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Abstract 

 
Recently, many physical attack types (e.g., timing attacks, power consumption attacks, fault 
attacks) have been developed against cryptosystems, specifically against the modular 
exponentiation that is the core operation of many security systems. Indeed, there is a real need to 
eliminate the vulnerabilities of cryptosystems, such as RSA or the Elliptic Curve Cryptosystem, 
that make them susceptible to such attacks. In 2006, Boreale described a new type of physical 
attack based in the Jacobi symbol concept, and later, Schmidt used the same concept as Boreale 
to break the security of the blinded Montgomery powering ladder. In this paper, a countermeasure 
against Schmidt's attack is presented to make the blinded Montgomery powering ladder resistant 
to the Jacobi symbol attack. 
 
Keywords: Modular Exponentiation, Cryptography, Jacobi Symbol, Montgomery Ladder, Fault 
Attacks. 

 
 
1. INTRODUCTION 

 Kocher [1] was the first to point out the existence of physical attacks called Side Channel Attacks 
(SCA). He observed that when a cryptographic algorithm is implemented in an embedded device, 
an attacker can obtain the binary string of the secret key by simply observing the power traces or 
the timing consumption of the device in an electronic test instrument, such as an oscilloscope. 
SCAs are, first of all, used to attack modular exponentiation (Add and double is the analogous 
function in the Elliptic Curve Cryptosystem, ECC), which is the core operation in cryptosystems 
such as RSA. 
 
SCAs opened the door to a new type of physical attacks, one of which was the Fault Attack (FA) 
proposed by Bonhe, DeMillo and Lipton [2]. FAs are more aggressive than SCAs because FAs 
physically disturb the execution of the device that is running the cryptographic algorithm. 
 
To prevent SCAs and FAs, many modular exponentiation algorithms have been created, but 
Coron [3] provided the first algorithm specifically designed to defeat SCAs when he proposed the 
square-and-multiply always algorithm. However, this algorithm was attacked by the denominated 
Safe Error Attack (SEA) [4].  
 
The Montgomery powering ladder [5] was a new idea proposed by Joye and Yen to protect 
cryptosystems against SCAs and FAs. This algorithm works in a regular form: that is, regardless 
of the value of the bit being processed (0 or 1), the algorithm will always calculate a multiplication 
followed by a squaring. The Montgomery ladder was widely accepted and attracted the attention 
of many researchers. Giraud [6] modified the Montgomery ladder to protect it against FAs; he 
proposed a Coherence Test based on a characteristic of the algorithm: the registers in all the 

iterations have the form xmR =]0[ , 1
]1[

+
=

x
mR . As a result, if the coherence test ]1[]0[ RmR =⋅  is 

true, then return ]0[R ; if not, return "error". 
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The Montgomery ladder was attacked by the Relative Doubling Attack (RDA) [7], a modification of 
the Doubling Attack (DA) [8], but Fumaroli and Vigilant [9] added a random value to the 
Montgomery ladder to blind the modular exponentiation. The algorithm proposed by Fumaroli and 
Vigilant was secure against SCAs, DA, RDA, and in a partial form against FA. 
 
A new type of attack was presented by Boreale in 2006 [10]. This attack uses a combination of 
FA and SCA, and using the Jacobi symbol (JS) it is possible to obtain the binary string of the 

secret key d . He used his model against the square-and-multiply right-to-left algorithm and 

proved that his attack is effective even in the presence of message blinding. On the other hand, 
Schmidt and Medwed [11] used the Jacobi symbol concept to create an attack that breaks the 
security of the Montgomery powering ladder in its blinded form.  
 
There are more modular exponentiation algorithms ([12], [13], [14], [15], [16], [17]) trying to defeat 
all the physical attacks ([18], [19], [20], [4], [21]) that threaten the security of the cryptosystems, 
but here, we focus our attention only on the blinded form of the Montgomery ladder algorithm and 
on the goal of avoiding Jacobi symbol attacks. 

 
2. PRELIMINARIES 
 

2.1 Jacobi Symbol 
The first necessary concept is the quadratic residue: for a given prime p , a  is a quadratic residue 

if 1),gcd( =pa  and pya mod
2

=  for some y . If 1),gcd( =pa  but a  is not a quadratic residue 

mod p , a  is called a quadratic non-residue mod p . 
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 is the Jacobi symbol, where n  is odd, kppn L1= , and 

the ip  are prime factors of n . The Jacobi symbol is a generalization of the Legendre symbol. 

 
2.1 Fault Attacks 
Bone, DeMillo and Lipton showed that it is possible to disturb an embedded device while it is 
executing a cryptographic algorithm [2] and that with the erroneous output value, an attacker can 
obtain secret information that can break the security of the cryptosystem. A disturbance can be 
induced, principally, by variation in supply voltage, and it may cause the device to misinterpret 
data or even skip a complete instruction. 
 
2.2 Montgomery Powering Ladder and its Blinded Form 
Many modular exponentiation algorithms have been developed. Joye and Yen proposed a new 
kind of algorithm to calculate the modular exponentiation, called the Montgomery powering ladder 
[5]. Their model was based on a different idea from those algorithms designed before it. The 
principal concept was that  
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−
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Some characteristics of the Montgomery ladder introduced in [5] are as follows: 
 

• The algorithm is highly regular; that is, there is always a multiplication followed by a 
squaring, regardless of the processed bit. 

• mRR =]0[/]1[  is invariant throughout the execution of the algorithm. 

• The two multiplications performed at each iteration share a common operand, for which 
the Common-multiplicand multiplication [22] can be used. 

• The two multiplications performed are independent at each iteration, and therefore, they 
can be calculated in parallel form. 

 
The Montgomery ladder was improved by Fumaroli and Vigilant (FV scheme), who added a 
random element r  to protect the algorithm; they used one more register than the simple 
Montgomery ladder to save the inverse value of the random element r  (Algorithm 1). 
 

Algorithm 1 FV scheme 

1:  Input Gm ∈ , 201 )( ddd n K−=  

2:  Output Gms d ∈=  

3: rR ←]0[ ; rmR ⋅←]1[  

4:  1
]2[

−
= rR   

5:  for 1−n  to 0  do 

6:  NdRdRdR iii mod][][][ ⋅←  

7: NdRdRdR iii mod][][][ ⋅←       

8: NRRR mod]2[]2[]2[ ⋅=  

9:  end for 

10: Return NRR mod]2[]0[ ⋅  

 
2.3 Attacks Based on the Jacobi Symbol 
In 2006, Boreale proposed a new kind of attack against the modular exponentiation, implemented 
over the binary square-and-multiply right-to-left algorithm (Algorithm 2) [10]. He put a fault z  in 

]1[R  when a squaring is executed in the iteration 1−i  of the for loop. Then, depending on the 

value of ( )NS / , where S  is the attacked output value, it can be possible to determine the value of 

the bit id . This scheme works by assuming that 1)/( =Nm , where m is the input value, and its 

behavior is similar to the Safe error : if the value of the bit in the i -th iteration is equal to 0, the 

fault does not affect the calculation of the JS of  1)/]0[( =NR i , but if 1=id , z  affects the register 

iR ]0[  which can provoke a JS value of 1)/]0[( −=NR i ,and thus a JS value of 1)/( −=NS . Here, 

two options are given: if )/( NS  is always equal to 1, then 0=id , but if  1)/( −=NS , id  is equal 

to 1. Thus, an enemy can deduce the secret key of the cryptosystem. 
 
Table 1 shows the behavior of algorithm 2 under the attack described by Boreale. In the example, 

it was assumed that 1)/( =Nm , 1)/( −=Nz , and 1100125 ==d . 

 

In 2010, Schmidt [11] proposed an attack that consisted of giving a message m  with 1)/( −=Nm  

to the FV scheme and skipping the operation 2
][][ ii dRdR = . Then, observing the resulting value 

could identify the values of id and 1+id . If 1)/( −=NS , then 1+= ii dd . The procedure of this attack 

is shown as algorithm 3. 
 
An example of the attack described in the algorithm 3 against the FV scheme is observed in table 

2. In this example, it was supposed that 1)/( −=Nm  and 1001119 ==d . 
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Algorithm 2 Square-and-multiply right-to-left 

1:  Input Gm ∈ , 201 )( ddd n K−=  

2:  Output Gms d
∈=  

3: mRR ←← ]1[  ;1]0[  

4:  for 0  to 1−n  do 

5:  if 1=id  then 

6:     NRRR mod]1[]0[]0[ ⋅←  

7: end if 

8: NRR mod]1[]1[
2

←  

9:  end for 
10: Return ]0[R  
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i

d  Intermediate products Jacobi symbol 
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TABLE 1: Algorithm 2 performed with a JS attack, FA in 1−i  and 1=
i

d . 

 

Algorithm 3 Attack proposed in [11] 

1:  Ensure Exponent 201 )( ddd n K−=  is used by the device. 

2:  Set 11 =−nd  

6:  for 2−n  to 0  do 

5:  Chose NZm∈  with 1−=








N

m
 

6: Calculate S  with the i -th squaring skipped 

6: if 1−=








N

S
 then 

7:     1+= ii dd  

8: else 

9:     11 +⊕= ii dd  

10: end if 
11:  end for 

12: Return d  
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i  i
d  Intermediate products Jacobi symbol 
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TABLE 2: Algorithm 1 executed with FA, where ii dd ≠+1 . 

 
In table 2, it can be noted that a modular multiplication in 1−i  must be performed by two 

elements with odd exponents to obtain a result with an even exponent and so obtain 1)/( =NS , 

which is the key point of the Schmidt‘s attack. This situation is observed when the modular 

multiplication 432 ]0[]1[]1[ === ⋅= iii RRR  is calculated after skipping the squaring operation 3]0[ =iR . 

 
The two attacks mentioned above are easy to implement and powerful because they only need to 
know about the Jacobi symbol in the returned value by the attacked algorithm. 

 
3.  PROPOSED ALGORITHM 

In this section, a modification of the FV scheme is proposed that is secure against Schmidt's 
attack, and the behavior of the proposed algorithm is explained. 
 
3.1   Algorithm 
In the approach proposed by Schmidt to attack the FV scheme, the idea is not to put a random 

value z  in the execution but to skip a complete squaring operation in the iteration i  when the 

algorithm is being executed. Then, depending on the value of )/( NS , it can be determined 

whether ii dd =+1 . 

 
It can be noted that only even intermediate exponents, through an algorithm, can be used to 
calculate any modular exponentiation. On the basis of this observation, algorithm 4 is proposed. It 

can be seen that this algorithm begins the register ]1[R  with an even exponent 2
]1[ mmmR =⋅= . 

This even exponent will affect all the calculations through the algorithm, and thus, it will affect the 

JS of all the intermediate values calculated by algorithm 4. Here, odd values d  are considered. 

 
In algorithm 4, it can be seen that the loop is not executed from 1−n  to 0 but from 1−n  to 1 , 

because of the behavior of the algorithm; this behavior will be explained in section 3.2. It can be 
noted that only the value in ]1[R  was altered, whereas no extra value was placed in ]0[R . 

 
Algorithm 4 guarantees that when an attacker skips one squaring operation, in any iteration of the 

loop, he will not be able to obtain any relevant information about the bits of the string of d , 

because to obtain any information, it is necessary to have in the output value 1)/( =NS  or 

1)/( −=NS  depending on the value of the attacked bits 1+id and id . However, the output value 
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of algorithm 4 will always be 1)/( =NS  if 1)/( =Nm  and 1)/( −=NS  if 1)/( −=Nm , regardless of 

the values of 1+id  and id . 

 

Algorithm 4 Modified FV scheme 

1:  Input Gm ∈ , 201 )( ddd n K−=  

2:  Output Gms d
∈=  

3: rR ←]0[  

4:  rmR ⋅←
2]1[  

5:  1
]2[

−
= rR   

6:  for 1−n  to 1  do 

7:  NdRdRdR iii mod][][][ ⋅←  

8: NdRdRdR iii mod][][][ ⋅←       

9: NRRR mod]2[]2[]2[ ⋅=  

10:  end for 
11: mRR ⋅= ]0[]0[  

12:  Return NRR mod]2[]0[ ⋅  

 
All the values obtained in the intermediate steps of algorithm 4 have an even exponent, and 
obviously, all of them are quadratic residues; therefore, they have a JS equal to 1. Now, in line 11 
of algorithm 4, it is possible to see that the register ]0[R  is altered by the operation 

mRR i ⋅= =1]0[]0[ , where 1]0[ =iR is the resulting value of the iteration 1=i  of the for loop (lines 6 

to 10 of algorithm 4). All the values calculated through the for loop have a JS equal to 1, and 

therefore, the JS of 1]0[ =iR  is equal to 1. For that reason, the JS of the returned value depends of 

the JS of m , disregarding completely the values of 1+id  and id , because if the JS of m  is equal 

to 1, then 1)1()1(]0[]0[ 1 =⋅=⋅= = mRR i (considering only JS values), and if the JS of m  is equal to 

-1, then 1)1()1(]0[ −=−⋅=R . 

 
 As shown in table 2, elements with even exponents (quadratic residues) and with odd exponents 
(quadratic non-residues) are needed in the intermediate products to deduce the binary string of 

d . Thus, the proposed countermeasure is a protection against the Jacobi symbol attack, 

because the execution of algorithm 4 has only even exponents in the intermediate products. This 

protection is observed in table 3. In this example, it was supposed that 10011139 ==d and 

1)/( −=Nm . 

 

As shown in table 3, all the JS values of the intermediate steps in the algorithm are equal to 1, 

and it does not matter if 1)/( =Nm or if 1)/( −=Nm . 

 
3.2 Behavior of the Proposed Algorithm 

The modular exponentiation dm , where ∑
−

=

=

1

0

2

n

i

i
idd  and }1,0{∈id , can be represented by 

 

  0121 222 )))(((
dddd

mmmm nn ⋅⋅ −− LL                                              (1) 

 
If equation (1) is calculated using algorithm 1, it is possible to know that the last iteration of 

algorithm 1 can be represented by equation (2), which is the correct result of d
m  
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i  i
d  Intermediate products Jacobi symbol 

5 1 

 

2422

22

)(]1[

]0[

rmrmR

rmR

⋅=⋅=

⋅=
 

1)1)(1()/]1[(

1)1)(1()/]0[(

==

==

NR

NR
 

4 0 
46

44222

]1[

)(]0[

rmR

rmrmR

⋅=

⋅=⋅=
 

1)1)(1()/]1[(

1)1)(1()/]0[(

==

==

NR

NR
 

3 0 
810

88244

]1[

)(]0[

rmR

FArmrmR

⋅=

=⋅=⋅=
 

1)1)(1()/]1[(

1)1)(1()/]0[(

==

==

NR

NR
 

2 1 
16202810

121481044

)(]1[

]0[

rmrmR

rmrmrmR

⋅=⋅=

⋅=⋅⋅⋅=
 

1)1)(1()/]1[(

1)1)(1()/]0[(

==

==

NR

NR
 

1 1 
324021620

2834

)(]1[

]0[

rmrmR

rmR

⋅=⋅=

⋅=
 

1)1)(1()/]1[(

1)1)(1()/]0[(

==

==

NR

NR
 

 

TABLE 3: Algorithm 4 executed with JS attack where 
ii

dd =
+1 . 
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Now, it can be supposed that algorithm 4 is executed from 1−nd  to 0d . Then, the modular 

exponentiation is represented by  
 

0121 2222222
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mmmm nn ⋅⋅ −− LL                                           (3) 

 
The behavior of equation (3) through algorithm 4 is given by equations (4) to (7), where each step 

represents an iteration and ink −−= 1 . 
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Note that equation (2) is very similar to equation (6). Now, if the last squaring and the last 

multiplication by )(2 0d
m  of equation (6) are deleted, then equation (8) is obtained 

 

)(2    )(2)(2 1
1

2
2

1
1

ddd n
n

n
n

m
+++ −

−
−

−
L                                            (8) 

 

If equation (8) is multiplied by )( 0d
m , the correct result of the operation d

m  has been obtained. 

Therefore, algorithm 4 is executed from 1−n  to 1  (the last squaring and the last multiplication by 
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)(2 0d
m  are deleted), and it is necessary to multiply by m in line 11 of algorithm 4 (the 

multiplication by )( 0d
m  is made, but it is supposed that 10 =d , and thus, mm

d
=

)( 0 ). 

 
Equations (9) and (10) are given only to show the relationship between the registers of algorithms 

1 and 4, where 
ioR )(]0[  and 

ioR )(]1[  are the registers of algorithm 1 running from  1−n to 

0;
ipR )(]0[  and 

ipR )(]1[  are the registers of algorithm 4 running from 1−n  to 1; and )( pd  is a bit 

of the exponent in algorithm 4 at the iteration 1−i . 
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3.3   Expansion of the Algorithm 

Up to this point, the discussion has addressed an algorithm that is effective when the keys d  are 

odd, but it is possible to use algorithm 4 for all types of d values, by adding a few lines. The 

resulting algorithm is given below as algorithm 5. 
 
Algorithm 5 can be used not only with odd keys, given as exponents, but also with even keys. To 

understand this option, recall that it is necessary to multiply the value 0d
m  (where 0d  determines 

if a key is odd or even) by equation (8) to obtain the correct result of d
m , but }1,0{0 ∈d . If 10 =d , 

equation (8) is multiplied by mm =
1 , and if 00 =d , equation (8) is multiplied by 1

0
=m . 

Therefore, the if statement in algorithm 5 allows the algorithm to work with any kind of secret key 

d . 
 

Algorithm 5 Modified FV scheme to counteract JS attack and to work with any exponent 

1:  Input Gm ∈ , 201 )( ddd n K−=  

2:  Output Gms d
∈=  

3: rR ←]0[  

4:  2
]1[ mrR ⋅←  

5:  1
]2[

−
= rR   

6:  for 1−n  to 1  do 

7:  NdRdRdR iii mod][][][ ⋅←  

8: NdRdRdR iii mod][][][ ⋅←       

9: NRRR mod]2[]2[]2[ ⋅=  

10:  end for 

11:  if 10 =d then 

12: mRR ⋅= ]0[]0[  

13:  end if 

12:  Return NRR mod]2[]0[ ⋅  

 

Algorithm 5 uses more lines than algorithm 4; thus, when the d  values are always odd numbers, 

algorithm 4 is recommended, and when the d values can be either odd or even numbers, 

algorithm 5 can be used.  
 



David Tinoco Varela  

International Journal of Security (IJS), Volume (6) : Issue (3) : 2012 23 

4.  CHARACTERISTICS OF THE PROPOSED ALGORITHM 
The proposed algorithm is highly regular: there is always a multiplication followed by a squaring 

regardless of the processed bit. The relation between the registers 2]0[/]1[ mRR =  is invariant 

throughout the execution of the algorithm.  
 
Table 4 compares some characteristics of the proposed algorithm against the characteristics of 
other similar algorithms. Table 4 shows the number of registers and the average number of 
multiplications executed by the proposed algorithm, compared with algorithms derived from the 
original Montgomery powering ladder and the square-and-multiply algorithms. In table 4, the 
squarings are considered multiplications; the if statements are not considered; and n  is the bit 

length of the exponent.  
 

Algorithms Number of registers  Average number of multiplications 
Square-and-multiply left-to-right 1 1.5n 
Square-and-multiply right-to-left 2 1.5n 
Montgomery powering ladder 2 2n 

Giraud’s algorithm 2 2n  
FV scheme 3 3n 

Proposed algorithm 3 3n 

 
TABLE 4: Comparison of the number of registers and the average number of multiplications executed by 

algorithms based on the Montgomery powering ladder and the square-and-multiply algorithms.  

 
According to table 4, the proposed algorithm has disadvantages in runtime and number of 
registers compared with similar algorithms; however, these disadvantages are countered by the 
security characteristics of the proposed algorithm. Section 4.1 shows the level of security of the 
proposed technique with respect to other algorithms. 
 
4.1 Security 
Simple Power Analysis (SPA) [23] can recognize in a power trace, obtained from a device which 
executes a cryptographic algorithm, when a bit is equal to 0 and when it is equal to 1 if there are 
operations that depend on the bit’s value being processed. The square-and-multiply algorithm is 
vulnerable to SPA because it has a conditional branch during its execution. The proposed 
algorithm does not have conditional operations and is therefore secure against SPA.  
 
Because dummy operations are used in the square-and-multiply always algorithm, it can be 
attacked with the SEA, which consists of inducing a fault during the execution of the algorithm. If 

the fault affects a dummy operation ( 0=id ), the output result will not be altered, but if the fault 

affects a necessary operation ( 1=id ), the output result will be altered. Thus, an attacker can 

determine when a bit equal to 0 was attacked. The proposed algorithm does not have dummy 
operations that can be attacked and is thus resistant to the SEA. 
 
To break the security of a cryptosystem with Differential Power Analysis (DPA) [23], it is 
necessary to collect many power traces of the same algorithm with different input values and 
perform a statistical analysis over them. The algorithm proposed by Giraud [6] and the 
Montgomery powering ladder are vulnerable to DPA, but the value r  used by the proposed 
algorithm helps to avoid DPA.   
 

RDA is an attack that uses two related messages M  and 2
M , and by observing the relationship 

between the two messages through the execution of the same algorithm, it can obtain the secret 
key of the cryptosystem. This attack was developed against the Montgomery powering ladder, but 
Giraud’s algorithm is also vulnerable to it. The FV scheme and the proposed algorithm are 
resistant to this attack because the random value r  breaks the relationship between M  and 

2
M . 
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Kim and Quisquater showed the possibility of inducing two faults during the same execution of an 
algorithm [19]: the first fault to corrupt a register and the second fault to avoid an operation (such 
as a coherence test). Under this scheme, the algorithm proposed by Giraud can be vulnerable to 
the JS attack proposed by Schmidt because the coherence test will not be performed. Thus, the 
Giraud’s algorithm will not recognize that the relationship between the registers has been lost, 
and an attacker can calculate the JS of the erroneous value, obtaining useful information

1
. 

 
It has been shown that the proposed algorithm is secure against the attack proposed by Schmidt 
and Medwed, whereas the FV scheme, Giraud’s algorithm, and the Montgomery powering ladder 
are vulnerable against that attack.  
 
As demonstrated in this section, the proposed algorithm offers better security than that offered by 
the other algorithms mentioned here. 
  

5.  COMMENTS 
There is a concept that can be used to protect algorithms against this kind of attacks: by changing 
a quadratic non-residue value into a quadratic residue value (or working only with quadratic 
residue values through an algorithm, such as the proposed algorithm), it is possible to prevent an 
attacker from using a JS attack against a cryptographic algorithm. 
 
As examples, the algorithms square-and-multiply right-to-left (SaM RtL) and square-and-multiply 
left-to-right (SaM LtR) are considered. As stated in section 2.3, Boreale attacked the SaM RtL 

algorithm (Algorithm 2). In this attack, if the squaring 2
1 ]1[]1[ RR i =−  in the iteration 1−i  is 

corrupted with a value z , where 1)/( −=Nz , and if the value of the bit in the i -th iteration is 

equal to 1, the JS value 1)/( −=Nz  will affect the operation NRRR mod]1[]0[]0[ ⋅←  in the i -th 

iteration, then 1)1()1(]0[ −=−⋅=iR . (It is supposed that 1)/( =Nm ). Henceforth, the register ]0[R  

will have a JS equal to 1− , a value that can be exploited by an attacker. 
 
On the other hand, the SaM LtR (algorithm 6) cannot be attacked using Boreale’s attack, because 

if it is placed an error in any operation mRR ⋅= ]0[]0[  or 2]0[]0[ RR ←  in the i -th iteration such 

that 1)/]0[( −=NR i  (It is supposed that 1)/( =Nm ), the operation 2
1 ]0[]0[ ii RR =−  will convert 

the JS value 1)/]0[( −=NR i  to 1)/]0[( 1 =− NR i  in the next iteration of the algorithm. In other 

words, the operation 2
1 ]0[]0[ ii RR =−  will convert a quadratic non-residue value into a quadratic 

residue value, and this process will be repeated in each step of the for loop, which will avoid any 
kind of JS attack because there will be no any JS value that can be used to obtain relevant 
information about the cryptosystem.   
 
Thus, the SaM LtR is intrinsically secure against JS attacks, because it converts any quadratic 
non-residue value into a quadratic residue value through its execution. 
 

6.  FUTURE WORK 

Here, the blinded Montgomery ladder exponentiation algorithm has been protected against the 
Jacobi symbol attack. The modification of algorithm 1 was developed according to its specific 
characteristics, and according to the fault model used over it, but each modular exponentiation 
algorithm in the literature has different characteristics. To extend our results, we will develop 
forms to protect other algorithms that are vulnerable to the JS attack and that have different 
characteristics, such as the algorithms  Add only and Add always, which were  presented by  
Marc Joye in [24] and attacked in 2010 by Kim [25].  
 

                                                
1 Dottax et al.  have proposed a method to resist the double-fault attack in [26 ]. 
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Algorithm 6 Square-and-multiply left-to-right 

1:  Input Gm ∈ , 201 )( ddd n K−=  

2:  Output Gms d
∈=  

3: 1]0[ ←R  

4:  for 1−n  to 0  do 

5:  NRR mod]0[]0[ 2
←  

6:  if 1=id  then 

7:     NmRR mod   ]0[]0[ ⋅←  

8: end if  
9:  end for 
10: Return ]0[R  

 
7.  CONCLUSIONS 

In this paper, we have proposed an algorithm that is secure against the attack proposed by 
Schmidt and Medwed. It has disadvantages in runtime and space compared to similar algorithms, 
but it also provides a higher level of security than these other algorithms. 
 
Acknowledgments: We wish to thank the referee for carefully reading this paper and for his 
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