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Abstract 

 
A fundamental task in many statistical analyses is to characterize the location and variability 
of a data set. A further characterization of the data includes skewness and kurtosis. This 
paper emphasizes the real time computational problem for generally the r

th
  standardized 

moments and specially for both skewness and kurtosis. It has therefore been important to 
derive an optimum computational technique for the standardized moments. A new algorithm 
has been designed for the evaluation of the standardized moments. The evaluation of error 
analysis has been discussed. The new algorithm saved computational energy by 
approximately 99.95%than that of the previously published algorithms. 
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1. INTRODUCTION 
The formula used for Z –score appears in two virtually identical forms, recognizing the fact 
that we may be dealing with sample statistics or population parameters. These formulae are 
as follow: 
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Where: 
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x a row score to be standardized 
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 µ Population mean 

s      Sample standard deviation 

 σ Population standard deviation 

z      Sample z score 

 Z Populationz score. 
 

Subtracting the mean centers the distribution and dividing by the standard normalizes the 
distribution. The interesting properties of Z score are that they have a zero mean (effect of 
centering) and a variance and standard of one (effect of normalizing). We can use Z score to 
compare samples coming from different distributions [1]. 
  
The most common and useful measure of dispersion is the standard deviation. The formula 
for sample standard deviation is as follow: 
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The population standard deviation is as follow: 
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2. MOMENTS 
In statistics, the moments are a method of estimation of population parameters such as mean, 
variance, skewness, and kurtosis from the sample moments. 

 
a) Central Moments 
Central moment is called moment about the mean. The central moments provide quantitative 
indices for deviations of empirical distributions. The r

th
central is given by: 
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Where: 

r
m r

th
 Sample and population central moments 

 
b) Standardized Moment 
The r

th
 standardized moment in statistics is the r

th
 central moment divided by σ

r
 (standard 

deviation raised to power r) as follow: 
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Where: 

r
α r

th
standardized moment 

From Eq.(4), Eq.(5),  & Eq.(6), We have: 
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Where: 

2m Second  central moments 

 
c) Computing Population Standardized Moments From Sample z Score 
In the real world, finding the standard deviation of an entire population is unrealistic except in 
certain cases such as standardized testing, where every element of a population is sampled. 
In most cases, the standard deviation is estimated by examining a random sample taken from 
the population as defined by eq.(3). 
From eq.(5) & eq.(7), We have: 
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Equation(8) represents the general equation for computing the r

th
 standardized moments of 

sample z-score. 
 

d) Simplified Standardized Moments 

From eq.(8), the term 
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can be simplified using binomial theorem, since it 

can obtain the binomial series which is valid for any real number   as follow: 
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By replacing  and  we have: 

 

 

 

 
For large values of  ,we get: 



Karam A. Fayed 
 

International Journal of Scientific and Statistical Computing (IJSSC), Volume (2) : Issue (1) : 2011      4 

 
Substituting Eq.(12) in eq.(8), we get: 

 

 
Where:  

r
th
 simplified standardized moments. 

 
e) Mathematical Formulae of Standardized and Simplified Moments 
Using Eq.(8) & Eq.(13), we can get the following formulae: 
 

Name r
th
 Standardized moments Simplified moments 

Mean 1 

  

Variance 2 

  

Skewness 3 

  

Kurtosis 4 

  
 
f) Ratio Between Population and Sample z-Score 
From Eq.(7) & Eq.(8), we can get the exact and simplified ratio of population and sample z-
score as follow: 
Since: 

 
We get: 

 

 
And from Eq.(7) & Eq.(13), we can get: 

 

 

 
 

Eq.(14) and Eq.(15)  appear to be very dependent on the sample size. Therefore the ratio 

between population and sample z-score(required for computing ther
th
 standardized moments) 

depends on the sample size as given in Table_1. This table shows the variation. Figure_1 

shows that the sample z score gets closer to population Z score. Therefore, computing 

standardized moments using simplified technique is recommended for small sample size. 
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g) Formulae of Skewness and Kurtosis Applied in Statistical Packages 
The usual estimators of the population skewness and kurtosis used in Minitab, SAS, SPSS, 
and Excel are defined as follow [2], [3],[4]: 

 

 
Where: 

is the sample standard deviation. 
is the usual estimator of population skewness. 
is  known as the excess kurtosis(without adding 3). 

 

Sample size(n) 
Exact ratio Simplified ratio 

r=3 r=4 r=3 r=4 

20 1.07998 1.10803 1.07500 1.10000 
30 1.05217 1.07015 1.05000 1.06667 
50 1.03077 1.04123 1.03000 1.04000 

100 1.01519 1.02030 1.01500 1.02000 
200 1.00755 1.01008 1.00750 1.01000 
400 1.00376 1.00502 1.00375 1.00500 
600 1.00251 1.00334 1.00250 1.00333 

1000 1.00150 1.00200 1.00150 1.00200 
1400 1.00107 1.00143 1.00107 1.00143 
2000 1.00075 1.00100 1.00075 1.00100 
2600 1.00058 1.00077 1.00058 1.00077 
3000 1.00050 1.00067 1.00050 1.00066 
3600 1.00042 1.00056 1.00042 1.00055 
4000 1.00038 1.00050 1.00038 1.00050 
4500 1.00033 1.00044 1.00033 1.00044 
5000 1.00030 1.00040 1.00030 1.00040 
5500 1.00027 1.00036 1.00027 1.00036 
6000 1.00025 1.00033 1.00025 1.00033 
8000 1.00019 1.00025 1.00019 1.00025 
10000 1.00015 1.00020 1.00015 1.00020 

 

TABLE 1: Ratio between population and sample z-score 
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FIGURE 1: Ratio between population and sample z-score. 
 
h) Error Analysis of Standardized Moments 
The absolute relative error(ARE) between the standardized and simplified moments is given 
by: 

 

 

 
Therefore, the Absolute Relative Error(ARE)  appears to be very dependent on the sample 
size in  regardless with the sample z-score as given in Table_2. This table indicates that the 
error associated with the standardized moments(Skewness and Kurtosis) of the statistical 
packages technique is very large compared to the simplified one especially when the sample 
size is less than 300.Figure_2 shows the variation. Therefore, computing standardized 
moments using simplified technique is recommended especially when the sample size is less 
than 600. 
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Sample 
size(n) 

Skewness 
Absolute Relative Error 

(ARE)` 

Exact Simplified 
Statistical 
package 

Simplified Statistical 
Package Pract. Comp. 

20 -0.37911 -0.37736 -0.41057 0.4608 0.4608 8.2977 
30 -0.24103 -0.24053 -0.25390 0.2060 0.2060 5.3420 
50 -0.81154 -0.81094 -0.83686 0.0744 0.0744 3.1197 

100 0.19241 0.19237 0.19535 0.0186 0.0186 1.5293 
200 -0.11239 -0.11239 -0.11324 0.0046 0.0046 0.7572 
400 0.21474 0.21474 0.21555 0.0011 0.0011 0.3768 
600 0.01677 0.01677 0.01682 0.0005 0.0005 0.2508 

1000 0.05781 0.05781 0.05790 0.0001 0.0001 0.1502 
1400 -0.12846 -0.12846 -0.12860 9.5e-5 9.5e-5 0.10728 
2000 -0.02750 -0.02750 -0.02753 4.6e-5 4.6e-5 0.07507 
2600 0.03271 0.03271 0.03273 2.7e-5 2.7e-5 0.05773 
3000 -0.01793 -0.01793 -0.01795 2.1e-5 2.1e-5 0.05003 
3600 -0.02616 -0.02616 -0.02617 1.4e-5 1.4e-5 0.041688 
4000 -0.01818 -0.01818 -0.01819 1.1e-5 1.1e-5 0.037517 
4500 0.005310 0.005310 0.005312 9.2e-6 9.2e-6 0.033347 
5000 -0.04197 -0.04197 -0.04198 7.5e-6 7.5e-6 0.030011 
5500 -0.04199 -0.04199 -0.04200 6.2e-6 6.2e-6 0.027282 
6000 0.033432 0.033432 0.033440 5.2e-6 5.2e-6 0.025007 
8000 -0.00851 -0.00851 -0.00851 2.9e-6 2.9e-6 0.018754 
10000 -0.00057 -0.00057 -0.00057 1.8e-6 1.8e-6 0.015002 

 

TABLE 2: a)Skewness (ARE) 

 

Sample 
size(n) 

CPU time (Second) 

Exact Simplified 
Statistical 
package 

20 0.000185 0.000126 0.000146 
30 0.000189 0.000133 0.000145 
50 0.000200 0.000156 0.000154 

100 0.000213 0.000153 0.000163 
200 0.000234 0.000181 0.000185 
400 0.000301 0.000257 0.000239 
600 0.000394 0.000302 0.000357 

1000 0.000487 0.000407 0.000457 
1400 0.000584 0.000513 0.000518 
2000 0.000746 0.000676 0.000690 
2600 0.000989 0.000883 0.000909 
3000 0.001096 0.001046 0.001002 
3600 0.001233 0.001164 0.001162 
4000 0.001396 0.001329 0.001375 
4500 0.001489 0.001018 0.001355 
5000 0.001594 0.001559 0.001574 
5500 0.001785 0.001250 0.001683 
6000 0.001891 0.001286 0.001916 
8000 0.002164 0.001500 0.002286 

10000 0.002318 0.001802 0.003122 

 

TABLE 2: a)Skewness(CPU) 
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Sample 
 size(n) 

Kurtosis Absolute Relative Error(ARE) 
Exact Simplified Statistical 

Package 
Simplified Statistical 

Package Pract. Comp. 

20 3.0034 2.9816 3.377 0.725 0.725 12.439 
30 2.897 2.8876 3.1077 0.32593 0.32593 7.2722 
50 2.628 2.6249 2.7182 0.1184 0.11840 3.4341 

100 2.6438 2.643 2.6878 0.0298 0.0298 1.6648 
200 3.0312 3.031 3.0626 0.00747 0.00747 1.0361 
400 2.8435 2.8434 2.8566 0.00187 0.00187 0.4634 
600 2.967 2.967 2.9768 0.00083 0.00083 0.32998 

1000 2.932 2.932 2.938 0.00029 0.00029 0.19384 
1400 3.066 3.066 3.071 0.00015 0.00015 0.14793 
2000 3.023 3.023 3.027 7.5e-5 7.5e-5 0.1014 
2600 2.947 2.947 2.949 4.4e-5 4.4e-5 0.0749 
3000 2.963 2.963 2.965 3.3e-5 3.3e-5 0.06553 
3600 2.882 2.882 2.884 2.3e-5 2.3e-5 0.05220 
4000 2.976 2.976 2.978 1.8e-5 1.8e-5 0.04946 
4500 2.952 2.952 2.954 1.4e-5 1.4e-5 0.04341 
5000 3.010 3.010 3.011 1.1e-5 1.1e-5 0.04024 
5500 2.998 2.998 2.999 9.9e-6 9.9e-6 0.03636 
6000 3.073 3.073 3.074 8.3e-6 8.3e-6 0.03454 
8000 3.041 3.041 3.042 4.6e-6 4.6e-6 0.02552 

10000 2.911 2.911 2.912 2.9e-6 2.9e-6 0.01909 

 

TABLE 2: b) Kurtosis(ARE) 

 

Sample size(n) 

CPU time (Second) 
Exact Simplified Statistical  

Package 

20 0.000164 0.000125 0.000187 
30 0.000169 0.000127 0.000196 
50 0.000170 0.000153 0.000214 

100 0.000192 0.000151 0.000216 
200 0.000216 0.000176 0.000248 
400 0.000290 0.000256 0.000302 
600 0.000327 0.000295 0.000363 

1000 0.000547 0.000430 0.000457 
1400 0.000563 0.000543 0.000554 
2000 0.000737 0.000832 0.001109 
2600 0.000967 0.000914 0.000962 
3000 0.001020 0.000989 0.001173 
3600 0.001187 0.001181 0.001231 
4000 0.001338 0.000944 0.001073 
4500 0.001426 0.001482 0.001643 
5000 0.001128 0.001598 0.001619 
5500 0.001138 0.001732 0.001868 
6000 0.001826 0.001290 0.001893 
8000 0.002628 0.001832 0.002436 

10000 0.002571 0.001830 0.002922 

 

TABLE 2: b) Kurtosis(CPU) 
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FIGURE 2: Absolute Relative Error of standardized moments 

 
The percentage reduction in Absolute Relative Error between the statistical packages 
technique and the simplified one of the standardized moment is given by: 

 
Where: 

isthe percentage reduction in Absolute Relative Error between the statistical packages 
technique and the simplified one. 
 

Table_3 shows the percentage reduction in Absolute Relative Error between the statistical 
packages technique and the simplified one for different sample size. This table indicates that 
the simplified technique of the standardized moments gives reduction in ARE by 
approximately 96.7% compared to the statistical package technique especially when the 
sample size is less than 100.Figure_3 shows the variation.  

 

The squared error(Er) between the standardized and simplified moments is given by: 
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Sample 
size(n) 

Skewness (r=3) Kurtosis (r=4) 

Error 
percentage(%) 

Error 
reduction(%) 

Error 
percentage(%) 

Error 
reduction(%) 

20 5.553 94.447 5.828 94.172 
30 3.856 96.144 4.482 95.518 
50 2.385 97.615 3.448 96.552 

100 1.216 98.784 1.790 98.210 
200 0.608 99.392 0.721 99.279 
400 0.292 99.708 0.404 99.596 
600 0.199 99.801 0.252 99.748 
1000 0.067 99.933 0.150 99.850 
1400 0.089 99.911 0.101 99.899 
2000 0.061 99.939 0.074 99.926 
2600 0.047 99.953 0.059 99.941 
3000 0.042 99.958 0.050 99.950 
3600 0.034 99.966 0.044 99.956 
4000 0.029 99.971 0.036 99.964 
4500 0.028 99.972 0.032 99.968 
5000 0.025 99.975 0.027 99.973 
5500 0.023 99.977 0.027 99.973 
6000 0.021 99.979 0.024 99.976 
8000 0.015 99.985 0.018 99.982 

10000 0.012 99.988 0.015 99.985 
Mean 0.73 % 99.27 % 0.879% 99.121% 

 

TABLE 3: Error reduction of standardized moments 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

FIGURE 3: Error and error reduction of standardized moments 
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3. POPULATION EXAMPLE 
A data set of 10000 points was randomly generated to have a mean of 100 and a standard 
deviation of  10. The histogram for this data is shown in figure_4 and looks fairly bell-shaped.  
A different sample size was randomly selected from the data set to calculate the two 
statistics(skewness and kurtosis). 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4: Histogram of 10000 points randomly generated(µ=100,σ =10) 

 
4. IMPACT OF SAMPLE SIZE ON SKEWNESS AND KURTOSIS 
The 10000 point data set above was used to explore what happens to skewness and kurtosis 
based on sample size. There appears to be a lot of variation in the results based on sample 
size. The results are shown  in Table_2.Figure_5shows how the skewness and kurtosis 
changed with sample size. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5: Impact of size sample on skewness and kurtosis  
 

5. PROCESSING TIME OF STANDARDIZED MOMENTS 
The processing time required for Computing the skewness and kurtosis is executed by 
LaptopDELL-inspiron-1520.Table_2 indicates that the processing time required for computing 
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the skewnessusing the simplified technique is minimum than other especially when the 
sample size increases. Figure_6 shows the variation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

FIGURE 6:a) Execution time required for computing skewness 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

FIGURE 6: b) Execution time required for computing kurtosis 

 

6. COMPUTATIONAL ENERGY OF STANDARDIZED MOMENTS 
Computing the computational energy for standardized moments (skewness and kurtosis) 
requires the determination of the sample size(n), the square error(Er), and the central 
processing time(CPU time). Therefore, consider the sample size(n) represents the resistance, 
the square error is measured in [volts]

2
, and the CPU time in second. Then, the computational 

energy per sample size is given by: 
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Where: 
 CE   is the computational energy per sample size. 
 Eris the r

th
 square error. 

 tr       isr
th
 CPU time. 

 n       is the sample size. 
 
The computational energy saved by the simplified technique compared to the exact one is 
given by:  

 
Where: 

is the relative computational energy saved by the simplified technique. 
is the computational energy for the exact technique. 
is the computational energy for the simplified technique. 

 
Table_4 shows the computational energy(CE) for each technique. This table indicates that the 
simplified technique saved computational energy by approximately 96.7% compared to the 
statistical package technique. Figure_7 shows the variation. 
 

Sample 
 size(n) 

CE-Skewness (r=3) 

CE  
Exact 

CE 
 Simplified 

CE Statistical 
 Package 

CE saved by 
simplified (%) 

20 2.82e-07 1.92e-07 7.22e-05 99.73 
30 1.55e-08 1.09e-08 8.01e-06 99.86 
50 1.45e-08 1.13e-08 1.97e-05 99.94 

100 2.72e-11 1.95e-11 1.41e-07 99.98 
200 3.12e-13 2.41e-13 6.69e-09 99.99 
400 4.19e-14 3.58e-14 3.91e-09 99.99 
600 4.61e-17 3.53e-17 1.05e-11 99.99 

1000 1.62e-17 1.36e-17 3.44e-11 99.99 
1400 6.21e-17 5.45e-17 7.02e-11 99.99 
2000 5.96e-19 5.40e-19 1.47e-12 99.99 
Mean ---- ---- ---- 99.95% 

 

TABLE 4: Computational Energy of standardized moments(a:Skewness) 
 
 

Sample 
 size(n) 

CE-Kurtosis (r=4) 

CE  
Exact 

CE 
 Simplified 

CE Statistical 
 Package 

CE saved by 
simplified (%) 

20 3.88e-05 2.96e-05 0.01304 99.77 
30 5.02e-06 3.77e-06 2.89e-3 99.86 
50 3.29e-07 2.96e-07 3.48e-4 99.91 

100 1.19e-08 9.37e-09 4.18e-05 99.97 
200 5.53e-10 4.51e-10 1.22e-05 99.99 
400 2.04e-11 1.80e-11 1.31e-06 99.99 
600 3.30e-12 2.98e-12 5.79e-07 99.99 

1000 3.95e-13 3.10e-13 1.47e-07 99.99 
1400 8.50e-14 8.20e-14 8.14e-08 99.99 
2000 1.89e-14 2.13e-14 5.2e-08 99.99 
Mean ---- ----- ------ 99.95% 

 

TABLE 4: Computational Energy of standardized moments(b:Kurtosis) 
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FIGURE 7: Computational Energy for standardized moments 
 

7. MATLAB PROGRAMMING 
A complete program can be obtained by writing to the author[4]. There is a part of MATLAB 
program shown here: 

%  Grenrate random  data set of size (n) points with mean (mu)  and a standard  
 % deviation (segma)and returns: (1) skewness and kurtosis,(2) cpu time,(3) ARE & 
% SquareError,(4) Computational Energy(CE),(5) computational energy saved  
%   by the simplified technique compared to the exact one 
options.Interpreter='tex'; 
prompt = {'Enter Sample size:','Enter mean(\mu) :','Enter std.dev.(\sigma) :'}; 
dlg_title = 'Generate random data set'; 
num_lines = 1; 
def = {'','',''}; 
options.Resize='on'; 
options.WindowStyle='normal'; 
answer = inputdlg(prompt,dlg_title,num_lines,def,options); 
ifisempty(answer) 
error('No inputs were found!') 
end 
n=str2num(answer{1}) 
mu= str2num(answer{2}) 
sigma = str2num(answer{3}) 
if n< 3 || isempty(n) 
error('n must be integer &>=2') 
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end 
 // Part of the program is omitted // 

tic 
     S_SP=(n/((n-1)*(n-2)))*sum(((s-mean(s))./std(s)).^r); 

t_SP= toc; 
tic 

     S_E=(1/n)*(n/(n-1))^(r/2)*sum((zscore(s)).^r); 
t_E = toc; 
tic 

     S_S=(1/n+r/(2*n^2))*sum((zscore(s)). r̂); 
t_S = toc; 
     A_E=abs(((S_E-S_S)/S_E)*100); 
    A_S=abs((((n/(n-1))^(r/2)-(1+r/(2*n)))/(n/(n-1))^(r/2))*100) ; 
    A_SP=abs(((S_E-S_SP)/S_E)*100);  
    SK=dataset({ S_E,'Exact'},{ S_S,'Simplified'},{ S_SP,'Stat_Package'} ) 
  ARE=dataset({ A_E,'Practical'},{ A_S,'Computed'}, {A_SP,'Stat_Package'} )     
 // Part of the program is omitted // 
 

8. CONCLUSIONS 
Computer algorithms for fast implementation of standardized moments are an important 
continuing area of research.A new algorithm has been designed for the evaluation of the 
standardized moments.  As a result the new technique offered four advantages over the 
current technique: 

 
(1) It drastically reduces the CPU time for calculating the standardized moments 

especially when the sample size increases. 
(2) It drastically reduces the absolute relative error(ARE) for calculating the 

standardized moments(Skewness and Kurtosis) by 99.27% compared to the 
current one.  

(3) It gives minimum square error compared to the current algorithm. 
(4) It has lowest computational energy. 

The aforementioned features are combined in a mathematical formula to describe the system 
performance. This formula is called the computational energy. A quantitative study has been 
carried out to compute the computational energy for each technique. The results show that 
the simplified technique saved computational energy by 96.7% compared to the current one. 
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