
B.B.Biswal and B.B.Choudhury 

International Journal of Engineering, Volume (1) : Issue (2) 12 

Development and Simulation of a Task Assignment Model  
for Multirobot Systems 

 
 

B.B.Biswal              bbbiswal@nitrkl.ac.in 
Professor, Department of Mechanical Engineering 
National Institute of Technology, Rourkela 
769008, India 
 
B.B.Choudhury             bbcnit@gmail.com 
Ph.D Scholar, Department of Mechanical Engineering 
National Institute of Technology, Rourkela 
769008, India 

 
Abstract 

 
Multirobot systems (MRS) hold the promise of improved performance and 
increased fault tolerance for large-scale problems. A robot team can accomplish 
a given task more quickly than a single agent by executing them concurrently. A 
team can also make effective use of specialists designed for a single purpose 
rather than requiring that a single robot be a generalist. Multirobot coordination, 
however, is a complex problem. An empirical study is described in the present 
paper that sought general guidelines for task allocation strategies. Different task 
allocation strategies are identified, and demonstrated in the multi-robot 
environment. A simulation study of the methodology is carried out in a simulated 
grid world. The results show that there is no single strategy that produces best 
performance in all cases, and that the best task allocation strategy changes as a 
function of the noise in the system. This result is significant, and shows the need 
for further investigation of task allocation strategies.  
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1. INTRODUCTION 

The study of MRS has received increased attention in the recent years. This is not surprising as 
continually improving technology has made the deployment of MRS consisting of increasingly 
larger number of robots possible. It is obvious that, at least in some important respects, multiple 
robots will be superior to a single robot in achieving a given task. Potential advantages of MRS 
over a SRS (Single robot systems) include reduction of total system cost by employing multiple 
simple and cheap robots as opposed to a single, complex and expensive robots. Furthermore, 
the inherent complexity of certain task environment may require the use of multiple robots as the 
demand for capability is quite substantial to be met by a single robot. Finally, multiple robots are 
assumed to increase system robustness by taking advantage of inherent parallelism and 
redundancy. 
 
Multirobot teamwork is a complex problem consisting of task division, task allocation, 
coordination, and communication. The most significant concept in multi-robot systems is 
cooperation. It is only through cooperative task performance that the superiority of robot groups 
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can be demonstrated. The cooperation of robots in a group can be classified into two categories of 
implicit cooperation and explicit cooperation. In the implicit cooperation case each robot 
performs individual tasks, while the collection of these tasks is toward a unified mission. This 
type of group behavior is also called asynchronous cooperation, as it requires no synchronization 
in time or space. The explicit cooperation is the case where robots in a team work synchronously 
with respect to time or space in order to achieve a goal. One example of such cooperation is 
transportation of heavy objects by multiple robots, each having to contribute to the lifting and 
moving of the object. This task requires the robots to be positioned suitably with respect to 
each other and to function simultaneously. Regardless of the type of cooperation, the goal of the 
team must be transformed in to tasks to be allocated to the individual robots. 
 
There is no general theory of task allocation in uncertain multi-robot domains. In this paper, an 
attempt is made to empirically derive some guidelines for selecting task allocation strategies for 
multi-robot systems with implicit cooperation.  The explored strategies are individualistic in that 
they do not involve explicit cooperation and negotiation among the robots. However, they are a 
part of a large class approaches that produce coherent and efficient cooperative behavior. Given 
the empirical nature of this work and the scope of the problem addressed, these guidelines are 
necessarily incomplete, though they provide useful insight. The choice of task allocation strategy 
is far from trivial and that no optimal task allocation strategy exists for all domains. It can be very 
difficult to identify the optimal task allocation strategy even for a particular task. These results are 
derived through the use of a framework developed for understanding the task allocation problem, 
which illustrates a common approach to decomposing the problem. The approach presented in 
this paper can be advantageously used in real-world problems.  
 

2.  RELATED WORK 

Multirobot systems are becoming increasingly more capable and the types of achievable 
applications for teams of robots are becoming progressively more complex. Many approaches to 
multirobot coordination rely on a mechanism for task allocation to determine an efficient 
assignment of tasks to robots. However, existing techniques do not fully consider the complexity 
of the tasks to be allocated. For the most part, tasks are assumed to be atomic units that can 
be performed by one or more robots on the team. In practice, this usually means that tasks are 
either acquired from a central planner that decomposes the mission goals, or that tasks are 
specified as input by a system user. In any case, existing task allocation algorithms consider the 
tasks only in terms of the level of description provided by the user or the planner. Another main 
issue in task allocation is the study of multi-robot systems in hardware with small population sizes 
(e.g., under twenty), versus the study of issues in multi-agents systems in simulation with large 
population sizes. It should be noted that the effects of team size and its scaling are integral 
issues in robot group studies, and the reliability of the simulation results remains to be seen. 
 
One main issue in task allocation is the division of the tasks into homogeneous and 
heterogeneous tasks. Goldberg and Mataric [1, 2, 3] studied homogeneous and heterogeneous 
task allocation for a foraging task, namely trash collection. Their implementation ranges from 
homogenous system where all robots have the same task to a grouping, which divides the robots 
in different groups, and each group is assigned to do a different task. They use inference, 
spatial, and temporal parameters to evaluate different methods. The results show that although 
the grouping system is suitable for reducing interference, the best performance is obtained 
through homogenous task allocation, i.e., the fastest collection of trash than others. In another 
work, Parker [4] showed that augmenting homogenous task allocation by making robots more 
team-aware, results in systems that are substantially more efficient. Dudek et al. [5] worked out a 
general taxonomy to characterize multi-agent systems, consisting of the number of agents, 
communication (range, bandwidth and topology), reconfigurability, processing mechanism, and 
differentiation.  
 



B.B.Biswal and B.B.Choudhury 

International Journal of Engineering, Volume (1) : Issue (2) 14 

Berstas [6] presents an algorithm that can be utilized in task allocation in multi-robot 
applications, especially suitable for parallel computation. This approach attempts to find the best 
assignment between tasks and users, while maximizing the total benefit. It iterates between users 
and during iteration it tries to assign a task to a user who offers the most. The majority of 
multirobot systems that utilize an explicit task allocation mechanism assume either that a static 
set of tasks is given to the system as input [7, 8, 9, 10], or that tasks arrive dynamically, either from 
external [8, 9] or internal [11, 12] sources. In any case, such approaches search for an efficient 
assignment of the current task set to robots, assuming that all tasks are indivisible. When this 
type of mechanism is applied to complex tasks, a robot assigned a task can decompose it 
and then execute the resulting simple tasks [7]. In reality, however, it may be beneficial to 
allocate subcomponents of these tasks to more than one, and generally the preferred task 
decomposition will depend on the subtask assignments. Therefore, treating tasks as atomic 
entities during allocation is not always prudent. 
 
A common alternative among systems that explicitly handle complex tasks is a two-stage 
approach: first decompose all tasks and then distribute the resulting set of subtasks [12, 13, 
14]. The main drawback of this approach is that task decomposition is performed without 
knowledge of the eventual task allocation; therefore the cost of the final plan cannot be fully 
considered. Since there is no backtracking, costly mistakes in the central decompositions cannot 
be rectified. In some instances, the central plan is left intentionally vague, which allows for a 
limited amount of flexibility in modifying it later. For example, in GOFER Project [14], the central 
planner produces a general plan structure for which individual robots can later instantiate some 
variables; while in the "mapping algorithm” of Simmons et al. [11], is an on-line approach to 
likelihood maximization that uses hill climbing to find maps that are maximally consistent with 
sensor data and odometry. Ostergaard and Mataric [15] propose an algorithm for task allocation 
that assigns tasks dynamically to a suitable and capable robot. Task allocation is dynamic and 
happens on a needed basis. Task allocation is one of the main problems in multirobot systems. 
Guerrero and Oliver[16] propose a methodology to allocate tasks in a multirobot systems by 
considering among other factors, to get a good task allocation, and to take into account the 
physical interference effects between robots, that is, when two or more robots want to access to 
the same point at the same time. Lian and Murray [17] discuss a design methodology of 
cooperative trajectory generation for multi-robot systems. The trajectory of achieving cooperative 
tasks, i.e., with temporal constraints, is constructed by a nonlinear trajectory generation (NTG) 
algorithm. In this paper three scenarios of robot tasking from home base to target position. Stenz 
and Dias [18] implement task allocation as a free market system. Some of the important features 
of this approach are dynamical task allocation, group learning, and minimum communication 
dependability. Shen, Tzeng and Liu [19] implement workflow modelers, during workflow design 
and specify the performers of a task by their organizational role. However, during workflow 
enactment, numerous agents with different skills and expertise may share the same role in an 
organization, making it hard to select appropriate individuals based merely on the assignment 
relation between a role and a task. The Alliance approach [20] is focused on small to medium 
size robot teams. It is a fault-tolerant, behavior-based architecture that assigns tasks dynamically. 
Its behavior-based controller uses different sets of behavior for different tasks. This architecture 
assumes a heterogeneous team of robots. Each robot needs to run an Alliance process as a 
requirement in order to cooperate. Each task consists of a target location that needs to be visited 
by a robot. The objective of the allocation is to minimize the total cost, that is, the sum of the 
travel costs of all robots for visiting a target and finding an optimal allocation is an NP-hard 
problem, even in known environments. The PRIM ALLOCATION [21], is a simple and fast 
approximate algorithm for allocating targets to robots which provably computes allocations whose 
total cost is at most twice as large as the optimal total cost. Skrzypczyk [22] discusses a problem 
of planning and coordination in a multi robot system and considers a team of robots that performs 
a global task in a human-made workspace of complex structure. A hybrid architecture of the team 
motion control system is considered in the work. The system is split into two layers: the planner 
module and the behavior based collision free motion controller that is designed to perform several 
elementary navigation tasks. The role of the planner is to plan and coordinate execution of 
elementary tasks by individual agents to obtain performance of global task. The method of 
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elementary tasks planning based on N-person game. An algorithm of multi robot workspace 
exploration is presented as an example of application of the proposed method. Simulation of the 
algorithm is carried out, and its result is presented and discussed in the paper. Mosteo and  
Montano[23] discuss a novel approach in networked robotics for optimal allocation with 
interchangeable objective functions, from minimizing the worst-case cost of any agent in a multi-
robot team in time-critical missions, to minimizing the team usage of resources. They propose a 
general model for flexible mission planning, using hierarchical task networks as descriptive 
framework, the multiple traveling salesmen as optimization model, and distributed simulated 
annealing for solution search in very large solution spaces. This proposal does not discard viable 
solutions, hence the optimal one for the model may be eventually found. Boneschanscher [24] 
presents a task assigner for a flexible assembly cell (FAC) incorporating multiple robots and a 
transport system. The FAC can assemble a wide range of products in small batches. Parts are 
fed on pallets and assembled on fixtures, which both can route through the cell. The FAC has a 
limited buffer capacity. The task assigner determines a schedule for each batch, with minimum 
assembly time as the main objective. Task assignment is done for a limited time horizon, using a 
goal directed search. The time horizon is determined by the limited buffer capacity of the FAC. 
While assigning tasks to resources in the cell, the task assigner determines an appropriate 
assembly sequence and allocates tools such as grippers to workstations in the cell. It is evident 
that the allocation strategy is not a generalist but is situation driven. The present method attempts 
to develop and implement a suitable model for an implicit cooperation environment based upon 
the capability of the candidates to handle the tasks. 
 

3.  DYNAMIC TASK ASSIGNMENT  

In the context of multi-robot coordination, dynamic task allocation can be viewed as the selection 
of appropriate actions [25] for each robot at each point in time so as to achieve the completion of 
the global task by the team as a whole. From a global perspective, in multi-robot coordination, 
action selection is based on the mapping from the combined robot state space to the combined 
robot action space. For homogeneous robots, it is the mapping; 
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where, S is the state space of a robot, |R| is the number of robots, and A is the set of actions 
available to a robot [26]. In practice, even with a small number of robots, this is an extremely 
high-dimensional mapping, a key motivation for decomposing and distributing control. Based on 
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the approach introduced in [27], the task allocation problem is decomposed into the following 
three steps: 

1. each robot bids on a task based on its perceived fitness to perform the task; 
2. an auctioning mechanism decides which robot gets the task; 
3. the winning robot’s controller performs one or more actions to execute the task. 
 
The above decomposition is aimed at constructing a general formulation for the multi-robot 
coordination problem. In this formulation, a bidding function determines each robot’s ability to 
perform a task based on that robot’s state. Next, the task allocation mechanism determines which 
robot should perform a particular task based on the bids. Finally, the robot controllers determine 
appropriate actions for each robot, based on the robot’s current task engagement. This 
partitioning, as illustrated in Figure 1, serves two purposes: it reduces the dimensionality of the 
coordination problem, and it reduces the amount of inter-robot communication required.  
 
We now have the mapping 

 

B
|R||T |

 → T
 |R|

 

Instead of mapping, namely from all robots’ bids B for all tasks T to a task assignment for each 
robot, this overall mapping is called the task allocation strategy for the system as a whole. The 
overall mapping is treated here as a global, centralized process (as depicted in Figure 2), but 
distributed auctioning mechanisms [27, 28], blackboard algorithms [29], and cross-inhibition of 
behaviors [30] are some validated methods for distributing the task allocation function. In this 
methodology, the focus is on what the task allocation function should be, rather than on how it 
should be distributed. The above framework is a general way that dynamic task allocation for 
multi-robot systems can be formulated.  

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

3.1    Auction Algorithm 
The auction algorithm is an intuitive method for solving the classical assignment problems. It 
outperforms substantially its main competitors for important types of problems, both in theory and 
practice, and is also naturally well suited for parallel computation. In the process, the user 
submits jobs to the auctioneer to start the process. An auctioneer is responsible for submitting 
and monitoring jobs on the user’s behalf. The auctioneer creates an auction and sets additional 
parameters of the auction such as job length, the quantity of auction rounds, the reserve price 
and the policy to be used. The auctioneer informs the robots (Robot-1, Robot-2 and Robot-3) that 
an auction is about to start. Then, the auctioneer creates a call for proposals, sets its initial price, 
and broadcasts calls to all the robots (Robot-1, Robot-2 and Robot-3). Robots formulate bids for 
selling a service to the user to execute the job. The robots evaluate the proposal; they decide not 
to bid because the price offered is below what they are willing to charge for the service. This 
makes the auctioneer to increase the price and send a new call for proposal with this increase in 
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the price. Meanwhile, the auctioneer keeps updating the information about the auction. In the 
second round, Robots are decided to bid. The auctioneer clears the auction according to the 
policy specified beforehand. Once the auction clears, it informs the outcome to the user and the 
robots. The flowchart for the process is presented in Figure 3. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The algorithm described here can be utilized in task allocation in multi-robot applications, and is 
particularly suitable for parallel computation. This approach attempts to find the best assignment 
between tasks and robots, while maximizing the total benefit. It iterates between robots and in 
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each iterations tries to assign a task to a robot who offers the most. In consecutive iterations, 
other robots may bid for other tasks and if more than one bids are available for the same task, it 
will increase the cost of task until finally just one task-robot pair match takes place, (iterative 
improvement). The iteration terminates when all robots are pleased with their match, otherwise an 
unhappy robot will bid higher for another task and this process will continue. Although auction 
algorithm may have some similarities to the free market approach, there is a little difference. One 
difference is that in the free market approach, agents can cooperate in order to gain a maximum 
profit for all of them, however in the auction algorithm every robot is considered rival. Another 
dissimilarity is that the auction algorithm uses an exclusive mathematical model for all the 
applications, while the free market approach does not. In addition, the free market technique is 
based on the collection of heterogeneous agents, while in the auction algorithm the robot set is 
homogeneous. 
 
3.2   Task Allocation Strategies 
The dynamic task allocation problem, i.e., the mapping from bids to tasks, can be performed in 
numerous ways. The focus is limited here to Markovian systems, where the task allocation 
mapping for a given robot is based on the mapping between that robot’s current task assignments 
and every other robot’s current bid on each task, to the given robot’s new task assignment, as 
shown in Figure 4. Given each robot’s bid on each task and each robot’s current task 
engagement, each robot’s new task assignment need to be determined. The effects of two key 
aspects of distributed control, commitment and coordination, on performance are explored. 
 
Given the large space of possibilities, only the extreme cases of each: no commitment and full 
commitment, and no coordination and full coordination are considered. The combination of these 
extremes results in four task allocation strategies as shown in Figure 5. Along the commitment 
axis, a fully committed strategy meant a robot would complete its assigned task before 
considering any new engagements, while a fully opportunistic strategy allowed a robot to drop an 
ongoing engagement at any time in favor of a new one. Along the coordination axis, the 
uncoordinated (individualistic) strategy meant each robot performed based on its local 
information, while a coordinated strategy simply implemented mutual exclusion, so only one robot 
could be assigned to a task, and no redundancies were allowed. It is noted that this notion of 
coordination is simple, and it is not intended to represent explicit cooperation and coordination 
strategies (i.e., the fixed time-cost was 0). During the process three new tasks appear every 
twelve time-steps at random positions on the grid. The tasks are structured so that one robot is 
sufficient for completion of an individual task assignment. 
 

 
 

 

 

Thus, mutual exclusion is the simplest yet effective form of coordination. As an example, the fully 
committed mutually exclusive strategy is as follows: 

1. If a robot is currently engaged in a task, and its bid on that task is greater than zero, remove 
the row and column of the bid from the table, and set the robot’s new assignment to its current 
one. 
2. Find the highest bid in the remaining table. Assign the corresponding robot to the 
corresponding task. Remove the row and column of the bid from the table. 

Commitment �          Coordination� 

 Individual Mutually 
Exclusive 

Commitment Strategy.1 Strategy.2 

Opportunity Strategy.3 Strategy.4 

Current 
engagement 

Bids A B C D 
New 

engagement 

A R1 6 4 2 5 ? 

   -- R2 4 1 0 3 ? 

C R3 7 2 3 2 ? 

FIGURE 4: An Example Task Allocation 
Scenario 

FIGURE 5: The Four Task Allocation Strategies  



B.B.Biswal and B.B.Choudhury 

International Journal of Engineering, Volume (1) : Issue (2) 19 

3. Repeat from step 2 until there are no more bids. In case of individualistic (uncoordinated) 
strategies, the same algorithm is run on a separate table for each robot. In the opportunistic 
(uncommitted) case, step 1 above is skipped. 
 

4.  GRID WORLD EXPERMENTAL FRAME WORK 

A simplified version of the above described multi-robot task in a grid world is illustrated in Figure 
6. As the base case of the grid world implementation, a 10×10 grid inhabited by 10 robots is 
considered. Robots bid on tasks depending on their capability (expressed by a number) to those 
tasks. The bid was set to 20 − d, where d is the Manhattan distance to the task. In each time-
step, any robot assigned to a particular task selects that task. When a robot selects a task, that 
task goes off the list and new tasks are added to it. In order to explore the parameter space of the 
task, we focused on commitment and coordination. In the context of emergency handling, 
commitment means that robots stay focused on a single task, until the task is over. The opposite, 
opportunism, means that robots can switch tasks, if for example another task is found with 
greater intensity or priority. In the experiments, coordination is linked to communication, namely 
the ability of robots to communicate about who should service which tasks, as opposed to individ-
ualism, where robots have no awareness of each other. Communication is used to prevent 
multiple robots from trying to accomplish the same task; robots inhibit others from engaging in the 
same task. The goal is to reduce interference among robots, and to prevent loss of coverage in 
some areas because all the robots rush to perform task in another area. Deciding the level of 
commitment and collaboration are key aspects of the multi-robot task allocation problem. Four 
experiments were designed resulting from the combinations in varying the two parameters, 
coordination and commitment. The results of the grid world simulation are presented in             
Figure 7. On one axis we test commitment versus opportunism, and on the other we test 
individualism versus mutual exclusion. 
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FIGURE 6: An Example 10 x 10 Grid World with Four Robots and Three Tasks. 
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5.   BLACK BOARD ALGORITHM 

In order to ensure reasonable scalability and robustness, communication among the robots is 
done through a "blackboard"[29]. To simulate experiments with inter-robot communication, each 
robot sends its relevant state information to the blackboard, and the blackboard information is 
read by all the robots. In the case of no communication, the blackboard just contains information 
from one robot (itself). The information on the blackboard is the current engagement of each 
robot. Intuitively, if all robots have the same blackboard information available and execute the 
same algorithm, they should all come to the same conclusion as to which robot should pursue 
which task. 
 
To facilitate validation of the experiments, all parameters are held constant, except the way the 
information on the blackboard is handled. The algorithm for deciding on the allocation of the tasks 
to individual robots is as follows: 
 
Step 1:  All robots engaged in a task cannot have their engagement set to “none” 
Step 2: In case of commitment, all entries in the blackboard for robots already pursuing a task is 
set to zero, along with all entries for task already being pursued. In case of opportunism, this step 
is skipped. 
Step 3: The highest non-zero score in the table is checked, and the robot corresponding to this 
entry is assigned to the task corresponding to this entry. 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE 1: Quantitative Results 

 
This algorithm has the effect that in the case of commitment robots keep themselves engaged in 
pursuing an task until it is fixed, while in the case of opportunism, robots keep switching 
engagement. 
   

6.  DISCUSSION 

The grid world results are interesting if they actually represent real world system behavior. The 
fact that the best performing task allocation strategy changes as we vary noise parameters in the 
grid world implies that it can be very difficult to decide apriori which task allocation strategy should 
be used in a given task for any real world implementation. The quantitative results of the 
experiments are presented in Table 1. The experiments clearly show that the opportunistic 
strategy worked significantly better than the commitment-based strategy. This might be because 
the time to reach a task was significantly larger than the time to complete a task, once a robot 
was there. This choice of parameters favors opportunism over commitment since the former 
effectively uses the presence of robots near emergencies by harnessing them immediately. In 
other regions of the parameter space of the emergency handling task (e.g., where the ratio of 
time-to-reach-task to time-to-complete-task is small) opportunism might not be as effective. The 
present study excluded the case where several robots would be required to do a task in a 
cooperative fashion, a regime in which performance might improve with commitment.  
 

Results Individual Mutual Exclusion 

2063 1 2325 2 

2016 2 1919 1 

Commitment 
 
 1786 2 2008 1 

1087 0 2061 2 

928 0 1406 1 

1078 0 

Opportunism 

1917 0 

1322 0 
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The four task allocation strategies we examined are extreme, in that they take into consideration 
only the complete presence or absence of commitment and coordination in the given context. 
Arguably, the best strategy for any particular task would most likely be a carefully balanced 
compromise. However, as stated previously, the goal of this work was not to attempt to find the 
best strategy (which is necessarily task- and parameter-specific), but rather to gain some insight 
into task allocation in general. The four strategies we explored provide a reasonable span of 
strategy space and provide leading insights for further study. In   practice, the   robot   capability 
ratings can be obtained from the databases. Therefore, one can automatically select appropriate 
candidate for   a   given   task   by   using   the   proposed matching   procedure   and databases.  
 

7.  CONCLUSION 

The paper describes an empirical study that sought general guidelines for task allocation 
strategies in systems of multiple cooperating robots. Four distinct task allocation strategies are 
identified that aim at studying tradeoffs between commitment and coordination. The data from the 
simulations show that there is no single strategy that produces best performance in all cases, and 
that the best task allocation strategy changes as a function of the noise in the system. This result 
is significant, and shows the need for further investigation of task allocation strategies. The 
described work is a small step toward the larger goal of principled analysis and synthesis of multi-
robot coordination strategies for complex and uncertain domains, such as space exploration. The 
entire exercise has relevance to real world distributed robotic systems. 
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