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Abstract 

 
In this paper an adaptive range and domain filtering is presented. In the 
proposed method local histograms are computed to tune the range and domain 
extensions of bilateral filter. Noise histogram is estimated to measure the noise 
level at each pixel in the noisy image. The extensions of range and domain filters 
are determined based on pixel noise level. Experimental results show that the 
proposed method effectively removes the noise while preserves the details. The 
proposed method performs better than bilateral filter and restored test images 
have higher signal to noise ratio than those obtained by applying popular 
Bayesshrink wavelet denoising method. 
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1. INTRODUCTION 
Noise elimination is an important concern in image processing and computer vision. Images 
obtained from the real world are corrupted with noise. The image noise might decrease to some 
negligible levels under ideal conditions such that denoising is not necessary, but in general to 
recover the image the corrupting noise must be removed for practical purposes.  Noise makes 
ambiguities in the underlying signal relative to its observed form by perturbations which are not 
related to the scene under study. The goal of denoising is to remove the noise and to retain the 
important signal features as much as possible.  Linear filters, which consist of convolving the 
image with a constant matrix to obtain a linear combination of neighborhood values, have been 
widely used for noise elimination in the presence of additive noise.  However they can produce a 
blurred and smoothed image with poor feature localization and incomplete noise suppression. 
 
Gaussian filters are typical linear filters that have been widely used for image denoising. 
Gaussian filters assume that image signals have smooth spatial variations and pixels in a 
neighborhood have close values, so noise will be suppressed while signal will be preserved by 
averaging pixel values over a local neighborhood. The assumption of slow spatial signal 
variations works well in smooth regions; however it fails and undesirably blurs the signal where 
spatial variations are high such as edges. 
 
To overcome this shortcoming and prevent undesirable blurring in regions with high spatial signal 
variations, a number of filters in spatial and spatial-frequency domain are proposed. The most 
popular ones in spatial domain are anisotropic diffusion [1-3], bilateral filtering and its extensions 
[4-8]. Diffusion based methods iteratively solve partial differential equations and average the 
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signal over spatial neighborhood whose extension is determined based on local signal variations. 
Bilateral filtering also known as range and domain filtering is a non-linear filter which performs 
weighted averaging in both range and domain. 
 
Bilateral filtering was introduced by Tomasi and Manduchi [4] to smooth noisy images while 
preserve edges using neighboring pixels. Bilateral filtering is a local, nonlinear, and noniterative 
technique which considers both gray level (color) similarities and geometric closeness of the 
neighboring pixels. In a traditional domain filter, weight of the pixels decays by distance from the 
center of the filter. Low pass filters assume that spatial variations is slow over the image, so by 
weighted averaging of pixel values in a neighborhood, noise will be averaged away while the 
signal will be preserved. However, this assumption fails at edges where the spatial variations are 
not smooth and application of the low pass filter blurs the edges. Bilateral filter overcomes this by 
filtering the image in both range and domain. Pixels in a neighborhood are considered close 
either based on their spatial location (domain), or based on their pixel values (range). Therefore 
bilateral filter averages pixel values based on weights that decay by both distance and pixel 
dissimilarity. 
 
There are several extensions to improve bilateral filtering [5-8]. In [6], a training-based bilateral 
filtering is proposed where a general degradation model is considered for degraded images. Then 
a restoration algorithm is developed to restore the degraded images with unknown degradation 
process. Therefore, the success of restoration process depends on the general definition of 
degradation model. In [7,8], different methods to speed up the bilateral filtering have been 
proposed. 
 
Nonlinear filters in spatial-frequency domain have also been proposed to preserve detail signal 
and suppress the noise. The most popular ones are wavelet based denoising techniques [9-12]. 
In wavelet based denoising methods, the noise is estimated and wavelet coefficients are 
thresholded to separate signal and noise. Various approaches to nonlinear wavelet-based 
denoising have been introduced among them Bayesshrink wavelet denoising is developed in the 
Bayesian framework and has been widely used for image denoising [10-11]. 
 
In this paper, an adaptive technique is proposed to tune the extensions of range and domain 
filters. In the proposed method, the distance of the local histogram from the estimated noise 
histogram is measured using earth mover's distance. The measured distance at each spatial 
location is then used for adaptive tuning of bilateral filter. The proposed method provides 
promising results and effectively removes the noise while preserves the signal characteristics. 
The proposed method is presented in the next section followed by results and conclusions. 
 

2. The Proposed Method  
Let pure signal S (here an image) be distorted by additive noise n. We can write  
 

 
 

where I is the noisy signal. The goal of denoising is separating signal S and noise n by estimating 
n such that S can be extracted from I: 
 

 
 

This can be done by applying a filter h to the signal I 
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where traditionally h is defined as a local filter assigning higher weights to neighboring pixels 
which are spatially closer to the central pixel xc of the neighborhood. A popular and simple case 
of h is Gaussian filter 
 

 
 
where µd = xc is the central pixel of the neighborhood such that d(x, µd) = |x - µd | is the Euclidean 
distance between xc and a neighboring pixel x. Gaussian domain filtering by using a Gaussian 
filter averages away noise and preserves the signal in smooth regions, however in the same way 
it averages away and blurs signal details such as edges. A popular solution to solve this problem 
is employing bilateral filter [4]. 
 

 Bilateral Filter 
Bilateral filter combines range and domain filtering 
 

 
 

where the range filter averages the signal values in a neighborhood by assigning the weights 
based on the similarity of the neighboring pixels and the central pixel: 
 
 

 
 
where µr = I(µd) = I(xc) is the intensity value of the central pixel of the neighborhood such that 
r(I(x), µr) = |I(x) - µr| is the absolute intensity difference of the central and a neighboring pixel x. 
 
Bilateral filtering overcomes the shortcomings of linear domain filtering by combining the linear 
domain filter with a nonlinear range filter. As a result bilateral filter preserves signal details such 
as edges while suppresses noise, however it considers fix parameters (σd, σr) for extensions of 
both domain and range filters. The performance of bilateral filter can be improved by adaptively 
tuning the filter parameters over the image based on the spatial noise level. 
 

 Adaptive Range and Domain Filtering 
In the proposed method, to improve the performance of bilateral filtering, spatial noise level is 
locally estimated to determine the filter parameters (σd, σr). 
 
To estimate the local spatial noise level nl, the image noise histogram ng is estimated and 
compared with the local signal. To compare two probability density functions (PDFs), a number of 
nonparametric models have been used including minimizing the comparison 2א function between 
two PDFs. 
 
The 2א distance between histograms of two delta functions δ(x1) and δ(x2) where x1 ≠ x2 is the 
same regardless of the distance between x1 and x2. This is not generally suitable for many image 
processing applications where different smooth regions could be represented with disjoint δ 
functions. 
 
The earth mover's distance (EMD) or the Wasserstein distance is a mathematical measure to 
compare distributions (histograms). EMD was first introduced by Gaspard Monge in 1781, it was 
later used as a distance measure for intensity images [13]. The EMD between two distributions is 
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the least work that is required to move one distribution to another such that two distributions 
completely cover each other. 
 
Let Ha and Hb be two normalized histograms with cumulative distributions Ca and Cb respectively. 
EMD between Ha and Hb is defined by 
 
 

 
 
Local histogram for each pixel x in image I is computed over the neighborhood w consisting pixel 
x and its neighboring pixels. The EMD is then computed to compare the normalized local 
histogram Hx and image noise histogram ng 
 

 
 
where Cx and Cn are cumulative distributions of Hx and ng respectively. The extensions of domain 
and range filters (σd and σr) at each pixel x are set using E(Hx, ng). The domain filter extension at 
pixel x is defined as 
 

 
 
 
and we have 
 

 
 
 
where E(Hx, ng) is normalized EMD between noise and pixel histograms, σ is the filter extension 
parameter, and �d is considered to avoid domain filter extension σd to be set to zero. The range 
filter extension also is tuned based on E(Hx, ng) 
 

 
 
and we have 
 

 
 
 
where �r is considered to avoid range filter extension σr to be set to zero. 
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TABLE 1: Comparison of the proposed method with bilateral and 
Bayesshrink wavelet filtering methods. 

 
Clearly there is a tradeoff here to choose the domain filter extension σd: as the filter extension σd 
expands the number of neighborhood elements grows, allowing for greater noise reduction in the 
computation but at the same time causing greater spatial blurring by fusion of values from more 
distant locations. Moreover, the range filter essentially compresses the image histogram by fusion 
of pixel values and is set by σr. 
 
In the proposed method the maximum of σd and σr are set by σ based on equations (9) and (11). 
As 0 ≤ (1 - E) ≤ 1, for pixels which are contaminated with high noise, the distance between noise 
and the pixel histograms E is small, therefore (1 - E) will be large. Considering σ is fixed, σd will 
be large allowing the neighborhood to be extended for greater noise reduction while σr will be 
large based on (11) to allow significant histogram compression. 
 
On the other hand for pixels which are contaminated with low noise, E is large, therefore (1 - E) is 
small, and in turn σd will be small avoiding the neighborhood to be extended which in turn it 
allows less blurring. Considering that the pixel either is not contaminated with noise or is 
contaminated with low noise, σd will be small. Pixels have close values in small neighborhood, 
therefore σr will be small avoiding significant histogram compression. 
 

 Noise Histogram Estimation 
To estimate the noise histogram (ng), the local variance is first computed. Considering the local 
neighborhood w, the local variance of pixel x is defined as: 
 
 

 
 
where Nw is the number of pixels in the neighborhood w and 
 

 
Noise histogram ng is estimated by computing the histogram of the local variance image. Further, 
we set σ = σn where the noise power σn

2 is estimated by obtaining the mean of local variance 
image: 
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Finally, the local histogram Hx is computed for each pixel x and EMD is used to measure the 
distance between noise histogram ng and local histogram Hx. The schematic of noise histogram 
estimation is depicted in Fig. 1. 
 
 
 

 
 

Figure 1: Noise histogram estimation 
 

3. Results and CONSLUSION      
To test the proposed method five test images were used. Test images were corrupted by additive 
Gaussian noise with standard deviation of 15 and 25. The proposed method, the original bilateral 
filter, and a popular wavelet denoising method so called Bayesshrink wavelet denoising were 
applied to the corrupted test images. The recovered images applying aforementioned three 
methods were compared both based on PSNR and visual quality. The results are summarized in 
Tab. 1. 
 
As we can observe in Tab. 1 for additive Gaussian noise with standard deviation of 15, the 
proposed method performs better than the original bilateral filtering method. It gains higher PSNR 
than both the original bilateral filtering and Bayesshrink wavelet denoising methods for all of the 
test images. The recovered images applying the proposed method have also better visual quality. 
 
The recovered images applying Bayesshrink wavelet and the proposed method are depicted in 
Fig. 2. The proposed method performs better and the restored image gains higher PSNR (Tab. 
1). It has also a better visual quality than that of Bayesshrink method which can be observed by a 
closer look. Fig. 3 shows the Boat noisy image and EMD computed for the noisy image. The 
denoised Boat image using the original bilateral filtering, Bayesshrink wavelet, and the proposed 
method are depicted in this figure. 
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Figure 2: Restored Lena test image: (a) Bayesshrink wavelet. (b) The proposed method. 
 

 
 

Figure 3: Boat test image: (a) Original image. (b) Noisy. (c) EMD computed for (b). 
(d) Bilateral. (e) Bayesshrink wavelet. (f) The proposed method. 

 
 

 
Fig. 4 shows the application of bilateral filter and the proposed method to the Cameraman test 
image where the image is corrupted with additive Gaussian noise with σn = 25.  The application of 
Bilateral filtering and the proposed method to Goldhill test image which is corrupted with additive 
Gaussian noise with σn = 15 is depicted in Fig. 5. Fig. 6 shows the comparison of the 
Bayesshrink, bilateral, and the proposed method where they are applied to the Lena test image 
corrupted with additive Gaussian noise with σn = 15. As we can observe in Fig. 4-6, the proposed 
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method performs better and produces smoother results while the details are better preserved in 
comparison with bilateral filter and the Bayesshrink. It also gains higher PSNR (Tab. 1). 
 
In this paper an adaptive range and domain filtering method based on local histograms was 
introduced. The noise histogram is estimated and the extensions of range and domain filters are 
tuned at each spatial location by measuring the distance between the pixel's and noise 
histograms using earth mover's distance. The proposed method was applied to several test 
images and its performance was compared with the original bilateral filtering and Bayesshrink 
wavelet denoising methods. The experimental results obtained by the proposed method showed 
the improvement of the visual image quality and increase of PSNR in comparison with the 
bilateral filtering and Bayesshrink wavelet. 
 
 

 
Figure 4: Cameraman test image: (a) Original image. (b) Noisy image (PSNR = 20.65).  

(c) Bilateral filtering (PSNR = 24.70). (d) The proposed method (PSNR = 26.00). 
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Figure 5: Goldhill test image: (a) Original image. (b) Noisy image (PSNR = 24.71).  
(c) Bilateral filtering (PSNR = 27.81). (d) The proposed method (PSNR = 28.56). 
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Figure 6: Lena test image: (a) Original image. (b) Bayesshrink (PSNR = 29.06).  
(c) Bilateral filtering (PSNR = 28.70). (d) The proposed method (PSNR = 30.09). 
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