
G. H. El-Khawaga, Prof. Dr. Galal Hassan Galal-Edeen & Prof. Dr. A. M. Riad

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 1

Quality Attributes and Software Architectures Emerging
Through Agile Development: Pursuit or Overlooking?

G. H. El-Khawaga Ghada.elkhawaga@ieee.org
Teaching Assistant, Department of information systems,
Faculty of computers and information,
Mansoura University,
Mansoura, Egypt

Prof. Dr. Galal Hassan Galal-Edeen Galal@acm.org
Computer Science Department,
School of Sciences & Engineering,
American University in Cairo,
Cairo, Egypt

Prof. Dr. A.M. Riad amriad2000@mans.edu.eg

Dean of the faculty of computers & Information,

Mansoura University,

Mansoura, Egypt

Abstract

Software architectures play an important role as an intermediate stage through which system
requirements are translated into full scale working system. The idea of what a system does, what
it does not, and different concerns and requirements can be negotiated and expressed clearly
through the software architecture. Software architectures exist to enhance and provide quality
attributes, while they are quality attributes and their required level of achievement which can offer
numerous number of software architectures for a single software system.

We believe that the agile approach to architecting is problematic because of agilists’ beliefs about
how to architect a software system, and how critical quality attributes are to achieve a stable yet
flexible architecture. Through this research we clarify these issues, and discuss consequences of
agile architecting on achieved level of quality attributes. We are going to pursue the answer to
how to architect to achieve required level of quality attributes, while adopting an agile process.

Keywords Quality Attributes, Software Architecting, Agile Software Development, Refactoring,
Clean Architecting, Light Architecting.

1. QUALITY ATTRIBUTES AS BEING ENABLER OF SOFTWARE
ARCHITECTURES VARIANCES
Are software architectures there to answer certain quality attributes-related questions? Have we
got to care about arrangements and relationships between software components in response to
quality attributes-related needs? Have the concept of software architectures emerged after being
involved into long era of deficient software resulting from unstructured development? Do software
architectures exist to enhance quality attributes of software systems, or they are quality attributes
which distinguish software architectures? If the answers to these questions are all “yes”, then
there are more questions to ask. Do software architectures emerging through paradigms like agile
software development achieve their purpose of reaching a certain level of quality attributes
defined through a product’s context and concerns’ analysis? Can we truly offer longevity of a

G. H. El-Khawaga, Prof. Dr. Galal Hassan Galal-Edeen & Prof. Dr. A. M. Riad

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 2

software product and its ability to absorb frequent changes all over its production time without
paying attention to how its architecture is formed to offer quality attributes? To find an answer, we
need to begin tackling and defining the relation between a software architecture and quality
attributes.

1.1 Criticality of Quality Attributes
The intent of designing the architecture for a system is to transfer system required functionality,
quality attributes, business goals, and system context into an intermediate state before being
transformed to full-scale developed system. Software architecture is an arrangement of software
building blocks into differentiated types, or categories that are grounded in or derived from the
problem domain, and the way the software might be used and later adapted as an artefact [1].
This definition mainly referred to system requirements as a main driver of an architecture.
Therefore; through architecture creation, architects are supposed to elicit and understand the
received requirements so as to reach clear view of what the system should do, and to begin on
making decisions that shape how the system will work to achieve desired goals. However, it is
emphasized that a software architecture differs from building architecture in that it can’t be limited
to one structure

[2]. In civil engineering, structure is one category of the architecture; while in

software engineering, a system can have thousands of forms, which differ in quality attributes
satisfaction levels, not in the functionality associated and achieved through these forms. If it were
only about functionality, a software system would have been composed of a single module with
no internal structure [2]. Functionality drives the initial decomposition of a system architecture into
a set of components that together perform the functions of the system [3], but it is the mapping of
a system’s functionality into software structures that determines the architecture’s support for
quality

[2]. A quality attribute is a constraint on the manner in which the system implements and

delivers its functionality [4]. Systems are redesigned not only due to functionality dissatisfaction,
but also due to lack of consideration of quality attributes like security, performance,
maintainability, and reliability

[2]. Quality attributes are advanced to functionality considerations,

and this can be argued for by the idea [3] that one of the motivations for creating an architectural
design (addressing quality attributes) before detailed design (addressing functionality) and coding
is to enable improving, measuring, observing the quality of the system, and predicting whether
the system to be built will exhibit certain quality attributes while addressing risks and potential
defects earlier where they are cheaper, easier, and faster to fix. At the same time, software
architecting is a major strategy for enhancing quality attributes of software systems [1].
Architecture plays a central role in realizing many qualities in a system. While we believe that an
architecture embodies decisions about quality priorities and tradeoffs, and represents an early
opportunity to evaluate these decisions, it is argued that an architecture provides only the
foundation for achieving quality; but without paying attention to the details, this foundation will be
in vain

[2].

1.2 Challenges Associated With Quality Attributes’ Specification
Considering, expressing, and evaluating quality attributes is not an easy mission. Challenges of
adopting quality attributes can be categorized into two paths, so as to enable recognizing how to
consider and deal with a system’s desired quality attributes. A path or a category is about what
these quality attributes are, and the other is about how they are considered into a system. The
first category is related to the natural characteristics of quality attributes themselves. Many quality
attributes naturally have architectural and non-architectural aspects. Performance, for example,
has architectural aspects like functionality allocation to components, and communication between
components; while it has non-architectural aspects like the choice of algorithms to achieve
functionality, and how these algorithms are coded [2]. Ignoring this confusing nature of quality
attributes raises many pressures and challenges, like the difficulty of ensuring that a specific
quality attribute has stemmed of nontechnical issues [4]. Much attention should be paid to
architectural and non-architectural aspects of a quality attribute so as to decide how to handle it
while it is affecting other attributes.

Whether positively or negatively, quality attributes affect each other. So they cannot be handled in
isolation. While making an architectural design decision, interactions between quality attributes

G. H. El-Khawaga, Prof. Dr. Galal Hassan Galal-Edeen & Prof. Dr. A. M. Riad

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 3

should be put into consideration, and a decision is to be made based on affected and interacting
quality attributes relative priorities. Conflicts between quality attributes should be discovered as
early as possible, and desired quality attributes achievement levels should be available early so
as to help make a decision about a certain quality attribute preference whenever a conflict exists.
However, this depends on how a development team handles quality attributes; and this is shown
through the second category of challenges in dealing with quality attributes.

Another challenge that stems of natural characteristics of quality attributes is how to measure and
evaluate an architecture’s achievement of certain quality attributes. This challenge is due to that
many quality attributes are qualitative in nature, rather than being quantitative [3]. For example, a
software system into operation can be tested for its performance by quantitative measures, while
maintainability of a system should be observed and reasoned about through qualitative measures
like questionnaires. Considering a qualitative or a quantitative quality attribute for assessment is
critical to deciding when to carry out an evaluation phase.

The second category of challenges is related to how quality attributes are handled through the
development process, and where they are located into development participants’ consideration.
There is a wide agreement that modelling methods are weak in representing quality attributes [3],
and that architectural analysis techniques focusing on quality attributes are rare [4]. This drives
software architects to deal with quality attributes with an informal process [2]. However, informal
and incomplete specifications of quality attributes increase dependability on the architect to fill in
blanks and mediate the conflicts, and increases possibilities of redesigning the system to meet
missed quality attributes. It is confirmed that quality, cost, and schedule are not independent as
poor quality affect cost, and schedule [5].

Another challenge stems from that architects and developers –especially agilists- tend to deal
with quality attributes as an afterthought [4]. This was attributed to the development team’s
attention to business stakeholders rather than technical ones, and to the team’s belief that some
quality attributes don’t have direct impact on the cost-benefit for a system [6]. Business
stakeholders won’t be able to ask questions other than those about functionality, and they won’t
be aware of these questions that can help in analyzing and assessing the desired system’s
architecture [3]. The way of handling quality attributes raises technical future risks which if not
handled early, they can break the system, and consequently will impact the cost-benefit of
obtaining and operating the system threatened. It is argued that the costs for maintaining and
extending an application will account for most of the cost of the application over its lifetime [3].

Agilists architect software in a way that exposures resulting architectures to risks associated with
the challenges defined through this section. We are going to explain this more through the
coming sections.

2. THE AGILE WAY TO TACKLE QUALITY ATTRIBUTES
Agilists regard architecting in light of traditional development as being associated with heavy-
weighted practices which don’t yield value on the short term. Of course we are totally against
these beliefs, but it is out of scope to discuss and argue about how far these claims from reality.
What we are concerned about here is to discuss architecting practices that agilists use and have
influence on quality attributes. The main agile techniques to tackle quality attributes are
architectural spiking, and refactoring. Architectural spiking is about implementing a feature that
the development team believe to be exposed to and affected by the highest number of
architectural design decisions. We believe architectural spikes are not efficient at evaluating
architecture design decisions, because those decisions were originally made to satisfy certain
quality attribute concerns. Quality attributes cross-cut a software architecture, while quality
attribute concerns differ across various parts of an architecture. To take a vertical slice of an
architecture as a means to judge the level of achievement of a quality attribute, while knowing
that this quality attribute would be heterogeneous across the whole architecture; this doesn’t
seem to be a viable way to evaluate an architecture’s conformance to its basic role. Agilists claim

G. H. El-Khawaga, Prof. Dr. Galal Hassan Galal-Edeen & Prof. Dr. A. M. Riad

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 4

they do only practices that add value, and we strongly believe conducting architectural spikes is a
practice that missed its basic value. Agilists use architectural refactoring to make high-level
changes to achieve quality attributes. However, not all quality attributes such as security can be
accommodated later in implementation through refactoring [9]. Some quality attributes’
components and mechanisms must be designed early in the life cycle. Issues associated with the
way agilists handle changes through architectural refactorings and these issues’ implications are
explored through the coming section.

Agilists believe in simplifying design to achieve a barely good enough design to begin with. The
point here is that while software architecture is believed to be the magical work for achieving
system qualities such as performance, security, and maintainability [7], agilists consider designing
for system qualities to be heavy work about unforeseen changes, and this work should be
eliminated if not avoided. While adopting this attitude; they ignore foreseen changes that would
come up on the long term. As a consequence; agile methods are accused of ignoring quality
attributes such as reliability, scalability and changeability [8]. As change is inevitable,
mechanisms should be employed to enable software to smoothly be adapted to changing
circumstances in the development game.

3. AGILE ARCHITECTURAL REFACTORINGS: INTENDED TO PROVIDE A
CHANCE, AND RESULTING IN A THREAT
Adding quality attributes through a software system’s life cycle introduces new requirements, thus
it can be considered some sort of perfective changes because they introduce new requirements
and they aim at non-functional optimizations [10]. Lientz et al. –as cited in [10]- reported that
60.3% of the maintenance effort was categorized as perfective. This percentage is close to the
results reported by Mockus & Votta’s study [11] conducted which concluded that perfective
changes accounted for 45% of all the modification requests. The challenges accompanying
quality attributes’ accommodation -whether these challenges are in general or are attributed to
the usage of agile methodologies in software development- have resulted in having perfective
changes to be of the highest percentage of the total maintenance efforts. The study conducted in
[11] revealed that perfective changes -as well as being the highest to add more lines of code- are
more time consuming than adaptive and corrective changes.

To study a change’s implications on cost and schedule; the proposed change shouldn’t be
attached only to the code level. Instead, and with the aid of a big picture of the system under
consideration; a proposed change should be studied at a global level rather than being localized
only at the code level. A proposed change to code shan’t be left till it violates the principal
architectural design decisions that govern the application. In the way of identifying how change
can affect a system’s architecture, practitioners [4] tried to borrow some architectural concepts
from physical buildings’ literature. They were inspired by Stewart Brand’s Shearing Layers of
change. Brand categorized elements that make up a building into six categories. Brand’s layers of
change [4]:

1. Site: the geographical setting, and legally defined lot.

2. Structure: the foundation and load-bearing elements which are expensive to change.

3. Skin: exterior surfaces; they change so frequently to keep up with technology or for repair.

4. Services: the working guts of a building like electrical wiring.

5. Space plan: the interior layout; like doors, and floors.

6. Stuff: all the things that can be changed on a daily to monthly basis.

G. H. El-Khawaga, Prof. Dr. Galal Hassan Galal-Edeen & Prof. Dr. A. M. Riad

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 5

This categorization is organized in a manner that reflects the velocity and the hardness of
changing the elements classified, from the slower and harder to change to the faster and easier.

Practitioners tried to make benefit of this categorization in software [4]. According to [4], the site
layer in software denotes the usage context which may be an organization; the structure layer
denotes the software system architecture as it identifies a system’s load-bearing elements; the
skin layer denotes user interfaces; the stuff layer may denote user settings. We believe that
grouping elements by their similar change rates can help separate concerns, localize changes,
and hence increase a software systems’ responsiveness to changes. Such categorization can aid
in identifying the necessary techniques to apply a given change, as well as the time and cost to
achieve it [4]. Adhering to these groupings, it can be concluded that changes to software system
architecture are to be the most expensive, difficult, and complex to implement.

Besides the important role an architecture plays in preparing for how the system will change and
in localizing the effects of change, the profound changes to a system’s architecture are induced
by quality attributes’ accommodation [4]. As mentioned before, agilists use refactoring as a main
technique for adding quality attributes late in development lifecycle. Refactoring to introduce or
modify quality attributes can imply modifying a component’s internal specification; for example,
introducing new components to increase performance implies changes to connectors [4].
Therefore, the consequences of making changes that can affect architecture elements –
especially those resulting from making changes to accommodate quality attributes- should be
studied carefully. Quality attributes are prevailing and affecting huge portions of code and
functionality, thus modifying quality attributes is believed to be costly [7]. Not accommodating
these changes early in the development process is sufficient to tear down the myth of having
better quality using agile methods.

Frequent non-systemic modifications to requirements can result in architectural degradation,
which leads to a mismatch between the actual functions of the system and its original design [12],
and subsequently upgrades and fixes become expensive to implement. This case is called
architectural erosion [11]. Architectural erosion is defined as the regressive deviance of an
application from its original intended architecture resulting from successive changes [4].
Architectural erosion leads to increasing resistance to change and subsequently high cost of
maintenance [13]. Architectural degradation causes are mainly mapped to late-lifecycle changes
which are considered to be the most crucial, risky, and expensive when they are changes to
requirements [12]. Therefore, the earlier to make changes is the better, and the earlier to consider
quality attributes is the best. The difficulty, the choice of suitable technique, and the cost of
supporting a given change are all deeply influenced by the development level at which a change
is implemented [4]. As a result, late-lifecycle refactorings affecting the architecture of a software
system are considered to be the most risky and expensive changes.

Among the important triggers of architectural refactoring are architectural smells which are
believed to be negatively impacting system quality [14]. Architecture violations are considered to
be the main architectural smells’ type for which architectural refactorings are carried out [15]. This
way we can conclude that refactoring to overcome certain architecture violations is likely to
produce other architecture violations, and even they can be of a greater number than the ones
these refactorings were carried out to overcome. Therefore, refactoring to reduce or eliminate an
architectural smell can be risky and complex [14]; as it requires decisions that seem to be local
while they have broad effects and involve uncertain consequences. The problem is more complex
and risky in case of the absence of a well-defined architecture, and this may be the case while
adopting an agile method in software development.

Architectural refactoring effectiveness for achieving quality is another issue that rises here.
Architectural refactoring is effective in increasing an application’s maintainability and
consequently reducing costs [15]. However, architectural refactoring’s effect on other quality
attributes like performance, and security should be considered as well. Also, mutual influences of
quality attributes and sometimes conflicts are critical aspects to be considered. Not all quality

G. H. El-Khawaga, Prof. Dr. Galal Hassan Galal-Edeen & Prof. Dr. A. M. Riad

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 6

attributes can be achieved in the same time; their achievement is proportional and they can’t be
treated in isolation of each other. Thus for example, refactoring to increase performance can
affect reliability negatively, and so on.

We believe that architectural refactoring can alter a product’s perceived behavior whenever these
refactorings are conducted to incorporate quality attributes. This claim sounds reasonable as long
as the main aim of refactoring is to alter internal structure without changing external behaviour,
and it also raises critical questions about the viability of refactoring –in the context of agile
development- to leverage a system’s architecture and alter it later to insert missed quality
attributes. Refactoring to fix architectural problems was firmly emphasized to be inefficient [16].
Refactoring, as considered to be a small activity with limited effect, is almost a local activity,
whereas architecture is a global concern.

The discussion above highlights two issues; the first is that the need for spending some time
planning architecture upfront is not something to be ignored. The second issue is that depending
on refactoring to bring good code structure and hoping that code units together will form a good
architecture that will stand and accommodate all upcoming changes won’t be a viable
development strategy in most cases.

4. SALVATION THROUGH CLEAN LIGHT ARCHITECTING
It is now clear that the way software architectures developed in the context of agile development
is deficient regarding how quality attributes are accommodated. Agile architecting begins with
overlooking quality attributes’ accommodation and ends with risky and expensive pursuit.
Problems discussed through this research are the main inspiration for our suggested recipe here
to achieve a framework to architect in the context of agile software development. The ingredients
of the proposed recipe are clean architecting; light architecting.

• Clean Architecting: actually the morals of this trend are similar to those which triggered clean
coding. Clean coding aims at enabling readability of code and hence backward tracing of a
solution. This is exactly the same aim of clean architecting. A clear rationale of architectural
decisions whenever being traceable through an architecture would guide through highlighting
architecturally significant requirements (ASR)s. These ASRs include functional requirements,
quality attribute requirements, design constraints, and any requirement that can influence
architectural design decisions made to form an architecture. Clean coding aims at facilitating
testing and discovering refactoring positions. We argue that clean architecting is about providing
forward traceability of potential changes to be conducted. As changes are irresistible for an agile
software system, and -as explained- changes have critical effects on architecture; there is a need
to conduct change impact analysis. Change impact analysis is about analyzing potential
consequences of changing a factor, component, connector, configuration upon other
components, connectors, configurations, or upon the quality attribute achieved through the
previous state before change. Change impact analysis also enables defining potential conflicts
between various quality attributes. This way, clean architecting should also enable early
evaluation of architectural design decisions; and this is aligned with agile software development
mindset which encourages short feedback cycles and early changes’ discovery.

• Light Architecting: it complements and enables clean architecting. To enable architecting while
saving agile values, a light architecting process should be revolving around creating an initial
minimal architecture at the preproduction or chartering level of a product development process,
and leaving non-critical architectural decisions -that are more potential to changes and aren’t
about cross-cutting decisions- to be made incrementally and iteratively at the release and
iteration levels. This highlights again the need for impact analysis to decide which decisions can
affect a broader portion of software features. To eliminate the gap between customer
requirements captured informally and architectures which are believed to be captured explicitly;
software architects should be involved through the development life process. This way we can
consider software architecting as a continuous process which is about role collaboration, and

G. H. El-Khawaga, Prof. Dr. Galal Hassan Galal-Edeen & Prof. Dr. A. M. Riad

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 7

which enables collaboration and communication among team members. Communicating “what a
software product is” is a basic moral of architecting. Therefore; choosing the suitable way to
share information among team members and to keep it for further usage, is purely a team free
choice. This way we can consider informal diagrams on a whiteboard to be a viable document.
Light architecting facilitates developing clean architectures thanks to two reasons. First, time
constraints which result in dirty architecting are halted through incremental and iterative
architecting. Second, when architecting becomes a shared responsibility among team members,
it is easier to increase learning curve and enable making benefit of all team members’ skills;
therefore, there is more possibility to come up with a clean architecture.

A few approaches were suggested to overcome the absence of a mechanism to create flexible
yet static architectures in the context of agile development. Most of suggested approaches
revolve around systemizing and providing a context for conducting architectural refactorings.
Among these approaches are developer stories writing [17], and Continuous Architectural
Refactoring (CAR) & Real Architecture Qualification (RAQ) [18]. These approaches are criticized
for accrediting refactoring as the only way to introduce quality attributes in resulting architectures,
while ignoring the need for designing initial architectures upfront depending on careful analysis of
concerns about quality attributes.

To achieve clean light architecting while planning for quality attributes in the context of agile
software development, we suggest an architecting process which is comprised of a hybrid of
three complementing methods. The first is Quality Attribute Workshop (QAW), because it
facilitates capturing quality attribute requirements through collaborative brainstorming sessions, in
the form of scenarios which is light enough to be placed into the product backlog. This way we
argue this method is qualified to be integrated into a development process obtaining the agile
mindset. The second method is Attribute-Driven Design (ADD), because it enables developing an
initial architecture incrementally based on quality attributes. The initial version will be based on
highest priority requirements, and it will evolve through product development releases and
iterations till the architecture reaches its final form. This way ADD also enables incorporation of
requirements changes as they come up. ADD contains checkpoints where design is checked for
being consistent with customer requirements. The third method is Architecture Tradeoff Analysis
Method (ATAM), which is a collaborative architecture evaluation method which early detection of
architectural design decisions which are inconsistent with customer requirements. This method
facilitates discovering conflicts and tradeoff points between quality attributes, and risks that can
results whenever an architectural design decision is changed. This way, change impact analysis
is facilitated and a team can be aware of their architectural decisions implications on various
quality attributes. A proposed framework to achieve clean light architecting is under development
and will be demonstrated in upcoming papers.

Considering quality attributes early while designing translates into business value, and we know
that agile teams are pursuing business value in all their decisions and practices. By designing for
including quality attributes right from the beginning, resulting architecture is shaped around a long
term goal rather than short-sighted goals; besides, the number of architectural refactorings that
would be needed over time is expected to be reduced. Agile methods would be more qualified for
developing safety-critical systems, where performance and reliability are a must. Agile teams
won’t be able to go for large-scale products without an architecture that offers maintainability,
reusability, scalability, interoperability, and other quality attributes that can be achieved through
having a light clean architecture developed incrementally and iteratively.

5. CONCLUSION
Agile architects should advocate a development culture that values making architectural design
decisions based on careful analysis of requirements and give a due care to quality attribute
requirements in advance, especially that they do not change as rapidly as functional
requirements. There is also a need for analyzing resulting architecture carefully to assess its
adoption of needed quality attributes, and to deal with conflicts between several qualities at the
earliest possible development level. Planning for quality attributes in advance not only prevents

G. H. El-Khawaga, Prof. Dr. Galal Hassan Galal-Edeen & Prof. Dr. A. M. Riad

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 8

problems of missed quality attributes and implications of redesigning a system to incorporate
these quality attributes, but also provides a more stable basis for the architectural design as well.
Planning an architecture based on quality attributes while keeping the process light and agile is
not a myth. Comprising an architecting process which harmonizes both clean and light
architecting is a dream that can be easily achieved if architecting and agile development morals
are well-absorbed and tackled.

6. REFERENCES

[1] Galal, G. H., (1998), “Software architecting: from requirements to building blocks within an
architectural style”, Workshop W2: Techniques, Tools and Formalisms for capturing and
assessing Architectural Quality in Object-Oriented Software, the 12th European Conference on
Object Oriented Programming (ECOOP'98), Brussels, Belgium, 20-24 July.

[2] Bass, L., Clements, P. & Kazman, R., (2003), Software Architecture in Practice, Addison-
Wesley Professional, Boston, USA.

[3] Albin, S. T., (2003), The Art of Software Architecture: Design Methods and Techniques, Wiley
publishing, Indianapolis, Indiana, USA.

[4] Taylor, R., Medvidovic, N. & Dashofy, E., (2009), Software Architecture: Foundations, Theory,
and Practice, Wiley publishing, Indianapolis, Indiana, USA.

[5] Barbacci, M. R., Klein, M. H. & Weinstock, C. B., (1997), “Principles for Evaluating the Quality
Attributes of a Software Architecture”, CMU, Software Engineering Institute, Pittsburgh, PA, USA.

[6] Mcgovern, J., Ambler, S. W., Stevens, M. E., Linn, J., Sharan, V. & JO, E. K., (2003), A
Practical Guide to Enterprise Architecture, Prentice Hall, Upper Saddle River, New Jersey, USA.

[7] Faber, R., (2010), “Architects as service providers”, IEEE Software, vol. 27, no. 2, pp. 33-40.

[8] Sharifloo, A. A., Saffarian, A. S. & Shams, F., (2008), “Embedding Architectural Practices into
Extreme Programming”, proceedings of the 19th Australian Software Engineering Conference
(ASWEC 2008), Perth, Western Australia, Australia, 26-28 Mar., IEEE Computer Society, pp.
310-319.

[9] Barbacci, M., Ellison, R., Lattanze, A., Stafford, J., Weinstock, C. & Wood, W., (2003), “Quality
Attribute Workshops (QAWs)”, CMU Software Engineering Institute, Pittsburgh, PA, USA.

[10] Mohagheghi, P. & Conradi, R., (2004), “An empirical study of software change: origin,
acceptance rate, and functionality vs. quality attributes”, Proceedings of the 2004 International
Symposium on Empirical Software Engineering, (ISESE '04), Redondo Beach, CA, USA, 19-20
Aug, IEEE, pp.7-16.

[11] Mockus, A. & Votta, L. G. (2000), “Identifying reasons for software changes using historic
databases”, Proceedings of the International Conference on Software Maintenance, San Jose,
CA, USA, 11-14 Oct., IEEE, pp. 120-130.

[12] Williams, B. J. & Carver, J. C., (2007), “Characterizing Software Architecture Changes: An
Initial Study”, proceedings of the First International Symposium on Empirical Software
Engineering and Measurement, (ESEM'07), Madrid, Spain, 20-21 Sept., IEEE, pp. 410-419.

[13] Perry, D. & Wolf, A., (1992) “Foundations for the study of software architecture”, ACM
SIGSOFT Software Engineering Notes, Vol. 17, No. 4, pp. 40-52.

G. H. El-Khawaga, Prof. Dr. Galal Hassan Galal-Edeen & Prof. Dr. A. M. Riad

International Journal of Software Engineering (IJSE), Volume (4) : Issue (1) : 2013 9

[14] Garcia, J., Popescu, D., Edwards, G. & Medvidovic, N., (2009), “Identifying Architectural Bad
Smells”, proceedings of the 13th European Conference on Software Maintenance and
Reengineering, (CSMR '09), Kaiserslautern, Germany, 24-27 March, Winter, A., Ferenc, R. &
Knodel, J. (Eds.), IEEE, pp. 255-258.

[15] Bourquin, F. & Keller, R. K., (2007), “High-impact Refactoring Based on Architecture
Violations”, Proceedings of the 11th European Conference on Software Maintenance and
Reengineering, (CSMR '07),Amsterdam, Holland, 21-23 Mar., IEEE, pp. 149-158.

[16] Coplien, J. O. & Bjornvig, G., (2010), Lean Architecture: for Agile Software Development,
Wiley Publishing, Indianapolis, Indiana, USA

[17] Jensen, R. N., Moller, T., Sonder, P. & Tornehoj, G., (2006), “Architecture and Design in
eXtreme Programming; Introducing Developer Stories”, proceedings of Extreme Programming
and Agile Processes in Software Engineering, 7th International Conference (XP 2006), Oulu,
Finland, 17-22 June, Springer Verlag, pp. 133-142.

[18] Sharifloo, A. A., Saffarian, A. & Shams, F., (2008), “Embedding Architectural Practices into
Extreme Programming”, proceedings of the 19th Australian Conference on Software Engineering
(ASWEC'08) Perth, WA, Australia, 26-28 March, IEEE, pp. 310-319.

