to make potentially accurate predictions for 
groups which differ systematically from our original sample. Futhermore, in many applications in 
economics or criminology the coefficients of the explanatory variables may be of obvious interest. 
We begin by fitting a parametric model based on the loglogistic  distribution. The model in its 
most general form is a split model in which the probability of eventual death follows a logistic 
model, while the distribution of the time until death is loglogistic, with its scale parameter 
depending on explanatory variables. The estimate are based on the usual MLE method.  
 
To be more explicit, we follow the notation of section 3. For individual i, there is an unobservable 

variable iY  which indicates whether or not individual i will eventually return to prison. The 

probability of eventual failure for individual i  will be denoted iω  so that .)1( ii ω==YP Let iZ  

be a (row) vector of individual characteristics (explanatory variables), and let α be the 

corresponding vector of parameters. Then we assume a logistic model for eventual death: 
 

  [ ])(exp1

)exp(

i

T

i

T

i
z

z

α

α
ω

+
= . 

 

Next, we assume that the distribution of time until death is loglogistic , with scale parameter λ   

and shape parameter κ .  
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The likelihood function for this model is 
 

.)]}()1[(ln)1()](ln[ln{

),(ln),(

1

iii

ii

∑
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=
n

i

iRiiRi tStf
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ωωδωδ
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We can now define special cases of this general model. First, the model in which ,0i =ω but in 

which the scale parameter depends on individual characteristics, will be called Loglogistic model 

(with explanatory variables) , it is not a split model. Second, the model in which iω  is replaced by 

a single parameter ω will be referred to as the split Loglogistic model (with explanatory 

variables). In this model the probability of eventual death is a constant, though not necessarily 
equal to one, while the scale parameter of the distribution of time until death varies over 

individuals or depend on individual characteristic iZ , so that )exp( i

T

i zβλ = . 

 
The likelihood function for this model is 
 

 ),,( i κβωl = 
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Third, the model in which iλ  is replaced by a single parameter λ  will be called the logistic 

Loglogistic model. In this model the probability of eventual death varies over individual , while the 
distribution of time until death (for the eventual death) does not depend on individual 
characteristics. The likelihood function for this model is 
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Finally, the general model as presented above will be called the logistic / individual Loglogistic 
model. In this model both the probability of eventual death and the distribution of time until death 
vary over individuals, the likelihood function for this model is 
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In the tables 1 gives  the results for the split loglogistic model and the logistic loglogistic model. 
The split loglogistic model dominates the logistic loglogistic  models. For example, the likelihood 
value of  -18.2007 for the split loglogistic model is noticably higher than the values for the logistic 
loglogistic models with likelihood value of  -19.7716. We now turn to the logistic /individual 
loglogistic model, in which both the probability of eventual death and the distribution of time until 
death vary according to individual characteristics. These parameter estimates are given in table 
2. They are somewhat more complicated to discuss than the results from our other models, in 
part because there are simply more parameters, and some of them turn out to be statistically 
insignificant.  
 
In table 2, we can see that two covariates have significant on the probability of  immune, Age and 
Transplant with ( p - value 0.0081 and 0.031, respectively) but  different on the loglogistic 

regression, Age is fail significant  with p -value of  0.1932, while Transplant to be significant with 

p - value of 0.0002. Surgery just fail to be significant on the probability of  immune with p - value 

of 0.9249 but significant on the loglogistic regression with p -value of  0.077.  

 
Furthermore, these results are reasonably similar to the results we obtained using a 
logistic/individual exponential model [1]. There are similars on the  probability of immune that Age 
and Transplant  are significant with ( p - value 0.0081 and 0.031, respectively) for logistic 

/individual loglogistic model and  with ( p - value 0.0359 and 0.000, respectively) for logistic 

/individual exponential model, while Surgery did not have significant on both the loglogistic and 
exponential model with ( p -value 0.9249 and 0.0662, respectively). Next, we analyzing 

statistically significant on the distribution of time until death using both the logistic/individual 
loglogistic and exponential model. Age did not have significant with p -value of 0.1932 for 

loglogistic model but significant with p - value of 0.0184 for the exponential model, Surgery is 

significant with p -value of 0.0077 for loglogistic model but just fail significant with p -value of 

0.8793 for the exponential model and finally Transplant is significant with p -value 0.0002 for 

loglogistic model but marginally significant for exponential model with p -value 0.0655. 
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TABLE 1: Split  Loglogistic Model and Logistic Loglogistic Model. 

 

 
 

 
TABLE 2: Logistic / Individual Loglogistic Model. 

 
6. CONCLUSION 
In this section, we will summaries the result above about significantly covariates in the data for 
those models which we presented in section 4, and we shown in table 3. As we can see in table 
3, There are similars on both the split loglogistic  and logistic/ individual loglogistic model that Age 
is significant with ( p -value 0.9379 and 0.1555, respectively) and Surgery just fail to be significant 

with ( p -value 0.2153 and 0.9249, respectively), while the different that Transplant did not have 

significant with p -value of 0.1429 for split loglogistic but to be significant with p -value of 0.031 

for logistic/ individual loglogistic model. 

 
 
 
 
 
 
 
 
 
 
 

 
Variable 

    Split  loglogistic Logistic loglogistic 

Coefficient        p - value Coefficient        p - value 

intercept 9.683928             0.0000 -0.207918          0.8972 

Age -2.240139            0.0000  0.097019          0.0039 

Surgery -8.762389            0.2153  -0.983625         0.187 

Transplant -6.673942            0.1429  -3.074790         0.0468 
 κ = 0.094981 λ = 0.021881 

ω = 0.808882 

ln L = -18.2007 

κ = 0.566241 
ln L= -19.7716 

 
 

Variable 

 E q u a t ion for  
   Pr(never fail) 

E q u a t ion for duration, 
given eventual failure 

(Loglogistic regression) 

Coefficient       p - value        Coefficient          p - value 

intercept -0.529806           0.6852             -4.387064             0.0012 

Age  0.087290            0.0081              0.037826              0.1932   
Surgery  0.130583            0.9249             -2.250424              0.0077 

Transplant  -2.254443           0.031             -2.064279              0.0002 
                             κ = 0.767896 

                               ln L = -468.533 
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* not relevant 

 
 
 
 
 
 
 
 
 
 

TABLE 3: Significantly Covariates for the Stanford Heart Transplant Data. 

 
Now, we can see that Age and Surgery have different significant effects on both the logistic 
loglogistic  and logistic/ individual loglogistic model. Age is found to be the significant with a p -

value of 0.0039 for logistic loglogistic but not on the logistic/ individual loglogistic model where p

-value of 0.1932. Surgery just fail significant for logistic loglogistic with p -value of 0.1870 but 

significant on the logistic/ individual loglogistic model with p -value of  0.0077, and finally 

Transplant have similar significant on both the logistic loglogistic  and logistic/ individual 
loglogistic model with ( p -value 0.0468 and 0.0002, respectively). 
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