
David Tinoco Varela

International Journal of Security (IJS), Volume (6) : Issue (3) : 2012 15

Blinded Montgomery Powering Ladder Protected Against the
Jacobi Symbol Attack

David Tinoco Varela dativa19@comunidad.unam.mx
Computational Science Graduate Program
Facultad de Estudios Superiores Cuautitlán
Universidad Nacional Autónoma de México
Edo. Mex. 54740, México

Abstract

Recently, many physical attack types (e.g., timing attacks, power consumption attacks, fault
attacks) have been developed against cryptosystems, specifically against the modular
exponentiation that is the core operation of many security systems. Indeed, there is a real need to
eliminate the vulnerabilities of cryptosystems, such as RSA or the Elliptic Curve Cryptosystem,
that make them susceptible to such attacks. In 2006, Boreale described a new type of physical
attack based in the Jacobi symbol concept, and later, Schmidt used the same concept as Boreale
to break the security of the blinded Montgomery powering ladder. In this paper, a countermeasure
against Schmidt's attack is presented to make the blinded Montgomery powering ladder resistant
to the Jacobi symbol attack.

Keywords: Modular Exponentiation, Cryptography, Jacobi Symbol, Montgomery Ladder, Fault
Attacks.

1. INTRODUCTION

 Kocher [1] was the first to point out the existence of physical attacks called Side Channel Attacks
(SCA). He observed that when a cryptographic algorithm is implemented in an embedded device,
an attacker can obtain the binary string of the secret key by simply observing the power traces or
the timing consumption of the device in an electronic test instrument, such as an oscilloscope.
SCAs are, first of all, used to attack modular exponentiation (Add and double is the analogous
function in the Elliptic Curve Cryptosystem, ECC), which is the core operation in cryptosystems
such as RSA.

SCAs opened the door to a new type of physical attacks, one of which was the Fault Attack (FA)
proposed by Bonhe, DeMillo and Lipton [2]. FAs are more aggressive than SCAs because FAs
physically disturb the execution of the device that is running the cryptographic algorithm.

To prevent SCAs and FAs, many modular exponentiation algorithms have been created, but
Coron [3] provided the first algorithm specifically designed to defeat SCAs when he proposed the
square-and-multiply always algorithm. However, this algorithm was attacked by the denominated
Safe Error Attack (SEA) [4].

The Montgomery powering ladder [5] was a new idea proposed by Joye and Yen to protect
cryptosystems against SCAs and FAs. This algorithm works in a regular form: that is, regardless
of the value of the bit being processed (0 or 1), the algorithm will always calculate a multiplication
followed by a squaring. The Montgomery ladder was widely accepted and attracted the attention
of many researchers. Giraud [6] modified the Montgomery ladder to protect it against FAs; he
proposed a Coherence Test based on a characteristic of the algorithm: the registers in all the

iterations have the form xmR =]0[, 1
]1[

+
=

x
mR . As a result, if the coherence test]1[]0[RmR =⋅ is

true, then return]0[R ; if not, return "error".

David Tinoco Varela

International Journal of Security (IJS), Volume (6) : Issue (3) : 2012 16

The Montgomery ladder was attacked by the Relative Doubling Attack (RDA) [7], a modification of
the Doubling Attack (DA) [8], but Fumaroli and Vigilant [9] added a random value to the
Montgomery ladder to blind the modular exponentiation. The algorithm proposed by Fumaroli and
Vigilant was secure against SCAs, DA, RDA, and in a partial form against FA.

A new type of attack was presented by Boreale in 2006 [10]. This attack uses a combination of
FA and SCA, and using the Jacobi symbol (JS) it is possible to obtain the binary string of the

secret key d . He used his model against the square-and-multiply right-to-left algorithm and

proved that his attack is effective even in the presence of message blinding. On the other hand,
Schmidt and Medwed [11] used the Jacobi symbol concept to create an attack that breaks the
security of the Montgomery powering ladder in its blinded form.

There are more modular exponentiation algorithms ([12], [13], [14], [15], [16], [17]) trying to defeat
all the physical attacks ([18], [19], [20], [4], [21]) that threaten the security of the cryptosystems,
but here, we focus our attention only on the blinded form of the Montgomery ladder algorithm and
on the goal of avoiding Jacobi symbol attacks.

2. PRELIMINARIES

2.1 Jacobi Symbol
The first necessary concept is the quadratic residue: for a given prime p , a is a quadratic residue

if 1),gcd(=pa and pya mod
2

= for some y . If 1),gcd(=pa but a is not a quadratic residue

mod p , a is called a quadratic non-residue mod p .

p

a
 is called the Legendre symbol of pa mod , and we can see that

−=

factorcommon a is thereIf 0

mod residue-non quadratic a is If 1

 mod residue quadratic a is If 1

pa

pa

p

a

Now, we have that

=

kp

a

p

a

n

a
L

1

 is the Jacobi symbol, where n is odd, kppn L1= , and

the ip are prime factors of n . The Jacobi symbol is a generalization of the Legendre symbol.

2.1 Fault Attacks
Bone, DeMillo and Lipton showed that it is possible to disturb an embedded device while it is
executing a cryptographic algorithm [2] and that with the erroneous output value, an attacker can
obtain secret information that can break the security of the cryptosystem. A disturbance can be
induced, principally, by variation in supply voltage, and it may cause the device to misinterpret
data or even skip a complete instruction.

2.2 Montgomery Powering Ladder and its Blinded Form
Many modular exponentiation algorithms have been developed. Joye and Yen proposed a new
kind of algorithm to calculate the modular exponentiation, called the Montgomery powering ladder
[5]. Their model was based on a different idea from those algorithms designed before it. The
principal concept was that

∑
−

=

−
=

1

2

t

ji

ji
ij dL and 1+= jj LH

David Tinoco Varela

International Journal of Security (IJS), Volume (6) : Issue (3) : 2012 17

Some characteristics of the Montgomery ladder introduced in [5] are as follows:

• The algorithm is highly regular; that is, there is always a multiplication followed by a
squaring, regardless of the processed bit.

• mRR =]0[/]1[is invariant throughout the execution of the algorithm.

• The two multiplications performed at each iteration share a common operand, for which
the Common-multiplicand multiplication [22] can be used.

• The two multiplications performed are independent at each iteration, and therefore, they
can be calculated in parallel form.

The Montgomery ladder was improved by Fumaroli and Vigilant (FV scheme), who added a
random element r to protect the algorithm; they used one more register than the simple
Montgomery ladder to save the inverse value of the random element r (Algorithm 1).

Algorithm 1 FV scheme

1: Input Gm ∈ , 201)(ddd n K−=

2: Output Gms d ∈=

3: rR ←]0[; rmR ⋅←]1[

4: 1
]2[

−
= rR

5: for 1−n to 0 do

6: NdRdRdR iii mod][][][⋅←

7: NdRdRdR iii mod][][][⋅←

8: NRRR mod]2[]2[]2[⋅=

9: end for

10: Return NRR mod]2[]0[⋅

2.3 Attacks Based on the Jacobi Symbol
In 2006, Boreale proposed a new kind of attack against the modular exponentiation, implemented
over the binary square-and-multiply right-to-left algorithm (Algorithm 2) [10]. He put a fault z in

]1[R when a squaring is executed in the iteration 1−i of the for loop. Then, depending on the

value of ()NS / , where S is the attacked output value, it can be possible to determine the value of

the bit id . This scheme works by assuming that 1)/(=Nm , where m is the input value, and its

behavior is similar to the Safe error : if the value of the bit in the i -th iteration is equal to 0, the

fault does not affect the calculation of the JS of 1)/]0[(=NR i , but if 1=id , z affects the register

iR]0[which can provoke a JS value of 1)/]0[(−=NR i ,and thus a JS value of 1)/(−=NS . Here,

two options are given: if)/(NS is always equal to 1, then 0=id , but if 1)/(−=NS , id is equal

to 1. Thus, an enemy can deduce the secret key of the cryptosystem.

Table 1 shows the behavior of algorithm 2 under the attack described by Boreale. In the example,

it was assumed that 1)/(=Nm , 1)/(−=Nz , and 1100125 ==d .

In 2010, Schmidt [11] proposed an attack that consisted of giving a message m with 1)/(−=Nm

to the FV scheme and skipping the operation 2
][][ii dRdR = . Then, observing the resulting value

could identify the values of id and 1+id . If 1)/(−=NS , then 1+= ii dd . The procedure of this attack

is shown as algorithm 3.

An example of the attack described in the algorithm 3 against the FV scheme is observed in table

2. In this example, it was supposed that 1)/(−=Nm and 1001119 ==d .

David Tinoco Varela

International Journal of Security (IJS), Volume (6) : Issue (3) : 2012 18

Algorithm 2 Square-and-multiply right-to-left

1: Input Gm ∈ , 201)(ddd n K−=

2: Output Gms d
∈=

3: mRR ←←]1[;1]0[

4: for 0 to 1−n do

5: if 1=id then

6: NRRR mod]1[]0[]0[⋅←

7: end if

8: NRR mod]1[]1[
2

←

9: end for
10: Return]0[R

i
i

d Intermediate products Jacobi symbol

0 1

22
)(]1[

]0[

mmR

mR

==

=

1)1()/]1[(

1)1()/]0[(

==

==

NR

NR

1 0 422
)(]1[

]0[

mmR

mR

==

=

1)1()/]1[(

1)1()/]0[(

==

==

NR

NR

2 0
zmmR

mR

===

=

824
)(]1[

]0[

1-)1()/]1[(

1)1()/]0[(

=−=

==

NR

NR

3 1
22

)(]1[

]0[

zzR

zmR

==

⋅=

 1)1()/]1[(

1-)1)(1()/]0[(

==

=−=

NR

NR

4 1
422

3

)(]1[

]0[

zzR

zmR

==

⋅=

1)1()/]1[(

1-)1)(1()/]0[(

==

=−=

NR

NR

TABLE 1: Algorithm 2 performed with a JS attack, FA in 1−i and 1=
i

d .

Algorithm 3 Attack proposed in [11]

1: Ensure Exponent 201)(ddd n K−= is used by the device.

2: Set 11 =−nd

6: for 2−n to 0 do

5: Chose NZm∈ with 1−=

N

m

6: Calculate S with the i -th squaring skipped

6: if 1−=

N

S
 then

7: 1+= ii dd

8: else

9: 11 +⊕= ii dd

10: end if
11: end for

12: Return d

David Tinoco Varela

International Journal of Security (IJS), Volume (6) : Issue (3) : 2012 19

i i
d Intermediate products Jacobi symbol

4 1 22

2

]1[

]0[

rmR

rmR

⋅=

⋅=

1)1)(1()/]1[(

1-)1)(1()/]0[(

==

=−=

NR

NR

3 0
43

4222

]1[

)(]0[

rmR

FArmrmR

⋅=

=⋅=⋅=

1-)1)(1()/]1[(

1)1)(1()/]0[(

=−=

==

NR

NR

2 0
64243

4222

]1[

)(]0[

rmrmrmR

rmrmR

⋅=⋅⋅⋅=

⋅=⋅=

1)1)(1()/]1[(

1)1)(1()/]0[(

==

==

NR

NR

1 1
128264

106

)(]1[

]0[

rmrmR

rmR

⋅=⋅=

⋅=

1)1)(1()/]1[(

1)1)(1()/]0[(

==

==

NR

NR

0 1
24162128

2214

)(]1[

]0[

rmrmR

rmR

⋅=⋅=

⋅=

1)1)(1()/]1[(

1)1)(1()/]0[(

==

==

NR

NR

TABLE 2: Algorithm 1 executed with FA, where ii dd ≠+1 .

In table 2, it can be noted that a modular multiplication in 1−i must be performed by two

elements with odd exponents to obtain a result with an even exponent and so obtain 1)/(=NS ,

which is the key point of the Schmidt‘s attack. This situation is observed when the modular

multiplication 432]0[]1[]1[=== ⋅= iii RRR is calculated after skipping the squaring operation 3]0[=iR .

The two attacks mentioned above are easy to implement and powerful because they only need to
know about the Jacobi symbol in the returned value by the attacked algorithm.

3. PROPOSED ALGORITHM

In this section, a modification of the FV scheme is proposed that is secure against Schmidt's
attack, and the behavior of the proposed algorithm is explained.

3.1 Algorithm
In the approach proposed by Schmidt to attack the FV scheme, the idea is not to put a random

value z in the execution but to skip a complete squaring operation in the iteration i when the

algorithm is being executed. Then, depending on the value of)/(NS , it can be determined

whether ii dd =+1 .

It can be noted that only even intermediate exponents, through an algorithm, can be used to
calculate any modular exponentiation. On the basis of this observation, algorithm 4 is proposed. It

can be seen that this algorithm begins the register]1[R with an even exponent 2
]1[mmmR =⋅= .

This even exponent will affect all the calculations through the algorithm, and thus, it will affect the

JS of all the intermediate values calculated by algorithm 4. Here, odd values d are considered.

In algorithm 4, it can be seen that the loop is not executed from 1−n to 0 but from 1−n to 1 ,

because of the behavior of the algorithm; this behavior will be explained in section 3.2. It can be
noted that only the value in]1[R was altered, whereas no extra value was placed in]0[R .

Algorithm 4 guarantees that when an attacker skips one squaring operation, in any iteration of the

loop, he will not be able to obtain any relevant information about the bits of the string of d ,

because to obtain any information, it is necessary to have in the output value 1)/(=NS or

1)/(−=NS depending on the value of the attacked bits 1+id and id . However, the output value

David Tinoco Varela

International Journal of Security (IJS), Volume (6) : Issue (3) : 2012 20

of algorithm 4 will always be 1)/(=NS if 1)/(=Nm and 1)/(−=NS if 1)/(−=Nm , regardless of

the values of 1+id and id .

Algorithm 4 Modified FV scheme

1: Input Gm ∈ , 201)(ddd n K−=

2: Output Gms d
∈=

3: rR ←]0[

4: rmR ⋅←
2]1[

5: 1
]2[

−
= rR

6: for 1−n to 1 do

7: NdRdRdR iii mod][][][⋅←

8: NdRdRdR iii mod][][][⋅←

9: NRRR mod]2[]2[]2[⋅=

10: end for
11: mRR ⋅=]0[]0[

12: Return NRR mod]2[]0[⋅

All the values obtained in the intermediate steps of algorithm 4 have an even exponent, and
obviously, all of them are quadratic residues; therefore, they have a JS equal to 1. Now, in line 11
of algorithm 4, it is possible to see that the register]0[R is altered by the operation

mRR i ⋅= =1]0[]0[, where 1]0[=iR is the resulting value of the iteration 1=i of the for loop (lines 6

to 10 of algorithm 4). All the values calculated through the for loop have a JS equal to 1, and

therefore, the JS of 1]0[=iR is equal to 1. For that reason, the JS of the returned value depends of

the JS of m , disregarding completely the values of 1+id and id , because if the JS of m is equal

to 1, then 1)1()1(]0[]0[1 =⋅=⋅= = mRR i (considering only JS values), and if the JS of m is equal to

-1, then 1)1()1(]0[−=−⋅=R .

 As shown in table 2, elements with even exponents (quadratic residues) and with odd exponents
(quadratic non-residues) are needed in the intermediate products to deduce the binary string of

d . Thus, the proposed countermeasure is a protection against the Jacobi symbol attack,

because the execution of algorithm 4 has only even exponents in the intermediate products. This

protection is observed in table 3. In this example, it was supposed that 10011139 ==d and

1)/(−=Nm .

As shown in table 3, all the JS values of the intermediate steps in the algorithm are equal to 1,

and it does not matter if 1)/(=Nm or if 1)/(−=Nm .

3.2 Behavior of the Proposed Algorithm

The modular exponentiation dm , where ∑
−

=

=

1

0

2

n

i

i
idd and }1,0{∈id , can be represented by

 0121 222)))(((
dddd

mmmm nn ⋅⋅ −− LL (1)

If equation (1) is calculated using algorithm 1, it is possible to know that the last iteration of

algorithm 1 can be represented by equation (2), which is the correct result of d
m

David Tinoco Varela

International Journal of Security (IJS), Volume (6) : Issue (3) : 2012 21

i i
d Intermediate products Jacobi symbol

5 1

2422

22

)(]1[

]0[

rmrmR

rmR

⋅=⋅=

⋅=

1)1)(1()/]1[(

1)1)(1()/]0[(

==

==

NR

NR

4 0
46

44222

]1[

)(]0[

rmR

rmrmR

⋅=

⋅=⋅=

1)1)(1()/]1[(

1)1)(1()/]0[(

==

==

NR

NR

3 0
810

88244

]1[

)(]0[

rmR

FArmrmR

⋅=

=⋅=⋅=

1)1)(1()/]1[(

1)1)(1()/]0[(

==

==

NR

NR

2 1
16202810

121481044

)(]1[

]0[

rmrmR

rmrmrmR

⋅=⋅=

⋅=⋅⋅⋅=

1)1)(1()/]1[(

1)1)(1()/]0[(

==

==

NR

NR

1 1
324021620

2834

)(]1[

]0[

rmrmR

rmR

⋅=⋅=

⋅=

1)1)(1()/]1[(

1)1)(1()/]0[(

==

==

NR

NR

TABLE 3: Algorithm 4 executed with JS attack where
ii

dd =
+1 .

)()(2)(2)(2 01
1

2
2

1
1

dddd
mm n

n
n

n

⋅
+++ −

−
−

−
L (2)

Now, it can be supposed that algorithm 4 is executed from 1−nd to 0d . Then, the modular

exponentiation is represented by

0121 2222222
)))(((

dddd
mmmm nn ⋅⋅ −− LL (3)

The behavior of equation (3) through algorithm 4 is given by equations (4) to (7), where each step

represents an iteration and ink −−= 1 .

)(22)(22)(22)(2)(2 0132
10

1
11

)))(((1 Step
ddddd

mmmm nnn ⋅⋅ −−
+

−
+

+
LL (4)

 MM

)(22)(22)(22)(2)(2)(2 011
10

2
11

1
1

)))(((Step
dddddd

mmmmi kkn
i

n
i

⋅⋅ −
+

−
+−

−
+

+++
LL

L (5)

 MM

)(22)(2)(2)(2 01
10

2
13

1
12

)(2 Step
dddd

mmn n
n

n
n

⋅−
+

−
+−

−
+−

+++ L (6)

)(2)(2)(2)(2 01
11

2
12

1
11

 1 Step
dddd

mmn n
n

n
n

⋅−
+

−
+−

−
+−

+++ L (7)

Note that equation (2) is very similar to equation (6). Now, if the last squaring and the last

multiplication by)(2 0d
m of equation (6) are deleted, then equation (8) is obtained

)(2)(2)(2 1
1

2
2

1
1

ddd n
n

n
n

m
+++ −

−
−

−
L (8)

If equation (8) is multiplied by)(0d
m , the correct result of the operation d

m has been obtained.

Therefore, algorithm 4 is executed from 1−n to 1 (the last squaring and the last multiplication by

David Tinoco Varela

International Journal of Security (IJS), Volume (6) : Issue (3) : 2012 22

)(2 0d
m are deleted), and it is necessary to multiply by m in line 11 of algorithm 4 (the

multiplication by)(0d
m is made, but it is supposed that 10 =d , and thus, mm

d
=

)(0).

Equations (9) and (10) are given only to show the relationship between the registers of algorithms

1 and 4, where
ioR)(]0[and

ioR)(]1[are the registers of algorithm 1 running from 1−n to

0;
ipR)(]0[and

ipR)(]1[are the registers of algorithm 4 running from 1−n to 1; and)(pd is a bit

of the exponent in algorithm 4 at the iteration 1−i .

]1[R[1]

]0[R[0]
 then,0 If

1i

1i

1
)()(

)()(
)(

⋅=

=
=

−

−

− mR

R
d

i

i

i
op

op
p (9)

]1[R[1]

]0[R[0]
 then,1 If

1i

1i
1

)()(

1
)()(

)(

=

⋅=
=

−

−
−

−

i

i
i

op

op
p

R

mR
d (10)

3.3 Expansion of the Algorithm

Up to this point, the discussion has addressed an algorithm that is effective when the keys d are

odd, but it is possible to use algorithm 4 for all types of d values, by adding a few lines. The

resulting algorithm is given below as algorithm 5.

Algorithm 5 can be used not only with odd keys, given as exponents, but also with even keys. To

understand this option, recall that it is necessary to multiply the value 0d
m (where 0d determines

if a key is odd or even) by equation (8) to obtain the correct result of d
m , but }1,0{0 ∈d . If 10 =d ,

equation (8) is multiplied by mm =
1 , and if 00 =d , equation (8) is multiplied by 1

0
=m .

Therefore, the if statement in algorithm 5 allows the algorithm to work with any kind of secret key

d .

Algorithm 5 Modified FV scheme to counteract JS attack and to work with any exponent

1: Input Gm ∈ , 201)(ddd n K−=

2: Output Gms d
∈=

3: rR ←]0[

4: 2
]1[mrR ⋅←

5: 1
]2[

−
= rR

6: for 1−n to 1 do

7: NdRdRdR iii mod][][][⋅←

8: NdRdRdR iii mod][][][⋅←

9: NRRR mod]2[]2[]2[⋅=

10: end for

11: if 10 =d then

12: mRR ⋅=]0[]0[

13: end if

12: Return NRR mod]2[]0[⋅

Algorithm 5 uses more lines than algorithm 4; thus, when the d values are always odd numbers,

algorithm 4 is recommended, and when the d values can be either odd or even numbers,

algorithm 5 can be used.

David Tinoco Varela

International Journal of Security (IJS), Volume (6) : Issue (3) : 2012 23

4. CHARACTERISTICS OF THE PROPOSED ALGORITHM
The proposed algorithm is highly regular: there is always a multiplication followed by a squaring

regardless of the processed bit. The relation between the registers 2]0[/]1[mRR = is invariant

throughout the execution of the algorithm.

Table 4 compares some characteristics of the proposed algorithm against the characteristics of
other similar algorithms. Table 4 shows the number of registers and the average number of
multiplications executed by the proposed algorithm, compared with algorithms derived from the
original Montgomery powering ladder and the square-and-multiply algorithms. In table 4, the
squarings are considered multiplications; the if statements are not considered; and n is the bit

length of the exponent.

Algorithms Number of registers Average number of multiplications
Square-and-multiply left-to-right 1 1.5n
Square-and-multiply right-to-left 2 1.5n
Montgomery powering ladder 2 2n

Giraud’s algorithm 2 2n
FV scheme 3 3n

Proposed algorithm 3 3n

TABLE 4: Comparison of the number of registers and the average number of multiplications executed by

algorithms based on the Montgomery powering ladder and the square-and-multiply algorithms.

According to table 4, the proposed algorithm has disadvantages in runtime and number of
registers compared with similar algorithms; however, these disadvantages are countered by the
security characteristics of the proposed algorithm. Section 4.1 shows the level of security of the
proposed technique with respect to other algorithms.

4.1 Security
Simple Power Analysis (SPA) [23] can recognize in a power trace, obtained from a device which
executes a cryptographic algorithm, when a bit is equal to 0 and when it is equal to 1 if there are
operations that depend on the bit’s value being processed. The square-and-multiply algorithm is
vulnerable to SPA because it has a conditional branch during its execution. The proposed
algorithm does not have conditional operations and is therefore secure against SPA.

Because dummy operations are used in the square-and-multiply always algorithm, it can be
attacked with the SEA, which consists of inducing a fault during the execution of the algorithm. If

the fault affects a dummy operation (0=id), the output result will not be altered, but if the fault

affects a necessary operation (1=id), the output result will be altered. Thus, an attacker can

determine when a bit equal to 0 was attacked. The proposed algorithm does not have dummy
operations that can be attacked and is thus resistant to the SEA.

To break the security of a cryptosystem with Differential Power Analysis (DPA) [23], it is
necessary to collect many power traces of the same algorithm with different input values and
perform a statistical analysis over them. The algorithm proposed by Giraud [6] and the
Montgomery powering ladder are vulnerable to DPA, but the value r used by the proposed
algorithm helps to avoid DPA.

RDA is an attack that uses two related messages M and 2
M , and by observing the relationship

between the two messages through the execution of the same algorithm, it can obtain the secret
key of the cryptosystem. This attack was developed against the Montgomery powering ladder, but
Giraud’s algorithm is also vulnerable to it. The FV scheme and the proposed algorithm are
resistant to this attack because the random value r breaks the relationship between M and

2
M .

David Tinoco Varela

International Journal of Security (IJS), Volume (6) : Issue (3) : 2012 24

Kim and Quisquater showed the possibility of inducing two faults during the same execution of an
algorithm [19]: the first fault to corrupt a register and the second fault to avoid an operation (such
as a coherence test). Under this scheme, the algorithm proposed by Giraud can be vulnerable to
the JS attack proposed by Schmidt because the coherence test will not be performed. Thus, the
Giraud’s algorithm will not recognize that the relationship between the registers has been lost,
and an attacker can calculate the JS of the erroneous value, obtaining useful information

1
.

It has been shown that the proposed algorithm is secure against the attack proposed by Schmidt
and Medwed, whereas the FV scheme, Giraud’s algorithm, and the Montgomery powering ladder
are vulnerable against that attack.

As demonstrated in this section, the proposed algorithm offers better security than that offered by
the other algorithms mentioned here.

5. COMMENTS
There is a concept that can be used to protect algorithms against this kind of attacks: by changing
a quadratic non-residue value into a quadratic residue value (or working only with quadratic
residue values through an algorithm, such as the proposed algorithm), it is possible to prevent an
attacker from using a JS attack against a cryptographic algorithm.

As examples, the algorithms square-and-multiply right-to-left (SaM RtL) and square-and-multiply
left-to-right (SaM LtR) are considered. As stated in section 2.3, Boreale attacked the SaM RtL

algorithm (Algorithm 2). In this attack, if the squaring 2
1]1[]1[RR i =− in the iteration 1−i is

corrupted with a value z , where 1)/(−=Nz , and if the value of the bit in the i -th iteration is

equal to 1, the JS value 1)/(−=Nz will affect the operation NRRR mod]1[]0[]0[⋅← in the i -th

iteration, then 1)1()1(]0[−=−⋅=iR . (It is supposed that 1)/(=Nm). Henceforth, the register]0[R

will have a JS equal to 1− , a value that can be exploited by an attacker.

On the other hand, the SaM LtR (algorithm 6) cannot be attacked using Boreale’s attack, because

if it is placed an error in any operation mRR ⋅=]0[]0[or 2]0[]0[RR ← in the i -th iteration such

that 1)/]0[(−=NR i (It is supposed that 1)/(=Nm), the operation 2
1]0[]0[ii RR =− will convert

the JS value 1)/]0[(−=NR i to 1)/]0[(1 =− NR i in the next iteration of the algorithm. In other

words, the operation 2
1]0[]0[ii RR =− will convert a quadratic non-residue value into a quadratic

residue value, and this process will be repeated in each step of the for loop, which will avoid any
kind of JS attack because there will be no any JS value that can be used to obtain relevant
information about the cryptosystem.

Thus, the SaM LtR is intrinsically secure against JS attacks, because it converts any quadratic
non-residue value into a quadratic residue value through its execution.

6. FUTURE WORK

Here, the blinded Montgomery ladder exponentiation algorithm has been protected against the
Jacobi symbol attack. The modification of algorithm 1 was developed according to its specific
characteristics, and according to the fault model used over it, but each modular exponentiation
algorithm in the literature has different characteristics. To extend our results, we will develop
forms to protect other algorithms that are vulnerable to the JS attack and that have different
characteristics, such as the algorithms Add only and Add always, which were presented by
Marc Joye in [24] and attacked in 2010 by Kim [25].

1 Dottax et al. have proposed a method to resist the double-fault attack in [26].

David Tinoco Varela

International Journal of Security (IJS), Volume (6) : Issue (3) : 2012 25

Algorithm 6 Square-and-multiply left-to-right

1: Input Gm ∈ , 201)(ddd n K−=

2: Output Gms d
∈=

3: 1]0[←R

4: for 1−n to 0 do

5: NRR mod]0[]0[2
←

6: if 1=id then

7: NmRR mod]0[]0[⋅←

8: end if
9: end for
10: Return]0[R

7. CONCLUSIONS

In this paper, we have proposed an algorithm that is secure against the attack proposed by
Schmidt and Medwed. It has disadvantages in runtime and space compared to similar algorithms,
but it also provides a higher level of security than these other algorithms.

Acknowledgments: We wish to thank the referee for carefully reading this paper and for his
constructive suggestions. This paper was in part supported by the PACIVE project GC-19 of the
FES-C UNAM.

8. REFERENCES
[1] P. Kocher. “Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other

systems.” In Koblitz, N., ed.: Advances in Cryptology-CRYPTO 96. Volume 1109 of Lecture
in Notes in Computer Science, 1996, pp. 104-113.

[2] D. Boneh, R. DeMillo and R. Lipton. “On the importance of checking cryptographic protocols

for faults.” In Fumy, W., Ed.: Advances in Cryptology-EUROCRYPT ’97. Volume 1233 of
Lecture Notes in Computer Science, 1997, pp. 37-51.

[3] J.S. Coron. “Resistance against differential power analysis for elliptic curve cryptosystems.”

In Ko, Paar, C., Eds.: Cryptographic Hardware and Embedded Systems-CHES 2002.
Volume 1717 of Lecture Notes in Computer Science, 1999, pp. 292-302.

[4] S.M. Yen, S. Kim, S. Lim, and S. Moon. “A countermeasure against one physical

cryptanalysis may benefit another attack”. Information Security and Cryptology-ICISC 2001,
2288 of Lecture Notes in Computer Science, 2001, pp.414-427.

[5] M. Joye and S.M. Yen. “The montgomery powering ladder.” In Cryptographic Hardware and

Embedded Systems-CHES 2002, 2523 of Lecture Notes in Computer Science, 2003, pp.
291-302.

[6] C. Giraud. “An rsa implementation resistant to fault attacks and to simple power analysis”.

IEEE Transactions on computers, Vol. 55, No. 9, pp. 1116-1120, 2006.

[7] S.M. Yen, L.C. Ko, S.J. Moon, and J.C. Ha. “Relative doubling attack against montgomery

ladder.” In Information Security and Cryptology-ICISC 2005, 3935 of Lecture Notes in
Computer Science, 2005, pp. 117-128.

[8] P.A. Fouque and F. Valette. “The doubling attack–why upwards is better than downwards.”

In Cryptographic Hardware and Embedded Systems-CHES 2003, LNCS 2779, 2003, pp.
269-280.

David Tinoco Varela

International Journal of Security (IJS), Volume (6) : Issue (3) : 2012 26

[9] G. Fumaroli and D. Vigilant. “Blinded fault resistant exponentiation.” Fault Diagnosis and

Tolerance in Cryptography, 4236 of Lecture Notes in Computer Science, 2006, pp. 62-70.

[10] M. Boreale. “Attacking right-to-left modular exponentiation with timely random faults.” Fault

Diagnosis and Tolerance in Cryptography, 4236 of LNCS, pp. 24-35, 2006.

[11] J. M. Schmidt and M. Medwed. “Fault attacks on the montgomery powering ladder”.

Information Security and Cryptology ICISC-2010, pp. 396-406, 2011.

[12] H. Mamiya, A. Miyaji, and H. Morimoto. “Efficient countermeasures against rpa, dpa, and

spa.” Cryptographic Hardware and Embedded Systems-CHES 2004, 3156 of Lecture
Notes in Computer Science, 2004, pp. 343-356.

[13] C.C. Lu, S.Y. Tseng, and S.K. Huang. “A secure modular exponential algorithm resists to

power, timing, c safe error and m safe error attacks.” In 19th International Conference on
Advanced Information Networking and Applications, 2005. AINA 2005, pp. 151-154.

[14] C.H. Kim and J.J. Quisquater. “How can we overcome both side channel analysis and fault

attacks on rsa-crt?.” Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 21–
29, 2007.

[15] A. Boscher, R. Naciri, and E. Prouff. “Crt rsa algorithm protected against fault attacks.”

Information Security Theory and Practices. Smart Cards, Mobile and Ubiquitous Computing
Systems, 4462 of LNCS, pp.229-243, 2007.

[16] J.C. Ha, C.H. Jun, J.H. Park, S.J. Moon, and C.K. Kim. “A new crt-rsa scheme resistant to

power analysis and fault attacks.” Third 2008 International Conference on Convergence
and Hybrid Information Technology, 2008, pp. 351-356.

[17] A. Boscher, H. Handschuh, and E. Trichina. “Blinded fault resistant exponentiation

revisited.” In L. Breveglieri, S. Gueron, I. Koren, D. Naccache, and J.-P. Seifert, editors,
Workshop on Fault Diagnosis and Tolerance in Criptography - FDTC’09, 2009, pp. 3-9.

[18] S.M. Yen, W.C. Lien, S.J. Moon, and J.C. Ha. “Power analysis by exploiting chosen

message and internal collisions-vulnerability of checking mechanism for rsa-decryption.”
Progress in Cryptology–Mycrypt 2005, 3715 of Lecture Notes in Computer Science, 2005,
pp. 183-195.

[19] C. Kim and J.J. Quisquater. “Fault attacks for crt based rsa: New attacks, new results, and

new countermeasures.” Information Security Theory and Practices. Smart Cards, Mobile
and Ubiquitous Computing Systems, 4462, pp. 215-228, 2007.

[20] S. Chari, J. Rao, and P. Rohatgi. “Template attacks.” Cryptographic Hardware and

Embedded Systems-CHES 2002, 2523 of Lecture Notes in Computer Science, 2002, pp.
12–28.

[21] S.M. Yen and M. Joye. “Checking before output may not be enough against fault-based

cryptanalysis.” IEEE Transactions on Computers, 49(9), pp. 967-970, 2000.

[22] S.M. Yen and C.S Laih. “Common-multiplicand multiplication and its application to public-

key cryptography.” Electronic Letters, 29(17), pp. 1583-1584, August 1993.

[23] P.C. Kocher, J. Jaffe, and B. Jun. “Differential Power Analysis.” In Wiener, M., Ed.:

Advances in Cryptology-CRYPTO ’99. Volume 1666 of Lecture Notes in Computer
Science, Springer 1999, pp. 388-397.

David Tinoco Varela

International Journal of Security (IJS), Volume (6) : Issue (3) : 2012 27

[24] M. Joye. “Highly regular right-to-left algorithms for scalar multiplication.” Cryptographic

Hardware and Embedded Systems-CHES 2007, 4727 of Lecture in Notes in Computer
Science, 2007, pp. 135–147.

[25] C.H. Kim. “New fault attacks using jacobi symbol and application to regular right-to-left

algorithms.” Information Processing Letters, 110(20), pp. 882-886, 2010.

[26] E. Dottax, C. Giraud, M. Rivain, and Y. Sierra. “On second-order fault analysis resistance

for CRT-RSA implementations.” Information Security Theory and Practice. Smart Devices,
Pervasive Systems, and Ubiquitous Networks, pp. 68-83, Springer 2009.

