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Abstract 

 
In this work the problem of continuous approximate solution of the ordinary differential equations 
will be investigated. An approach to construct the continuous approximate solution, which is 
based on the discrete approximate solution and the spline interpolation, will be provided. The 
existence and uniqueness of such continuous approximate solution will be pointed out. Its error 
will be estimated and its convergence will be considered. Finally, with the aid of modern PC and 
mathematical software, three practical computer approaches to perform above construction will 
be offered.     
AMS Classification Subject: 34A45, 65L05, 65Y99 
                        
Key Words: Continuous Approximate Solution, Discrete Approximate Solution, Cubic Spline                
Interpolant. 

 
 
 

On Continuous Approximate Solution Of Ordinary Differential 
Equations 

 
1.1 Presentation of Problem 
Differential equations are often used to model, understand and predict the dynamic  
systems in the real world. The use of differential equations makes available to us the full  
power of Calculus. Modeling by differential equations greatly expands the list of possible  
applications of Mathematics. 
 
Unfortunately, a wide majority of interesting differential equations have no closed  
form. i.e. the solution can't be expressed explicitly in terms of elementary functions such  
as polynomial,exponential, logarithmic or trigonometric functions even if it can be shown  
that a solution of the differential equation exists. Furthermore, in many case the explicit  
solution does exist, but the evaluation of the function may be difficult. Thus, we have to be  
content with an approximation of the solution of differential equations and the approximate  
methods for differential equations developed. 
 
Generally, the approximate methods fall into two categories: 
(1)Discrete approximate methods which produce a table of approximation of solution 
values corresponding to points of independent variable. This kind of methods provides 
quatitative information about solution even if we can not find the formula of the 
solution. There's also advantage that most of work can be done by machines. 
However, its disadvantage is that we obtain only approximation, not precise solution, 
    and not a function. 
 
(2)Continuous approximate methods on which much less work has been done. Although  
    theoretically any discrete approximate methods can be converted to continuous  
    approximate method by interpolating, but there remains a lot of problems not answered  
    thoroughly, such as error, convergence,stability and computer approach . In this work,  
    we attemp to solve some of these problems.     

              1. INTRODUCTION 
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1.2 Description of Problem    
In this work we'll study the problem of continuous approximate solution of initial 
 value problem of ordinary differential equation: 
 
                            y' = f(x,y)   and  y(a) = y

0
     x  in  [a,b]                                 (1.2.1) 

 
Let f(x,y) be continuous and satisfy Lipschitz condition on D where  

D={ (x,y):  a x≤ b≤    ∞− y< ∞<   } then (1.2.1) has unique solution: 

                           y = y(x)   x  in  [a,b].                                                             (1.2.2)       
Suppose we have a mesh of [a,b]:   a= x

0
x
1

< ......< x
n

< =b 

then its exact solution values at points in mesh are y(x
i
) = y

i
     i = 0, 1, ......, n . 

 
If we use certain discrete approximate method of (1.2.1) to produce its discrete  
approximate solution:  
                            { (x

i
w

i
, ) : i = 0, 1, ......,n }                                                     (1.2.3) 

where w
i
 is the approximation of y

i
 with error y

i
w

i
− =O h

i( )
p
 . 

 
In this work, we assume (1.2.1) is a scalar equation, but most theoretical and  
numerical consideration can be carried over to vector form -- the system of 1st order  
equations. And, we assume (1.2.1) satisfies stronger differentiation conditions as needed  
in theoretical analysis later. 

1.3 Natural Cubic Spline Interpolant   
In this work the natural cubic spline interpolant will be used to construct the  
continuous approximate solution of (1.2.1) which is defined as follows. 
 
Definition of Natural Cubic Spline Interpolant  
For a set of data { (x

i
w

i
, ) i = 1, 2, ......,n } its natural cubic spline interpolant is  

a piece-wise cubic polynomial s(x), for  x  in [x
i

x
i 1+

, ]   s(x) = s
i
(x)  

where s
i
(x) = a

i
x x

i
−( )

3
⋅ b

i
x x

i
−( )

2
⋅+ c

i
x x

i
−( )⋅+ d

i
+       i = 0, 1, 2, ......,(n-1)    (1.3.1) 

which meet following conditions: 
 
agreeing with data: s

i
x
i( ) w

i
     i = 0, 1, 2,......,(n-1)    and    s

n 1−
x
n( ) w

n
       (1.3.2.a) 

function values of adjacent 2 pieces are equal at joint points:                   
         s

i
x
i 1+( ) s

i 1+
x
i 1+( )                 i = 0, 1, 2, ......,(n-2)                           (1.3.2.b) 

1st derivative values of 2 adjacent pieces are equal at joint points: 
        s

i
'(x

i 1+
) = s

i 1+
'( x

i 1+
)                 i = 0, 1, 2, ......,(n-2)                           (1.3.2.c) 

2nd derivative values of 2 adjacent pieces are equal at joint points: 
        s

i
" x

i 1+( ) s
i 1+

" x
i 1+( )              i = 0, 1, 2, ......,(n-2)                            (1.3.2.d) 

 
Boundary condition of natural spline:    s" x

0( ) = s" x
n( ) =0                            (1.3.2.e) 
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Remark:  

1.The natural cubic spline interpolant s(x) is in C
2
([a,b]). 

2.Generally, the cubic spline interpolant is not unique for a set of data. In order to get a   
   unique cubic spline interpolant we need some boundary conditions. In this work we  
   adopt the natural conditions, i.e. the 2nd derivative at two endpoints of interval are  
   equal zero. There're several boundary conditions for cubic spline interpolant, but just  
   cause a slight difference in the following numerical and theoretical consideration and  
   results. 

1.4 Computer Approach and Mathematical Software   
One of advantage of discrete approximate methods is that it can be performed by 
computation machines and the machines can do most work of this kind of methods for us. 
In a long time it is difficult to perform a continuous approximate method by machines. 
 
Now, modern computer technology makes it possible to perform the continuous 
approximate methods by PC and mathematical software. In this work we'll provide three 
computer approaches to construct the continuous approximate solution of (1.2.1).  
  
These approach is based on PC and Mathcad 13. Mathcad 13 is a CAS and one of 
popular mathematical softwares in the world. We'll use its program function and routines 
to accomplish the construction of continuous approximate solution of (1.2.1) 

2. Continuous Approximate Solution 
In this part we'll provide an approach to construt the continuous approximate solution of (1.2.1) 
and discuss its existence and uniqueness. Also, the error will be estimated and the convergence 
will be considered. 

2.1 Approach to Construct the Continuous Approximate Solution 
For (1.2.1) and a simple mesh: a = x

0
x
1

< x
2

< ......< x
n

<  = b,  

we can obtain a set of data { (x
i

w
i

, ) i = 0,1,2, ......,n}  where w
i
 is approximate solution values produced by 

certain discrete approximate method. 
 
Then, we form a natural cubic spline interpolant (1.3.1) for the set of data { (x

i
w

i
, ) i = 0,1,2, ......,n} 

"To form a natural cubic spline interpolant" means "To determine {a
i

b
i

, c
i

, d
i

, , i = 0,1, ......,n-1} in (1.3.1)". 

Let   h
i

x
i 1+

x
i

−       i = 0, 1,......, n-1 , then   

From (1.3.2.a)       d
i

w
i
     i = 0,1,......,n-1     and   

                           a
n 1−

h
n 1−( )

3
b

n 1−
h

n 1−( )
2

+ c
n 1−

h
n 1−

+ d
n 1−

+ w
n
       

From (1.3.2.b)       a
i

h
i( )

3
⋅ b

i
h

i( )
2

⋅+ c
i
h

i
+ d

i
+ d

i 1+
      i = 0, 1, ....., n-2                            (2.1.0) 

From (1.3.2.c)       3a
i

h
i( )

2
2b

i
h

i
+ c

i
+ c

i 1+
                 i = 0, 1, ......, n-2 

From (1.3.2.d)       6a
i
h

i
2b

i
+ 2b

i 1+
                             i = 0, 1, ......, n-2 

From (1.3.2.e)       2b
0

0     and     6a
n 1−

h
n 1−

2b
n 1−

+ 0     



De Ting Wu 

International Journal of Scientific and Statistical Computing (IJSSC), Volume (2) : Issue (1) : 2012      31 

 
      

This is a system of linear equations in 4n unknowns { a
i

b
i

, c
i

, d
i

, i 0, 1, ......, n 1−, }. In order to make it  

easy to solve, program and analyze theoritically we simlify above system as follows. 
 
Let s"( x

i
) = u

i
   i = 0, 1, ......,n     with   s"( x

0
) = u

0
 = 0   and   s"(x

n
) = u

n
 = 0   

 
then we have:       

       h
i 1−

u
i 1−

⋅ 2 h
i 1−

h
i

+( )⋅ u
i

⋅+ h
i

u
i 1+

⋅+ 6

w
i 1+

w
i

−

h
i

w
i

w
i 1−

−

h
i 1−

−








⋅            i = 1,2,......,n-1     (2.1.1) 

also       a
i

u
i 1+

u
i

−

6h
i

                                                                                i = 0,1,......,n-1     (2.1.2) 

             b
i

u
i

2
                                                                                          i = 0,1,......,n-1     (2.1.3) 

             c
i

w
i 1+

w
i

−

h
i

u
i 1+

2 u
i

⋅+

6
h

i
−                                                         i = 0,1,......,n-1     (2.1.4) 

             d
i

w
i
                                                                                          i = 0,1,......,n-1     (2.1.5) 
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Later we need the matrix form of (2.1.1)  which is      TU=W 
Where  
 
 
 

          T= 

2 h
1

h
2

+( )
0

.....

....

.

.

.

.....

h
2

h
2

....

0

.

.

.

.

0

2 h
2

h
3

+( )
.

h
i

.

.

.

....

.

h
3

....

2 h
i

h
i 1+

+( )
.......

.

.

.

.

0

.

h
i 1+

.

.

........

0

.

.

.

.

.

.

.

.

.

.

....

0

.

.

.

h
n 1−

.

.

.

....

.

.

.

2 h
n 1−

h
n

+( )





























                         (2.1.6) 

           
    
 
     

         U =

u
1

u
2

.

u
i

.

.

u
n 1−























           (2.1.7)              W = 6

w
2

w
1

−

h
1

w
1

w
0

−

h
0

−

w
3

w
2

−

h
2

w
2

w
1

−

h
1

−

.

w
i 1+

w
i

−

h
i

w
i

w
i 1−

−

h
i 1−

−

.

.

w
n

w
n 1−

−

h
n 1−

w
n 1−

w
n 2−

−

h
n 2−

−







































           (2.1.8) 

 
 
Summary:  
  
The approach to construct a continuous approximate solution of (1.2.1) as follows: 
  
 1.Use a discrete approximate method to find an approximate solution { (x

i
w

i
, ): i=0,1,...,n} 

 2.Solve system (2.1.1) for { u
i
 : i = 1, 2,....,n-1 )  with u

0
 = 0  and  u

n
= 0     

 3.Find {a
i

b
i

, c
i

, d
i

, , i = 0,1,......,n-1 } by (2.1.2)--(2.1.5) 

 4 Form the natural cubic spline interpolant by (1.3.1) that is our desired continuous approximate 
               solution of (1.2.1) 
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2.2 Existence and Uniqueness of Continuous Approximate Solution 
The existence and uniqueness of such continuous approximate solution is stated in the following  
theorem. 
 
Theorem 2.2.1 For initial value problem (1.2.1) with discrete approximate solution (1.2.3) a unique 
continuous approximate solution, determined by the natural cubic spline interpolant (1.3.1), exists.  
 
Proof: The continuous approximate solution is the natural cubis spline interpolant (1.3.1) which is 
           determined  by its coeffients { (a

i
b

i
, c

i
, d

i
, ) i = 0,1,...,n-1 }. These coefficients are solution of 

           (2.1.1)--(2.1.5). (2.1.1) is a system of linear equations of (n-1)X(n-1) and the matrix T (2.1.6) is 
           strictly diagonally dominant and nonsigular, so (2.1.1) has unique solution. Thus, The natural 
           cubic spline interpolant exists and is unique.  

2.3 Error of Continuous Approximate Solution  
In this part, 1st we prove a lemma and then estimate the the error of such continuous approximate solution.
  

Lemma 2.3.1 For a system of linear equations (2.1.1) TU = W    then   U
W

2h
≤               (2.3.1) 

where  || U || and || W || are max norm of  U and W  and h = min { h
i
, i = 0,1,......,n-1 },   

 
Proof: Let  ||U||=|u

i
| , then from i th equation of (1.2.1) we have: 

                 | u
i 1−

h
i 1−

2u
i

h
i 1−

h
i

+( )+ u
i 1+

h
i

+  | = | w
i
 | 

                 | u
i
 | | 

u
i 1−

u
i

h
i 1−

2 h
i 1−

h
i

+( )+

u
i 1+

u
i

h
i

+  | = | w
i
 | 

Then,        u
i

h
i 1−

h
i

+( ) w
i

≤             i.e       U

w
i

h
i 1−

h
i

+
≤

W

2h
≤                   

Theorem 2.3.2 For initial value problem (1.2.1) wlth discrete approximate solution (1.2.3) of order p 
if its continuous approximate solution s(x), determined by the natural cubic spline interpolant (1.3.1), 
then error with exact solution y(x): 
 

       y x( ) s x( )− K y
4( )

⋅ H
4

⋅ H
p

c
3

H

h









3

⋅ c
2

H

h









2

⋅+ c
1

H

h
⋅+ c

0
+









+≤                               (2.3.2) 

Proof:  | y(x) - s(x) | is continuous on [a,b], it has max and min on [a,b]. Assume at x in [ x
i

x
i 1+

, ] ,                     

| y(x) - s
i
(x) | is max,  then    || y(x) - s(x) || = | y(x) - s

i
(x) | . 

            and we have:            y x( ) s
i

x( )− y x( ) g
i

x( )− g
i

x( ) s
i

x( )−+≤                                  (2.3.3) 

            where g
i

x( ) a1
i

x x
i

−( )
3

b1
i

x x
i

−( )
2

+ c1
i

x x
i

−( )+ d1
i

+    The natural cubic spline interpolant  

            for data set { (x
i

y
i

, ) : i = 0,1,....,n } where y
i
 is the exact solution value of y(x) at x

i
  . 

            Let   H = max{h
i
 : i = 0,1,......,n-1}     and      h = min{ h

i
 : i = 0,1, ......,n-1 }  then, 
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          Assume y(x) of (1.2.1) in C
4( )

[a,b] with y
4( )

M≤  then the first term in (2.3.3) (see [1]) 

                     y x( ) g
i

x( )− K y
4( )

⋅ H
4

⋅≤                                                                          (2.3.4)    

  Now, let's estimate the second term in (2.3.3) 

          g
i

x( )⋅ s
i

x( )⋅− a1
i

x x
i

−( )
3

⋅ b1
i

x x
i

−( )
2

⋅+ c1
i

x x
i

−( )⋅+ d1
i

+





a
i

− x x
i

−( )
3

⋅ b
i

x x
i

−( )
2

⋅− c
i

x x
i

−( )⋅− d
i

−





+

...  

          

          g
i

x( )⋅ s
i

x( )⋅− a1
i

a
i

− H
3

⋅ b1
i

b
i

− H
2

⋅+ c1
i

c
i

− H⋅+ d1
i

d
i

−+≤                            (2.3.5) 

where from (2.1.2)    a1
i

a
i

−

u1
i 1+

u1
i

−

6h
i

u
i 1+

u
i

−

6h
i

−     a1
i

a
i

−

u1
i 1+

u
i 1+

− u1
i

u
i

−+

6h
i

≤  

         from (2.1.3)     b1
i

b
i

−

u1
i

2

u
i

2
−                          b1

i
b

i
−

u1
i

u
i

−

2
≤  

         from (2.1.4)     c1
i

c
i

−

y
i 1+

y
i

−

h
i

u1
i 1+

2u1
i

+

6
h

i
⋅−









w
i 1+

w
i

−

h
i

u
i 1+

2u
i

+

6
h

i
⋅−









−  

              c1
i

c
i

−

y
i 1+

w
i 1+

− y
i

w
i

−+

h

u1
i 1+

u
i 1+

− 2 u1
i

u
i

−+

6
H⋅+≤  

         

          from (2.1.5)      d1
i

d
i

− y
i

w
i

−          d1
i

d
i

− C H
p

⋅≤  

          Since   u1
i
 is the solution of TU1=Y and  u

i
 is the solution of TU=W, therefore   u1

i
u

i
−   is the 

          solution of  T(U1-U)=Y-W  and  U1 U−
Y W−

2h
≤   by Lemma 2.3.1. 

Thus, we have    U1 U− 6

y
i 1+

w
i 1+

−

h
i

y
i

w
i

−

h
i

−

y
i

w
i

−

h
i 1−

−

y
i 1−

w
i 1−

−

h
i 1−

+

h
i

h
i 1+

+
⋅≤ C

H
p

h
2

⋅≤    and 

if we abuse the "C", then a1
i

a
i

− C
H

P

h
3

⋅≤     b1
i

b
i

− C
H

p

h
2

⋅≤     c1
i

c
i

− C
H

p

h
3

⋅ C
H

P

h
2

H⋅+≤  

Substituting into (2.3.5) we have: 

                    g
i

x( ) s
i

x( )− H
p

c
3

H

h









3

⋅ c
2

H

h









2

⋅+ c
1

H

h
⋅+ c

0
+









≤  

Substituting (2.3.4) and (2.3.5) into (2.3.3) we get (2.3.2). This prove the theorem.                      

Remark of Theorem 
!. The theorem shows: the error of continuous approxomate solution consists of 2 parts. One is caused  
   by interpolation and another one is caused by discrete approximate method. 
2. The accuracy of continuous approximate solution can not be higher than the accuracy of the spline 
    interpolation. In this case, If p<4, then its accurary is p; if p 4≥ , then its accurary is 4. 
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2.4 Convergence of Continuous Approximate Solution 
In this part we'll discuss the convergence of the continuous approximate solution. And, the result 
is stated in the following theorem. 

Theorem 2.4.1 For initial value problem (1.2.1) if  

(1) f(x,y) is in C
4
 ([a,b]X( ∞− ∞, )),  

(2) M
n
 is a sequence of quasi-uniform simple mesh of [a,b], M

n
 :  a = x

0 n,
x
1 n,

< ..........< x
n n,

<  = b       

    with  
H

n

h
n

c≤ ∞<      where  h
i n,

x
i 1+ n,

x
i n,

−   i = 0,1,....,n-1     H
n
=max{ h

i n,
 }     h

n
=min { h

i n,
 }   

(3) { (x
i n,

w
i n,

,  ), i = 0,1,.....,n } is an approximate solution on M
n
 produced by a discrete approximate  

     method with error order p  
(4) s

n
(x) is the natural cubic spline interpolant for data set in (3) 

then    s
n

x( ) ----> y(x)    on [a,b]     as  H
n
 ----> 0 

Proof: From (2.3.2) we have: 
 

               y x( ) s
n

x( )− K y
4( )

⋅ H
n( )

4
⋅ H

n( )
p

c
3

H
n

h
n









3

⋅ c
2

H
n

h
n









2

⋅+ c
1

H
n

h
n

⋅+ c
0

+











+≤  

          It is obvious:   || y(x) - s
n

x( ) || ----> 0     as    H
n
 ----> 0 

          So,  s
n

x( ) convergences to y(x). 

3. PC Approach for Constructing a Continuous Approximate Solution 
In this part we'll offer three approaches to perfom the construction of  the continuous approxi- mate 
solution in Section 2.1 which are based on PC and mathematical software "Mathcad 12 ". 

3.1 The Approach Based on Program Function and Cubic Spline's Routines  
This approach consists of 2 steps: first write a program RK4 which performs the Runge-Kutta method of 
order 4 to get discrete approximate solution and second use a built in cubic spline routine "lspline and 
interp" to get continuous approximate solution. 
The program is as follows: 
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RK4 f a, α, b, h,( ) n

b a−

h
←

x
0

a←

w
0

α←

x
i 1+

x
i

h+←

k1 h f x
i

w
i

,( )⋅←

k2 h f x
i

h

2
+ w

i

k1

2
+,








⋅←

k3 h f x
i

h

2
+ w

i

k2

2
+,









⋅←

k4 h f x
i

h+ w
i

k3+,( )⋅←

w
i 1+

w
i

1

6
k1 2k2+ 2k3+ k4+( )⋅+←

i 0 n 1−..∈for

s augment x w,( )←

s

:=  

In this program,  
Input are function f(x,y), endpoints of 
interval [a,b], initial function value � 
and step size h; 
Output is a matrix of (n+1)X2 which 
1st column is x-values and 2nd 
column is y-values. 

Now, let's work out an example to illustrate this approach. 
Example 3.1.1 Given: initial value problem y' = 3 cos y 3x−( )⋅   and   y(0) = �/2      x in I = [0,2] 

                       Find:its continuous approximate solution on I with step size h = 0.2. 
 
Solution: 1st Use RK4 to find its discdete approximate solution    

Input: f x y,( ) 3 cos y 3 x⋅−( )⋅:=  a 0:=  b 2:=  α
π

2
:=  h 0.2:=  

Call RK4 and define its discrete approximate solution by a matrix B: B RK4 f a, α, b, h,( ):=  
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Then, we get the discrete approximate solution : 

B
T 0

1.571

0.2

1.718

0.4

2.054

0.6

2.486

0.8

2.972

1

3.49

1.2

4.028

1.4

4.58

1.6

5.142

1.8

5.71

2

6.284









=  

2nd, Use built-in routine "lspline" to get natural cubic spline interpolant. 

vx B
0〈 〉

:=  vy B
1〈 〉

:=  vs lspline vx vy,( ):=  

3rd, use "interp"to define the continuous approximate solution by above natural cubic spline interpolant. 

This is our desired continuous approximate solution: s x( ) interp vs vx, vy, x,( ):=  

In this example the IVP has a exact solution: y x( ) 3 x⋅ 2 acot 3 x⋅ 1+( )⋅+:=  

Now, let's compare them by graphing both functions and their error function:  e x( ) y x( ) s x( )−:=  

x 0 0.01, 2..:=  

0 0.5 1 1.5 2

0.01

0.02

Graph of error function

e x( )

x

 

0 0.5 1 1.5 2

2

4

6

8

Graph of exact &approximate solution

y x( )

s x( )

x

 

We find some error: e 0.12( ) 0.014=  e 0.5( ) 1.31 10
3−

×=  e 1.85( ) 1.366 10
4−

×=  

Remark: 
 
1.In this approach the program RK4 can be replaced by built-in routine of differential equation solver   
  "rkfixed" or "rkadpt". The approach even is simple.  
2 In Mathcad there're 3 built-in routines for cubic spline interpolation: "lspline" for natural spline; "pspline" 
  for parabolic endpoints; "cspline" for cubic endpoints(or "not a knot conditions). We can choose 
  appropriate one according to the boundary conditions.  
3.Although we have a function s(x) as the continuous approximate solution, we have no expression of 
   the function s(x). This is a defect. 
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Now, we use an example to illustrate above remark 1. This example is same as Example 3.1.1 but we use 
the routine "rkfixed" to find discrete approximate solution rather than program Rk4. 
 
Example 3.1.2  Given: initial value problem y' = 3 cos y 3x−( )⋅   and   y(0) = �/2      x in I = [0,2] 

                         Find:its continuous approximate solution on I with step size h = 0.2. 
Solution: 1st use "rkfixed" to find discrete approximate solution of given IVP. 

y
0

π

2
:=  D x y,( ) 3 cos y

0
3 x⋅−( )⋅:=  

Call the routine and the discrete approximate solution is indicated in matrix W: W rkfixed y 0, 2, 10, D,( ):=  

then, we get same result in B: 

W
T 0

1.571

0.2

1.718

0.4

2.054

0.6

2.486

0.8

2.972

1

3.49

1.2

4.028

1.4

4.58

1.6

5.142

1.8

5.71

2

6.284









=  

2nd, We use this discrete approximate solution and "lspline" to find the natural cubic spline interpolant. 

vx W
0〈 〉

:=  vy W
1〈 〉

:=  vs lspline vx vy,( ):=  

3rd, use this result and "interp" to get our desired continuous approximate solution. 

s1 x( ) interp vs vx, vy, x,( ):=  

Remark: 
Writing the program for discrete approximate solution still is necessary although there're some 
routines available since not every discrete approximate method's routine is available. Moreover, 
sometime we need the discrete approximate method with order p greater than 4 to guarantee our 
desired accuracy.  
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3.2 The Approach Based on Program Finction and Routine of "Solve Block" 
 
 This approach consists of following steps: 1. Write a program to get discrete approximate solution; 
2. Define the natural cubic spline interpolant by (1.3.1) and get the system of linear equations in 
4n unknown coefficients by (2.1.0); 3. Use built-tn routine "solve block" to solve above system; 4. Use the 
result to construct the natural cubic spline interpolant -- the desired continuous approximate solution. 
 
Now, let's work out an example to illustrate this approach. 
 

Example 3.2 Given:   y' =1+ x y−( )
2
   and   y(2) = 1         x in I = [2,3] 

                     Find: its continuous approximate solution on I with step size h = 0.25 
Solution: 1st, get its discrete approximate solution by RK4 in section 3.1 

RK4 f a, α, b, h,( ) n
b a−

h
←

x
0

a←

w
0

α←

x
i 1+

x
i

h+←

k1 h f x
i

w
i

,( )⋅←

k2 h f x
i

h

2
+ w

i

k1

2
+,








⋅←

k3 h f x
i

h

2
+ w

i

k2

2
+,









⋅←

k4 h f x
i

h+ w
i

k3+,( )⋅←

w
i 1+

w
i

1

6
k1 2k2+ 2k3+ k4+( )⋅+←

i 0 n 1−..∈for

s augment x w,( )←

s

:=  

In this program,  
Input are function f(x,y), endpoints of 
interval [a,b], initial function value � 
and step size h; 
Output is a matrix of (n+1)X2 which 
1st column is x-values and 2nd 
column is y-values. 

Input: f x y,( ) 1 x y−( )
2

+:=  a 2:=  α 1:=  b 3:=  h 0.25:=  

Call RK4 and define its discrete approximate solution by B: B RK4 f a, α, b, h,( ):=  

Then, the discrete approximate solution is: 

B
T 2

1

2.25

1.45

2.5

1.833

2.75

2.179

3

2.5









=  

x
0

B
0〈 〉( )

0
:=  x

1
B

0〈 〉( )
1

:=  x
2

B
0〈 〉( )

2
:=  x

3
B

0〈 〉( )
3

:=  x
4

B
0〈 〉( )

4
:=  

w
0

B
1〈 〉( )

0
:=  w

1
B

1〈 〉( )
1

:=  w
2

B
1〈 〉( )

2
:=  w

3
B

1〈 〉( )
3

:=  w
4

B
1〈 〉( )

4
:=  
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h
0

x
1

x
0

−:=  h
1

x
2

x
1

−:=  h
2

x
3

x
2

−:=  h
3

x
4

x
3

−:=  

2nd, Using above data we define the natural cubic spline interpolant s(x) which is equal to 

       s0(x) = a
0

x x
0

−( )
3

b
0

x x
0

−( )
2

+ c
0

x x
0

−( )+ d
0

+            x   in   [x
0

x
1

, ] 

       s1(x) = a
1

x x
1

−( )
3

b
1

x x
1

−( )
2

+ c
1

x x
1

−( )+ d
1

+             x   in   [x
1

x
2

, ] 

       s2(x) = a
2

x x
2

−( )
3

b
2

x x
2

−( )
2

+ c
2

x x
2

−( )+ d
2

+             x   in   [x
2

x
3

, ] 

       s3(x) = a
3

x x
3

−( )
3

b
3

x x
3

−( )
2

+ c
3

x x
3

−( )⋅+ d
3

+            x   in   [x
3

x
4

, ] 

Now, the problem is reduced to finding these coefficients from the system which come from (1.3.2.a)---- 
(1.3.2.e).  

3rd, Use "solve block" to find these coefficients which structure is "Guess -- Given -- Find". 

Guess 

a
0

0:=  b
0

0:=  c
0

0:=  d
0

0:=  a
1

0:=  b
1

0:=  c
1

0:=  d
1

0:=  

a
2

0:=  b
2

0:=  c
2

0:=  d
2

0:=  a
3

0:=  b
3

0:=  c
3

0:=  d
3

0:=  

Given 

d
0

w
0
 d

1
w

1
 d

2
w

2
 d

3
w

3
 a

3
h

3( )
3

b
3

h
3( )

2
+ c

3
h

3
+ d

3
+ w

4
 

a
0

h
0( )

3
b

0
h

0( )
2

+ c
0

h
0

+ d
0

+ d
1
 a

1
h

1( )
3

b
1

h
1( )

2
+ c

1
h

1
+ d

1
+ d

2
 

a
2

h
2( )

3
b

2
h

2( )
2

+ c
2

h
2

+ d
2

+ d
3
 

3a
0

h
0( )

2
2 b

0
⋅ h

0
+ c

0
+ c

1
 3a

1
h

1( )
2

2 b
1

⋅ h
1

+ c
1

+ c
2
 3a

2
h

2( )
2

2 b
2

⋅ h
2

+ c
2

+ c
3
 

6a
0

h
0

2 b
0

⋅+ 2 b
1

⋅  6a
1

h
1

2 b
1

⋅+ 2 b
2

⋅  6a
2

h
2

2 b
2

⋅+ 2 b
3

⋅  

2 b
0

⋅ 0 6a
3

h
3

2 b
3

⋅+ 0 

C Find a
0

b
0

, c
0

, d
0

, a
1

, b
1

, c
1

, d
1

, a
2

, b
2

, c
2

, d
2

, a
3

, b
3

, c
3

, d
3

,( ):= a
0

 

C
T

=C  

a
0

C
0

:= C  b
0

C
1

:= C  c
0

C
2

:= C  d
0

C
3

:= C  a
1

C
4

:= C  b
1

C
5

:= C  c
1

C
6

:= C  d
1

C
7

:= C  

a
2

C
8

:= C  b
2

C
9

:= C  c
2

C
10

:= C  d
2

C
11

:= C  a
3

C
12

:= C  b
3

C
13

:= C  c
3

C
14

:= C  d
3

C
15

:= C  
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4th, Use these coefficient to construct the natural cubic spline interpolant. 

s0 x( ) 0.996− x 2−( )
3

0 x 2−( )
2

+ 1.862 x 2−( )+ 1+:=  x  in  [2,2.25] 

s1 x( ) 0.731 x 2.25−( )
3

0.747 x 2.25−( )
2

− 1.675 x 2.25−( )+ 1.45+:=  x  in  [2.25,2.5] 

s2 x( ) 0.027− x 2.5−( )
3

0.212 x 2.5−( )
2

⋅− 1.436 x 2.5−( )+ 1.833+:=  x  in  [2.5,2.75] 

s3 x( ) 0.31 x 2.75−( )
3

0.233 x 2.75−( )
2

− 1.324 x 2.75−( )⋅+ 2.179+:=   x  in  [2.75,3] 

Or we can combine them into one function by built-in routine "if". We define: 

s x( ) if 2 x≤ 2.25≤ s0 x( ), if 2.25 x≤ 2.5≤ s1 x( ), if 2.5 x≤ 2.75≤ s2 x( ), s3 x( ),( ),( ),( ):=  

Also, this initial value problem has unique solution: y x( ) x
1

x 1−
−:=  

Now, we compare them by graphing them and their error function: e x( ) y x( ) s x( )−:=  

x 2 2.01, 3..:=  

2 2.5 3
1

1.5

2

2.5

3

Graph of exact&approximate soluion

s x( )

y x( )

x

 

2 2.5 3

0.002

0.004

0.006

Graph of error function

e x( )

x

 

Remark: 
1.This approach can get an expression of the continuous approximate solution but need to do more 
    work ourself . 
2.This approach is limited by the capacity of software. For example Mathcad can solve the system of 
   equations up to 60 unknowns so it can find a cubic spline of at most 15 pieces. 
3.We can use another routine "solve" of symbolic operation instead of "solve block" in this approach. 
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3.3 The Approach Based on Two Programs 
This approach consists of 3 steps: 1. Use a program to get discrete approximate solution of initial value 
problem; 2. Use second program and above data to get coefficients of the natural cubic spline interpolant; 
3. Use the result to construct the continuous approximate solution. 
 Now, let's work out an example to illustrate this approach.  
 

Example 3.3 Given: y' = 
y

x

y

x









2

−    and   y(1) = 1        x   in   I = [ 1,3 ] 

                     Find: its continuous approximate solution on I  with step size h = 0.2 
Solution: 1st, we use RK4 in previous section to get its discrete approximate solution. 

Input: f x y,( )
y

x

y

x









2

−:=  a 1:=  α 1:=  b 3:=  h 0.2:=  

RK4 f a, α, b, h,( ) n
b a−

h
←

x
0

a←

w
0

α←

x
i 1+

x
i

h+←

k1 h f x
i

w
i

,( )⋅←

k2 h f x
i

h

2
+ w

i

k1

2
+,








⋅←

k3 h f x
i

h

2
+ w

i

k2

2
+,









⋅←

k4 h f x
i

h+ w
i

k3+,( )⋅←

w
i 1+

w
i

1

6
k1 2k2+ 2k3+ k4+( )⋅+←

i 0 n 1−..∈for

w

:=  
In this program,  
Input are function f(x,y), endpoints of 
interval [a,b], initial function value � 
and step size h; 
Output is a matrix of (n+1)X1 which 
is approximate solution values of 
y(x). 

Then, we have the discrete approximate solution in B: B RK4 f a, α, b, h,( ):=  

B
T

1 1.015 1.048 1.088 1.134 1.181 1.23 1.28 1.33 1.38 1.43( )=  

2nd, in this example the step sizes are same h = 0.2 , so the interval is divided into 10 subintervals i.e. 
the natural cubic spline interpolant consists of 10 piece of cubic polynomial. And, we need to find 40 
coefficients for constructing it. We use the program Cf which solve the system of (2.1.1) -- (2.1.5), to get 
the coefficients of the natural cubic spline interpolant. This program applies LU factorization to solve 
(2.1.1) to get u

i
  and then find { a

i
b

i
, c

i
, d

i
,  } by u

i
 from (2.1.2) -- (2.1.5). 

The Cf program is as follows: 
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Cf f a, α, b, h,( ) n
b a−

h
←

w
i

B
i

←

i 0 n..∈for

v
i

6

h
w

i 1+
2 w

i
⋅− w

i 1−
+( )⋅←

i 1 n 1−..∈for

l
0

1←

µ0 0←

z
0

0←

l
i

2 h⋅ h µi 1−⋅−←

µi
h

l
i

←

z
i

v
i

h z
i 1−

⋅−

l
i

←

i 1 n 1−..∈for

l
n

1←

z
n

0←

u
n

0←

u
j

z
j

µ j u
j 1+

⋅−←

j n 1−( ) 0..∈for

a
k

u
k 1+

u
k

−

6 h⋅
←

b
k

u
k

2
←

c
k

w
k 1+

w
k

−

h

u
k 1+

2 u
k

⋅+

6
h⋅−←

d
k

w
k

←

k 0 n 1−( )..∈for

s augment a b, c, d,( )←

s

:=  
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We get these coefficients in the matrix which is indicated by E: E Cf f a, α, b, h,( ):=  

E
T

1.409

0

0.018

1

2.023−

0.846

0.075

1.015

1.473

0.369−

0.219

1.048

1.422−

0.515

0.18

1.088

1.126

0.338−

0.26

1.134

0.962−

0.337

0.215

1.181

0.721

0.24−

0.267

1.23

0.527−

0.193

0.232

1.28

0.304

0.123−

0.262

1.33

0.099−

0.06

0.242

1.38













=  

3rd, We use above result to construct the continuous approximate solution s(x) which  is equal to: 

s0 x( ) 1.409 x 1−( )
3

⋅ 0 x 1−( )
2

⋅+ 0.018 x 1−( )⋅+ 1+:=  x  in  [ 1,1.2 ] 

s1 x( ) 2.203− x 1.2−( )
3

0.846 x 1.2−( )
2

+ 0.075 x 1.2−( )+ 1.015+:=  x  in  [ 1.2,1.4 ] 

s2 x( ) 1.473 x 1.4−( )
3

0.369 x 1.4−( )
3

− 0.219 x 1.4−( )+ 1.048+:=  x  in  [ 1.4,1.6 ] 

s3 x( ) 1.422− x 1.6−( )
3

0.515 x 1.6−( )
2

+ 0.18 x 1.6−( )+ 1.088+:=  x  ln  [ 1.6,1.8 ] 

s4 x( ) 1.126 x 1.8−( )
3

0.338 x 1.8−( )
2

− 0.26 x 1.8−( )+ 1.134+:=  x  in  [ 1.8,2 ] 

s5 x( ) 0.962− x 2−( )
3

0.337 x 2−( )
2

+ 0.215 x 2−( )+ 1.181+:=  x  in  [ 2,2.2 ] 

s6 x( ) 0.721 x 2.2−( )
3

0.24 x 2.2−( )
2

− 0.267 x 2.2−( )+ 1.23+:=  x  in  [ 2.2,2.4 ] 

s7 x( ) 0.527− x 2.4−( )
3

0.193 x 2.4−( )
2

+ 0.232 x 2.4−( )+ 1.28+:=  x  in  [ 2.4,2.6] 

s8 x( ) 0.304 x 2.6−( )
3

0.123 x 2.6−( )
2

− 0.262 x 2.6−( )+ 1.33+:=  x  in  [ 2.6,2.8 ] 

s9 x( ) 0.099− x 2.8−( )
3

0.06 x 2.8−( )
2

+ 0.242 x 2.8−( )+ 1.38+:=  x  in  [ 2.8,3 ] 

Or, we can combine by built-in routine "if". 

u1 x( ) if 1 x≤ 1.2≤ s0 x( ), if 1.2 x≤ 1.4≤ s1 x( ), if 1.4 x≤ 1.6≤ s2 x( ), s3 x( ),( ),( ),( ):=  

u2 x( ) if 1.8 x≤ 2≤ s4 x( ), if 2 x≤ 2.2≤ s5 x( ), if 2.2 x≤ 2.4≤ s6 x( ), s7 x( ),( ),( ),( ):=  

u3 x( ) if 2.6 x≤ 2.8≤ s8 x( ), s9 x( ),( ):=  

s x( ) if 1 x≤ 1.8≤ u1 x( ), if 1.8 x≤ 2.6≤ u2 x( ), u3 x( ),( ),( ):=  

This is our desired continuous approximate solution.  
And, this initial value problem has an exact solution y(x). 

Now, let compare the continuous approximate solution and exact solution by graphing them and their  
error function e(x). 

x 1 1.01, 3..:=  y x( )
x

1 ln x( )+
:=  e x( ) y x( ) s x( )−:=  
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1 1.5 2 2.5 3
0.9

1

1.1

1.2

1.3

1.4

Grapf of exact and approximate solution

y x( )

s x( )

x

 

1 2 3

0.005

0.01

0.015

Graph of error function

e x( )

x

 

Remark: 
1. This approach can find the expression of the continuous approximate solution. 
2. This approach is based on two programs. In 2nd program we use LU factorization to solve (2.1.1), of 
    cause we can use other ways and other program. 
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