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Abstract 

 

Data mining as a formal discipline is only two decades old, but it has registered 
phenomenal development and has become a mature discipline in this short span. 
In this paper, we present an empirical study of supervised learning processes 
based on empirical evaluation of different classification algorithms. We have 
included most of the supervised learning processes based on different pre 
pruning and post pruning criteria. We have included ten datasets, collected from 
internationally renowned agencies. Different specific models are presented and 
results are generated. Issues related to different processes are analyzed 
suitably. We also present a comparison of our study with benchmark results of 
different datasets and classification algorithms. We have presented results of all 
algorithms with fifteen different performance measures out of a set of twenty 
three calculated measures, making it a comprehensive study.  
 
 
Keywords: Data Mining, Knowledge Discovery in Databases, Supervised learning algorithms, Stacking, 

Classification, Regression etc. 
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1. Introduction 
 
Knowledge discovery in databases (KDD) is the theme of many discussions for last two decades. 
A large number of techniques and algorithms have been developed for mining the knowledge 
from large databases. Supervised learning techniques are usually used for the solution of 
classification problems. Usually a general process is recommended for supervised learning. But 
practical implementation of a general process becomes difficult, when we need to implement this 
general process for some specific problem solving. There are possibly many processes that are 
used for supervised learning. Problem arises with finding a suitable process for extracting 
knowledge for problem at hand. This type of dilemma motivated us to analyze the environmental 
factor that affect the selection of a suitable process and to handle potential issues involved in 
such processing.   

 
   Figure 1: The KDD process (Fayyad et al. [10]) 

 
Present work is mainly motivated through following three objectives. First of all, supervised 
learning processes can vary from simple to very complex processing. No single process can fulfill 
all needs and suitability of any process depends upon many environmental factors. So, there is a 
need to analyze different processes by identifying different environmental factors. Secondly, 
Different techniques and algorithms are used to extract knowledge from data. These algorithms 
involve certain criteria to extract knowledge. Different techniques and algorithms are suitable for 
different types of problems. There is no unique technique/algorithm to solve all types of problems. 
So, there is a need to analyze suitability of different techniques/algorithms with specific domain of 
problems. Thirdly, Different performance metrics are considered appropriate for different 
domains, e. g. Precision/Recall measures are preferred metrics for information retrieval, ROC 
curves/area is preferred metric for the problems related to medical domain, Lift is preferred for 
marketing tasks etc. Each metric is dedicated to some specific nature of algorithm evaluation. No 
individual metric may be used for all domains. So, there is a need to test different learning 
algorithms based on a large set of metrics. Overall present paper is an effort to explore 
relationship between types of problems with specific technique/algorithm as well as with type of 
processing required for extracting knowledge based on different metrics. Experiments are 
performed through many suitable processes on a variety of supervised learning techniques and 
algorithms. Results are presented for fifteen different metrics out of generated results for twenty 
three metrics. Output of these experiments is compared with the results obtained from direct 
experimentation of classification algorithms and the results obtained through cross validations. 
Results are also compared with the available benchmark results of the problems involved for 
study. This paper includes a comprehensive study of different possible supervised learning 
processes. Internationally renowned datasets are chosen for evaluating six most important 
processes for study. These datasets are applied on these processes and comprehensive results 
are presented.  
 
Rest of the content of this paper is organized in following manner. Second section includes the 
literature review of related work. Third section includes the description of various processes for 
supervised learning. Fourth section includes the description of different techniques and 
algorithms included for study. Fifth section explains methodology of study. Sixth section includes 
experimental results of present study. Seventh section includes a comparison of present study 
with other studies. Eighth section concludes the study with future directions. Last but not the 
least, Ninth section lists the references used during present study. 

 
2. Literature Review 
 
Data mining has originated just two decades back. Within this short span, data mining has grown 
up as a mature discipline. Large numbers of techniques and algorithms have been developed for 
extraction of knowledge. Out of these algorithms, majority of algorithms are developed for 



Sanjeev Manchanda, Mayank Dave and S. B. Singh 
 

International Journal of Engineering, Volume (1) : Issue (1) 23 

supervised learning. Supervised learning is mostly performed for classification tasks. Data mining 
itself has emerged from other disciplines like Machine Learning, Artificial Intelligence and 
Statistics etc., so it is obvious to get initial references related to this study from its parent 
disciplines. Many researches were being performed before the time data mining was coined as a 
separate discipline for study.  
 
In a study, the results of a point awarding approach were compared with the results obtained by 
the linear discriminant (Fahrmeir et al. [9]). One study reported that back-propagation 
outperformed nearest neighbour for classifying sonar targets (Gorman et al. [13]), whereas some 
Bayes algorithms were shown to be better on other tasks (Shadmehr et al. [30]). A symbolic 
algorithm, ID3 (Kirkwood et al. [16]) was developed, which performed better than discriminant 
analysis for classifying the gait cycle of artificial limbs.  
 
The CART (Classification and Regression Trees) method (Breiman et al. [6]) was used to analyze 
consumer credit granting (Hofmann [14]). It concluded that CART had major advantages over 
discriminant analysis and emphasized the ability of CART to deal with mixed datasets containing 
both qualitative and quantitative attributes. However, on different tasks other researchers found 
that a higher order neural network (HONN) performed better than ID3 (Spikvoska et al. [32]) and 
back-propagation did better than CART (Atlas et al., [1]).  
 
A study was conducted for a coordinated comparison of many algorithms on the MONK’s problem 
(Mitchell et al. [20]). A diverse set of statistical methods, neural networks, and a decision tree 
classifier was compared on the Tsetse fly data (Ripley [28]). After many small comparative 
studies, STATLOG is known as first comprehensive study that analyzed different data mining 
algorithms (King et al. [15]). Another research work compared several learning algorithms 
(including SVMs) on a handwriting recognition problem using three performance criteria: 
accuracy, rejection rate, and computational cost (LeCun et al. [18]). One other study evaluated 
nearly a dozen learning methods on a real medical data set using both accuracy and an ROC-like 
metric (Cooper et al. [8]). In one other study, an impressive empirical analysis was presented 
about different ensemble methods such as bagging and boosting (Bauer et al. [3]). An empirical 
comparison of decision trees and other classification methods was performed using accuracy as 
the main criterion (Lim et al. [19]). An empirical study conducted comparison between decision 
trees and logistic regression (Perlich et al. [23]). One study examined the issue of predicting 
probabilities with decision trees, including smoothed and bagged trees (Provost et al. [25]). One 
research work presented the comparison of different tools and techniques of data mining (Witten 
et al. [33]). Recently, one study was conducted to rank different many learning algorithms 
(Caruana et al. [7]). Present research work is dedicated to analyze all type of classification 
techniques and algorithms on a variety of problems and to compare the results with earlier 
studies. 
    

3. Various Processes for Supervised Learning 
 
Supervised learning processes can vary from simple processing to very complex processing. 
Different techniques and algorithms are used to extract knowledge from data. These algorithms 
involve certain criteria to extract knowledge. Different techniques and algorithms are suitable for 
different types of problems. There is no unique technique/algorithm to solve all types of problem.   
Supervised learning involves training set to train algorithm for the creation of a model and then 
this model is applied on test set to generate and compare results. Different supervised learning 
processes are as follows: 
 
3.1 Simple Supervised Learning: In its simplest form input data is applied to classification 
algorithm to generate a model, model is applied test data and result is generated. Such 
experimentation suffers with over fitting and under fitting of model and results may not fulfill the 
reliability criteria. So there is a need for preprocessing and post-processing of data.  

 
Figure 2: Simple Supervised Learning Process. 
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3.2 Preprocessing of the data: A data set collected is not directly suitable for induction 
(knowledge acquisition), it comprises in most cases noise, missing values, inconsistent data, data 
set is too large, and so on. Therefore, we need to minimize the noise in data, choose a strategy 
for handling missing (unknown) attribute values, use any suitable method for selecting and 
ordering attributes (features) according to their informativity (so-called attribute mining), 
discretize/fuzzify numerical (continuous) attributes, validating part of training data to be used for 
creating model and eventually process continuous classes. 
 
3.2.1 Attribute Transformation: Input data may be nominal or numerical. Few classification 
algorithms like ID3 and Naïve Bayes operate only on discrete data, whereas regression based 
algorithms operate only on numerical data. So there may a requirement of transformation of data 
from one form to another to match the data with algorithmic requirements.  
 
3.2.1.1 Categorical Attribute Transformation: Nominal or categorical data may be transformed 
into binary or scale values as follows: 
 
(a) Categorical to Binary: Problems having more than two categories of class attribute are 
converted into Binary class problems. We have converted our datasets into binary class treating 
first half of class categories as negative class and last half as positive class. 
 
(b) Dual Scaling: Dual scaling (Nishisato [22]) is a multivariate method for assigning scale 
values to the rows and columns of a table of data, with certain optimal properties. 

 
3.2.1.2 Continuous Attribute Transformation: Continuous or real number based attributes 
may be transformed into discrete attributes as follows: 

 
(a) Class-based discretization: Class-Attribute relationship is used to define discretization 

of any attribute, each attribute is discretized independently. Such discretization is useful for small 
number of attributes, but becomes complex for large number of attribute. 
 
(b) Fixed-bin discretization: All the attributes to be discretized are considered collectively 
and a fixed number of bins are used for discretizing all attributes. We have used fixed bin 
discretization, so that the future researchers can utilize the results of this paper for their 
comparative analysis and it also helps in maintaining consistency of experimentation. 
 

 
Figure 3:   Discretized Supervised Learning Process. 

 
(c) Principle component analysis: Principal component analysis is a useful tool for 
categorization of data, it separates the dominating features in the data set. 

 
3.2.2 Data Sampling 
 
(a) Progressive sampling: Progressive Sampling (PS) (Provost et al. [27]) incrementally 
constructs a training set from a larger dataset without decreasing the classification performance 
and without altering the initial format of the examples 
(b) Random sampling: Samples are selected randomly for experimentation. Such a 
sampling makes the experimentation results to be unreliable as different sampling algorithms may 
select samples differently and results may vary significantly. 
 
(c) Stratified sampling: Stratified sampling is based on re-sampling the original datasets in 
different ways: under-sampling the majority class or over-sampling the minority class. 
 
3.2.3 Validation: 
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(a) Fixed Split Validation: Simplest form of experimentation is to divide dataset into two 
fixed length datasets of training set and test set to perform experiment directly. This kind of 
experimentation is meant for simple testing of algorithms. Biggest problem with fixed split is over 
fitting of training data e.g. tree based techniques may have too many branches that may reflect 
anomalies and result in poor accuracy of unseen samples. To overcome the limitations of fixed 
split two approaches used are prepruning and post pruning. Prepruning is performed through 
cross-validation, whereas many calibration methods have been proposed for post pruning. 
Following sections include the discussion about these methods. 
 
(b) Cross Validation: To evaluate the robustness of the classifier, the normal methodology 
is to perform cross validation on the classifier. Ten fold cross validation has been proved to be 
statistically good enough in evaluating the performance of the classifier (Witten et al. [33]). For 
present study datasets are divided into training and test sets. Then training set is equally divided 
into 10 different subsets for ten fold cross validation. Nine out of ten of the training subsets are 
used to train the learner and the tenth subset is used as the test set. The procedure is repeated 
ten times, with a different subset being used as the test set. In this way cross validation is 
performed to calibrate the models and select the best parameters and then models are applied on 
the large Final test set.  

 
Figure 4:   Cross-Validated Supervised Learning Process. 

 
3.3 Post processing of the derived knowledge: The pieces of knowledge extracted in the 
previous step could be further processed. One option is to simplify the extracted knowledge. Also, 
we can evaluate the extracted knowledge, visualize it, or merely document it for the end user. 
They are various techniques to do that. Next, we may interpret the knowledge and incorporate it 
into an existing system, and check for potential conflicts with previously induced knowledge.  
 
3.3.1 Calibration: Many learning algorithms do not predict probabilities. For example the 
outputs of an SVM are normalized distances to the decision boundary, whereas naive bayes 
models are known to predict poorly calibrated probabilities, because of the unrealistic 
independence assumption. 
 
A number of methods have been proposed for mapping predictions to posterior probabilities. Platt 
Scaling (Platt [24]) is used for transforming SVM predictions to posterior probabilities by passing 
them through a sigmoid. Platt scaling also works well for boosted trees and boosted stumps 
(Niculescu et al.[21]). A sigmoid is also not the correct transformation for all learning algorithms. 
 
Second method used for calibration is Logistic regression. Logit Boost algorithm is used for 
performing additive logistic regression. This algorithm performs classification using a regression 
scheme as the base learner, and can handle multi-class problems (Friedman et al. [11]) and it 
can also do efficient internal cross-validation to determine appropriate number of iterations. 
 
Other method generally used for calibration is Isotonic Regression (Zadrozny et al. [35,36]; 
Robertson et al. [29]). It is used to calibrate predictions from SVMs, naive bayes, boosted naive 
bayes, and decision trees. Isotonic Regression is more general method, but its only restriction is 
that the mapping function used is isotonic (monotonically increasing). A standard algorithm for 
Isotonic Regression that finds a piecewise constant solution in linear time, is the pair-adjacent 
violators (PAV) algorithm (Ayer et al. [2]). 

 
Figure 5:   Post-Processed Supervised Learning Process. 
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3.3.2 Thresholding: The minimum acceptable value which, in the user's judgment, is 
necessary to satisfy the need. If threshold values are not achieved, program performance is 
seriously degraded, the program may be too costly, or the program may no longer be timely. 
 
3.3.2.1 Class Probability Estimators (CPE) Thresholding: For a decision maker to act 
optimally it is necessary to estimate the probability of success. Because training information is 
costly, we would like to reduce the cost of inducing an estimation model that will render decisions 
of a given quality. One approach to reducing the cost of learning accurate CPEs is via traditional 
active learning methods, which are designed to improve the model’s average performance over 
the instance space. if the probability of a successful outcome exceeds the threshold. 
 
3.3.2.2 Regression Thresholding: Threshold regression refers to first-hitting-time models with 
regression structures that accommodate covariate data. The parameters of the process, 
threshold state and time scale may depend on the covariates. 

 
3.4 Stacking: Stacking combines the output of a number of classifiers. Stacked 
Generalization, also known as Stacking in the literature, is a method that combines multiple 
classifiers by learning the way that their output correlates with the true class on an independent 
set of instances. At a first step, N classifiers Ci, i = 1..N are induced from each of N data sets Di, i 
= 1..N. Then, for every instance ej , j = 1..L of an evaluation set E, independent of the Di data 
sets, the output of the classifiers Ci(ej) along with the true class of the instance class(ej ) is used 
to form an instance mj , j = 1..L of a new data set M, which will then serve as the meta-level 
training set. Each instance will be of the form: C1(ej), C2(ej ), . . . , CN(ej), class(ej ). Finally, a 
global classifier GC is induced directly from M. If a new instance appears for classification, the 
output of all local models is first calculated and then propagated to the global model, which 
outputs the final result. Any algorithm suitable for classification problems can be used for learning 
the Ci and GC classifiers. Independence of the actual algorithm used for learning Ci, is actually 
one of the advantages of Stacking, as not every algorithm might be available for each data set 
and not the same algorithm performs best for every data set. We have applied stacking of 
isotonic regression with other classification algorithms. 

 
Figure 6:   Stacked Supervised Learning Process. 

 
3.5 Complex Processing: Different preprocessing, Post-processing and stacking of different 
algorithms may be combined to extract knowledge from databases. Such complex criteria may 
involve parallel processing of different algorithms as well. No encouraging results have been 
generated through such processing. 

 
4. Description of Techniques and Algorithms used for study 
 
Different techniques included for study with their specific algorithms are as follows: 
 
4.1  Classification Techniques and Algorithms: A variety of classification algorithms were 
used for study. These techniques/algorithms are broadly described as follows: 
  
4.1.1 Decision Trees: Tree-shaped structures that represent sets of decisions. These 
decisions generate rules for the classification of a dataset. Decision trees represent a series of 
IF…THEN type rules which are linked together and can be used to predict properties for 
observations based upon the values of various features. These are able to produce human-
readable descriptions of trends in the underlying relationships of a dataset and can be used for 
classification and prediction tasks. The algorithms used for experimentation were Decision Stump 
and REPTree etc. Different parameters were set as follows: maximum tree depth was allowed to 
be infinite, minimum number of instance per leaf were set to 2, Confidence threshold was set to 
0.25 and numbers of trees were allowed to be infinite. 
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4.1.2 Support Vector Machine: These are methods for creating functions from a set of 
labeled training data. These functions can be a classification function (the output is binary: is the 
input in a category) or the function can be a general regression function. For classification, SVMs 
operate by finding a hyper-surface in the space of possible inputs. This hyper-surface will attempt 
to split the positive examples from the negative examples. The split will be chosen to have the 
largest distance from the hyper-surface to the nearest of the positive and negative examples. 
Intuitively, this makes the classification correct for testing data that is near, but not identical to the 
training data. We have included LibSVM algorithm for study. Different parameters were set as 
follows: Different types of kernel functions were tried like linear, polynomial, radial basis function 
etc., Degree of kernel function set to 3 and Tolerance parameter set to 0.001. 

4.1.3 Genetic Algorithms: Optimization techniques that use process such as genetic 
combination, mutation, and natural selection in a design based on the concepts of evolution. 
Genetic algorithms should be used, when no other option is left. We have not included any 
genetic algorithm, but learning processes are always based on genetic processing, so indirect 
contribution of genetic processing can not be neglected.  
 
4.1.4 Neural Networks: Inspired by the structure of the brain, a neural network consists of a 
set of highly interconnected entities, called nodes or units. Each unit is designed to mimic its 
biological counterpart, the neuron. Each accepts a weighted set of inputs and responds with an 
output. An Artificial Neural Network (ANN) is an information processing paradigm that is inspired 
by the way biological nervous systems, such as the brain, process information. The key element 
of this paradigm is the novel structure of the information processing system. It is composed of a 
large number of highly interconnected processing elements (neurons) working in unison to solve 
specific problems. ANNs, like people, learn by example. An ANN is configured for a specific 
application, such as pattern recognition or data classification, through a learning process. We 
have included Multi Layer Perceptron algorithm for study. Different parameters were set as 
follows: Learning rate of back propagation set to be 0.3, Momentum rate 0.2 etc.   

4.1.5 K-nearest neighbor: Among the various methods of supervised statistical pattern 
recognition, the Nearest Neighbor rule achieves consistently high performance, without a priori 
assumptions about the distributions from which training examples are drawn. It involves a training 
set of both positive and negative cases. A new sample is classified by calculating the distance to 
the nearest training case; sign of that point then determines the classification of the sample. The 
IBk classifier included in present study extends this idea by taking the k nearest points and 
assigning the sign of the majority. It is common to select k small and odd to break ties (typically 1, 
3 or 5). Larger k values help reduce the effects of noisy points within the training data set, and the 
choice of k is often performed through cross-validation. Different parameters were set as follows: 
Different values for k were tried ranging 1 to 10. 

4.1.6 Rule Induction: The extraction of useful if-then rules from data based on statistical 
significance. We have included Decision Table and ZeroR algorithms for study. Different 
parameters were set as follows: Confidence threshold set to 0.25. 
 
4.2 Boosting/Bagging: These methods create a set or ensemble of classifiers from a given 
dataset. Each classifier is generated with a different training set obtained from the original using 
re-sampling techniques. The final output is obtained by voting. 
Boosting: The idea of Boosting is to combine simple rules to form an ensemble such that the 
performance of the single ensemble member is improved i.e. Boosted. AdaBoostM1 algorithm 
was used for boosting trees (Yoav et al. [34]).  Different parameters were set as follows: Number 
of iterations allowed was 10 and 100 percentage of weight mass being used. 
 Bagging (Bootstrap Aggregating): It produces replications of the training set by sampling with 
replacement. Each replacement of the training set has the same size as the original set, but some 
examples can appear more than once while other don’t appear at all. A classifier is generated 
from each replication. All classifiers are used to classify each sample from the test set using a 
vote scheme (Breiman [6]). We have applied Bagging and Boosting on Decision Stump and 
REPTree algorithms. Experimental results of both Boosting and Bagging are really enthusiastic. 
Different parameters were set as follows: Size of each bag being set to 100 and number of 
iterations allowed were 10. 
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5. Methodology 
 
5.1 Datasets: Present study compares supervised learning algorithms on ten binary 
classification problems. ADULT, COV_TYPE, LETTER, PEN_DIGITS, SHUTTLE, SATELLITE 
and TIC2000 are the problems from UCI repositories (Blake et al. [5]). COV_TYPE has been 
converted to a binary problem by treating the largest four classes as positives and the rest three 
as negatives. LETTER is converted by replacing alphabets A-M as negatives and N-Z as 
positives. PEN_DIGITS is converted by replacing top five digits (5 to 9) into positive class 
whereas lower five into negative class (0 to 5). SATELLITE and SHUTTLE are the problems from 
STATLOG. SHUTTLE has been converted to a binary problem by treating largest two classes as 
positives and rest three classes as negatives. SATELLITE conversion is treated by converting 
largest three classes (i. e. 4, 5, 7) as positives (class 6 was absent), whereas smallest three 
classes as negatives (i.e. 1, 2, 3). ACC_CELE and ACC_DROSO are biological sequence 
datasets (Sonnenburg et al.[31]). DS1_100 is outcome of biological and chemistry experiments 
(Komarek et al. [17]). Table 1 includes the description about the datasets. 
 

Size of Datasets 

Problem 
Number of    
 Attributes  Train Set Test Set Total 

ADULT 14 9768 39074 48842 

COV_TYPE 54 10000 40000 50000 

ACC_CELE 141 10000 40000 50000 

ACC_DROSO 141 10000 40000 50000 

DS1_100 100 10000 16734 26734 

LETTER 16 10000 10000 20000 

PEN_DIGITS 16 5000 5992 10992 

SATELLITE 36 3000 3435 6435 

SHUTTLE 9 10000 40000 50000 

TIC2000 85 5000 4822 9822 

    Table 1: Description of Problems 
 
5.2 Experimentation: Experimentation is the most important part of any empirical study. We 
have included all the ways of experimentation developed so far for supervised learning. In this 
study Pre-processing through Fixed split validation and Cross validation have been performed, 
whereas three calibration methods viz. Platt scaling, Logit Boost and Additive Regression have 
been used for experimentation and Isotonic Regression has been applied through Stacking of 
algorithms. Discretization has been applied for ID3 and Naïve Bayes algorithms. 
 
5.3 Metrics for evaluation: Learning techniques and algorithms are used in a variety of 
domains. Different performance metrics are considered appropriate for different domains, e. g. 
Precision/Recall measures are preferred metrics for information retrieval, ROC curves/area is 
preferred metric for the problems related to medical domain, Lift is preferred for marketing tasks 
etc. Each metric is dedicated to some specific nature of algorithm evaluation. No individual metric 
may be used for all domains. So, there is a need to test different learning algorithms based on a 
large set of metrics. Metrics used for testing algorithms are broadly categorized as follows (Same 
metric may belong to more than one broader category depending on their nature belonging to 
multiple categories):   
 
5.3.1 Confusion Matrix Based Metrics: Outcome of all classification tasks produces four 
types of output i.e. two from each instance is mapped to one element of the set { Positive, 
Negative} from actual positive and negative class labels, whereas other two labels {Positive, 
Negative} from the class predictions produced by a model.  Different statistics like Accuracy, 
Precision, Recall, Fallout, F-measure, Margin etc. are directly derived from the confusion matrix 
(Provost et al. [26,27]), whereas Lift, AUC are derived from it. 
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Actual Class  

Positive Negative  

 

Positive  

 
True 
Positives 

 

 
False 

Positives  

 

 

Predicted 
Class 

 

Negative 

 
False 
Negatives 

 

 
True 
Negatives 

 

      Table 2: A contingency table for a binary class problem 

 
5.3.2 Threshold metrics: The threshold metrics are accuracy, F-score and Lift (Giudici, [12]). 
A fixed threshold 0.5 is used for Accuracy and F-Score. For lift, percent p of cases is predicted as 
positive and the rest as negative, for present study p is selected to be 25%. Predictions may have 
a significant distance from these thresholds.  
 
5.3.3 Rank Metrics: The rank metrics used are Area Under the ROC curve (i. e. AUC) 
(Provost et al. [26]), Average Precision and Recall. 
 
5.3.4 Errors: Different types of errors have been involved in this study. Absolute Error, 
Relative Error, Root Mean Squared Error, Squared Error and Fallout etc. have been calculated 
for all the algorithms and problems involved for present study. Classification error has been 
omitted from the table because it can be calculated from the accuracy measure by subtracting 
accuracy from one. 
 
5.3.5 Probability Metrics: Probability metrics, Root mean squared error and Mean crossed-
entropy, interpret the predicted value of each case as a conditional probability of that case being 
in the positive class. 
 
5.3.6 Other Metrics: Other metrics like kappa and correlation are calculated. The kappa 
coefficient measures pair wise agreement among a set of coders making category judgments, 
correcting for expected chance agreement (Berry [4]), whereas correlation calculates the degree 
of relationship between attributes.  
  

6. Experimental Results 
 
This section includes the experimental results of present study. Experimental results are divided 
into two categories viz. Major study and Minor study. 
 
6.1 Major Study: Major study includes twenty two algorithms and experiments are performed 
over fixed split, cross validation and platt scaling.  For Fixed Split validation original dataset is 
divided into train set and test set, then experiments are performed. For Cross Validation dataset 
is again divided into Train set and test set, Train set is further divided into ten fold datasets, 
Experiments are performed over one fold with the help of others and dataset with minimum 
squared error is selected for testing the performance over test set. For Platt Scaling, Cross 
validated model is passed through a sigmoid and probabilities based predictions are performed.  
 
6.1.1 Performance by Problem: Table 3 includes accuracy of twenty two algorithms involved 
for study and are ranked in descending order based on their average performances. Random 
Forest algorithms have topped the chart, whereas J48, PART, Multi Layer Perceptron, IBk, 
REPTree and ADTree algorithms are close to the top positions. Fixed Split has performed better 
than Cross Validated and Platt Scaling preprocessing and post processing algorithms. As Cross 
validation restricts the over fitting of algorithms, so the performance over cross validation and 
platt scaling is the corrected performance of the algorithms. Even for Cross validated and Platt 
scaling results random forest algorithms perform far better than other algorithms. Bagging 
(Bootstrap Aggregating) has performed better than alone algorithm and with boosting. Fro 
ADTree Boosting seems to perform better than others and has enhanced the performance 
rapidly. ZeroR has performed very badly and has secured lowest positions as compared to 
others. 
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6.1.2 Performance by metrics: Table 4 includes averages of fifteen metrics involved in study 
and are positioned in descending order according to average accuracy. For few metrics output 
was generated to be NaN (Not a Number), for such metrics averages are calculated over 
remaining values, excluding the count of such values. These values are pointed with an asterisk 
(*) and if all the values (for all ten problems) are NaN, such values are represented by NaN*. 
 
6.2 Minor Study: Minor study includes five algorithms and experiments are performed over 
other calibration methods like Additive Regression, Logistic Regression and Isotonic Regression. 
Limitation for regression based methods is that these require fully numeric values, so all the 
datasets are converted into numeric values except for the Logit Boost algorithm (i. e. Logistic 
Regression). On Additive regression ten fold cross validation has been applied and study is 
performed through meta classifiers. Logit Boost involves internal cross validation, so fixed split 
experimentation is performed. For Isotonic regression, stacking is done in conjunction with other 
algorithms and ten fold cross validation is performed. 
  
6.2.1 Performance by Problem: Table 5 includes accuracy of five algorithms for all ten 
datasets that are involved for study and are ranked in descending order, based on their average 
accuracy. Five algorithms used for study are IBk, Decision Stump, Decsion Table, LibSVM and 
ZeroR across six dimensions i. e. Fixed Split, Cross Validation, Platt Scaling, Additive 
Regression, Logit Boost and Isotonic Regression. Results indicate the better performances 
through Logit Boost calibration, followed by Additive Regression. Isotonic Regression has 
degraded the performances of the algorithms. IBk and Decision Table has topped the chart with 
calibration and individually. Additive Regression has enhanced the performance of ZeroR 
algorithm and has uplifted its performance significantly.    
 
6.2.2 Performance by metrics: Table 6 includes averages of fifteen metrics involved in study 
and are positioned in descending order according to average accuracy. For few metrics output 
was generated to be NaN (Not a Number) and Infinity, for such metrics averages were calculated 
over remaining values, excluding the count of such values. These values are pointed with an 
asterisk (*) for NaN, a plus sign (+) for Infinity and if all the values (for all ten problems) are NaN 
or Infinity, such values are represented by NaN* or Inf+. 
 
6.3 Graphical Comparison: A graphical comparison involving ROC and Precision/Recall 
graphs of algorithms is prepared for Cross Validated experiments on Adult dataset. 
 
6.3.1 ROC Curves: An ROC graph is a technique for visualizing, organizing and selecting 
classifiers based on their performance. ROC graphs are two-dimensional graphs in which True 
Positive rate is plotted on the Y axis and False Positive rate is plotted on the X axis. An ROC 
graph is compared on the basis of behavior of the curve in graph. A curve sharply rising towards 
Y axis is considered to be better than the diagonal or a curve sharply bending towards X axis.  
Clearly, in figure 7 better performing algorithms like random forests, boosted decision stumps etc. 
have their curves rising towards Y-axis marking better performance for them, SMO Decision 
Stump etc. are rising diagonally indicate average performance. 
  
6.3.2 Precision/Recall Curves:  Precision is the ratio of True Positives to the Sum of True 
Positives and False Positives, Recall is the ratio of True Positives to the Sum of True Positives 
and False Positives. A Precision/Recall curve bending towards origin is considered to be worst 
performances, whereas a curve rising away from origin towards 1 for X and Y axis collectively, is 
considered to be better performances. Clearly, algorithms like Random Forests, ADTrees etc. are 
rising away from origin indicate better performances, whereas diagonal curves for algorithms like 
SMO, ID3 etc. indicate average performances. These graphs are indicating the scenario of Adult 
problem in figure 8, curves can dramatically change for other problems depending upon their 
results. 
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Algorithm 
Validation/ 
Calibration Adult CovType Celegans Droso DS1_100 Letter PenDigits Satellite Shuttle Tic2000 Average 

Random-Forest-Bagging Fixed Split 0.8436 0.9804 0.9421 0.9832 0.9796 0.9632 0.9938 0.9485 0.9998 0.9287 0.9563 

Random-Forest-Boosting Fixed Split 0.8343 0.9788 0.9452 0.9832 0.9799 0.9671 0.9902 0.9517 0.9997 0.9243 0.9554 

Random-Forest Fixed Split 0.8328 0.9774 0.9446 0.9832 0.9788 0.9519 0.9903 0.9412 0.9997 0.9247 0.9525 

J48 Fixed Split 0.8533 0.9789 0.9589 0.9832 0.9751 0.9183 0.9718 0.9191 0.9992 0.9384 0.9496 

PART Fixed Split 0.8452 0.9758 0.9579 0.9760 0.9785 0.9192 0.9813 0.9301 0.9997 0.9081 0.9472 

MultiLayerPerceptron Fixed Split 0.8064 0.9755 0.9775 0.9856 0.9786 0.8906 0.9887 0.9360 0.9986 0.9231 0.9460 

IB-k Fixed Split 0.7889 0.9789 0.9304 0.9765 0.9727 0.9715 0.9968 0.9426 0.9991 0.9007 0.9458 

REPTree Fixed Split 0.8409 0.9741 0.9579 0.9830 0.9775 0.8901 0.9631 0.9185 0.9982 0.9405 0.9444 

ADTree-Boosting Fixed Split 0.8509 0.9691 0.9617 0.9810 0.9776 0.8415 0.9786 0.9275 0.9998 0.9399 0.9428 

Random-Forest-Bagging Platt 0.8463 0.9823 0.9420 0.9839 0.9776 0.9597 0.9830 0.8210 0.9994 0.9305 0.9426 

Random-Forest-Bagging Cross Val 0.8463 0.9822 0.9420 0.9839 0.9774 0.9594 0.9823 0.8221 0.9995 0.9305 0.9426 

Random-Forest-Boosting Cross Val 0.8209 0.9836 0.9447 0.9839 0.9754 0.9613 0.9791 0.8282 0.9994 0.9270 0.9403 

Random-Forest Cross Val 0.8449 0.9803 0.9431 0.9839 0.9774 0.9452 0.9783 0.8169 0.9996 0.9274 0.9397 

Random-Forest Platt 0.8446 0.9809 0.9437 0.9839 0.9797 0.9468 0.9821 0.8070 0.9995 0.9195 0.9388 

Random-Forest-Boosting Platt 0.8209 0.9835 0.9447 0.9839 0.9789 0.9613 0.9815 0.8282 0.9994 0.8946 0.9377 

MultiLayerPerceptron Cross Val 0.8170 0.9760 0.9775 0.9856 0.9740 0.8847 0.9825 0.8489 0.9981 0.9324 0.9377 

J48 Cross Val 0.8525 0.9807 0.9583 0.9839 0.9724 0.9141 0.9548 0.7991 0.9989 0.9382 0.9353 

J48 Platt 0.8525 0.9807 0.9582 0.9839 0.9724 0.9141 0.9548 0.7991 0.9989 0.9382 0.9353 

Decision-Table Fixed Split 0.8516 0.9777 0.9421 0.9832 0.9773 0.8487 0.9196 0.9019 0.9989 0.9405 0.9341 

PART Cross Val 0.8187 0.9742 0.9571 0.9787 0.9765 0.9113 0.9678 0.8378 0.9991 0.9123 0.9333 

PART Platt 0.8184 0.9742 0.9571 0.9787 0.9765 0.9113 0.9678 0.8378 0.9991 0.9123 0.9333 

IB-k Cross Val 0.7851 0.9761 0.9306 0.9761 0.9656 0.9706 0.9890 0.8256 0.9990 0.9058 0.9324 

ADTree-Boosting Cross Val 0.8550 0.9801 0.9637 0.9821 0.9752 0.8314 0.9676 0.8236 0.9994 0.9384 0.9316 

REPTree Cross Val 0.8371 0.9767 0.9569 0.9826 0.9721 0.8869 0.9556 0.8084 0.9990 0.9390 0.9314 

REPTree Platt 0.8361 0.9767 0.9569 0.9826 0.9721 0.8860 0.9556 0.8084 0.9990 0.9390 0.9312 

MultiLayerPerceptron Platt 0.8166 0.9760 0.9655 0.9220 0.9796 0.8847 0.9825 0.8489 0.9980 0.9367 0.9311 

ADTree-Bagging Fixed Split 0.8515 0.9678 0.9634 0.9832 0.9789 0.7568 0.9307 0.9319 0.9996 0.9405 0.9304 

IB-k Platt 0.7851 0.9761 0.9161 0.9691 0.9651 0.9703 0.9890 0.8242 0.9990 0.8946 0.9289 

ADTree Fixed Split 0.8517 0.9678 0.9581 0.9832 0.9788 0.7404 0.8900 0.8961 0.9997 0.9405 0.9206 

ADTree-Bagging Cross Val 0.8538 0.9856 0.9637 0.9842 0.9742 0.7680 0.8979 0.8215 0.9996 0.9390 0.9187 

ADTree-Bagging Platt 0.8526 0.9848 0.9546 0.9839 0.9754 0.7614 0.8975 0.8358 0.9985 0.9390 0.9184 

ADTree-Boosting Platt 0.8535 0.9801 0.9235 0.9063 0.9490 0.8324 0.9658 0.8306 0.9994 0.9384 0.9179 

Decision-Table Cross Val 0.8515 0.9379 0.9420 0.9839 0.9795 0.8318 0.9087 0.8041 0.9982 0.9386 0.9176 

Decision-Table Platt 0.8518 0.9382 0.9420 0.9839 0.9795 0.8275 0.9062 0.8073 0.9982 0.9386 0.9173 

SimpleLogistic Fixed Split 0.8503 0.9733 0.9772 0.9853 0.9808 0.7321 0.8418 0.9258 0.9585 0.9405 0.9166 

SMO Fixed Split 0.8470 0.9725 0.9682 0.9800 0.9805 0.7358 0.8460 0.9269 0.9564 0.9405 0.9154 

ADTree Cross Val 0.8522 0.9848 0.9601 0.9836 0.9702 0.7568 0.8773 0.8026 0.9996 0.9392 0.9126 

ADTree Platt 0.8507 0.9848 0.9601 0.9839 0.9713 0.7416 0.8730 0.8082 0.9985 0.9390 0.9111 

Decision-Stump-Boosting Fixed Split 0.8420 0.9556 0.9567 0.9832 0.9713 0.6992 0.8518 0.9004 0.9980 0.9405 0.9098 

SimpleLogistic Cross Val 0.8491 0.9819 0.9745 0.9850 0.9824 0.7237 0.8289 0.8370 0.9594 0.9388 0.9061 

ID3 Fixed Split 0.7967 0.9741 0.9411 0.9712 0.9637 0.8343 0.7937 0.8719 0.9990 0.9054 0.9051 

BayesNetGenerator Platt 0.8534 0.9789 0.9459 0.9464 0.9796 0.7705 0.8211 0.7907 0.9937 0.9370 0.9017 

Decision-Stump-Boosting Cross Val 0.8421 0.9781 0.9578 0.9831 0.9582 0.6962 0.8408 0.8122 0.9973 0.9390 0.9005 

BayesNetGenerator Cross Val 0.8515 0.9811 0.9781 0.9772 0.9786 0.7605 0.8233 0.7907 0.9931 0.8675 0.9002 

BayesNetGenerator Fixed Split 0.8308 0.9385 0.9782 0.9780 0.9765 0.7703 0.8296 0.8725 0.9918 0.8345 0.9001 

SMO Platt 0.8038 0.9334 0.9686 0.9814 0.9830 0.7299 0.8306 0.8565 0.9469 0.9390 0.8973 

Decision-Stump-Boosting Platt 0.8417 0.9781 0.9372 0.9704 0.9581 0.6962 0.8358 0.8148 0.9984 0.9390 0.8970 

SimpleLogistic Platt 0.8269 0.9792 0.9379 0.9577 0.9775 0.7243 0.8263 0.8151 0.9182 0.9380 0.8901 

SMO Cross Val 0.8038 0.9334 0.9686 0.9814 0.9830 0.7299 0.8306 0.8565 0.8565 0.9390 0.8883 

Decision-Stump-Bagging Fixed Split 0.7608 0.9220 0.9421 0.9832 0.9699 0.6712 0.7176 0.8789 0.9266 0.9405 0.8713 

Decision-Stump Fixed Split 0.7608 0.9220 0.9421 0.9832 0.9699 0.6712 0.7101 0.8789 0.9266 0.9405 0.8705 

Naïve-Bayes-Simple Fixed Split 0.8332 0.9382 0.9783 0.9775 0.9430 0.7157 0.7762 0.8771 0.8956 0.7553 0.8690 

Decision-Stump Cross Val 0.7596 0.9524 0.9420 0.9839 0.9581 0.6678 0.7063 0.8230 0.9279 0.9390 0.8660 

Decision-Stump Platt 0.7596 0.9524 0.9420 0.9839 0.9581 0.6678 0.7063 0.8230 0.9279 0.9390 0.8660 

Decision-Stump-Bagging Platt 0.7596 0.9524 0.9420 0.9839 0.9572 0.6678 0.7063 0.8230 0.9279 0.9390 0.8659 

Decision-Stump-Bagging Cross Val 0.7596 0.9524 0.9420 0.9839 0.9581 0.6678 0.7063 0.8105 0.9279 0.9390 0.8647 

Naïve-Bayes-Simple Cross Val 0.8273 0.9811 0.9782 0.9767 0.9540 0.7040 0.7547 0.8160 0.8974 0.7553 0.8645 

ID3 Platt 0.7864 0.9770 0.9439 0.9659 0.9475 0.6435 0.8059 0.8082 0.8279 0.9231 0.8629 

Naïve-Bayes-Simple Platt 0.8273 0.9788 0.9451 0.9449 0.9713 0.7040 0.7552 0.8160 0.8974 0.7721 0.8612 

LibSVM Fixed Split 0.7609 0.9671 0.9421 0.9832 0.9815 0.9713 0.5045 0.5525 0.9482 0.9399 0.8551 

ID3 Cross Val 0.7866 0.9774 0.9439 0.9659 0.9476 0.5029 0.8059 0.8082 0.8279 0.9204 0.8487 

LibSVM Platt 0.7597 0.9809 0.9420 0.9839 0.9831 0.9717 0.5113 0.3584 0.9427 0.9390 0.8373 

LibSVM Cross Val 0.7597 0.9809 0.9420 0.9839 0.9831 0.9717 0.5113 0.3584 0.3584 0.9390 0.7788 

ZeroR Fixed Split 0.7608 0.8286 0.9421 0.9832 0.9699 0.5013 0.5045 0.5525 0.7887 0.9405 0.7772 

ZeroR Cross Val 0.7596 0.0765 0.9420 0.9839 0.9713 0.4971 0.5113 0.3584 0.7885 0.9390 0.6828 

ZeroR Platt 0.7596 0.0765 0.9420 0.9839 0.9713 0.4971 0.5113 0.3584 0.7885 0.9390 0.6828 

Table 3: Accuracy of all algorithms over ten problems and their mean performances in descending order 
 
 



 

Algorithm Val/Cali Abs_Err Rel_Err RMSE Sqr_Err Corr. Pre_Avg AUC Margin Kappa Preci. Recall LIFT Fallout F_Mea. Acc. 

Random-Forest-Bagging FixedSplit 0.078 0.078 0.166 0.034 0.738* 0.202 0.934 0.033 0.583 0.836* 0.578 6.655* 0.016 0.758* 0.956 

Random-Forest-Boosting FixedSplit 0.047 0.047 0.183 0.043 0.682* 0.202 0.896 0.020 0.595 0.843* 0.587 7.589* 0.016 0.689* 0.955 

Random-Forest FixedSplit 0.076 0.076 0.174 0.038 0.667* 0.200 0.892 0.000 0.581 0.834* 0.574 7.506* 0.018 0.676* 0.952 

J48 FixedSplit 0.069 0.069 0.192 0.044 0.688* 0.206 0.824 0.001 0.616 0.768* 0.623 5.964* 0.026 0.721* 0.950 

PART FixedSplit 0.062 0.062 0.194 0.046 0.655 0.212 0.851 0.000 0.652 0.730 0.661 7.239 0.029 0.688 0.947 

MultiLayerPerceptron FixedSplit 0.057 0.057 0.187 0.046 0.686 0.197 0.927 0.000 0.676 0.784 0.675 9.462 0.022 0.709 0.946 

IB-k FixedSplit 0.056 0.056 0.199 0.054 0.613 0.219 0.819 0.000 0.612 0.658 0.641 5.350 0.033 0.647 0.946 

REPTree FixedSplit 0.080 0.080 0.197 0.046 0.685* 0.203 0.878 0.006 0.603 0.820* 0.608 9.243* 0.028 0.711* 0.944 

ADTree-Boosting FixedSplit 0.077 0.077 0.186 0.043 0.645 0.217 0.931 0.002 0.643 0.712 0.667 7.755 0.041 0.760* 0.943 

Random-Forest-Bagging Platt 0.095 0.095 0.191 0.046 0.684* 0.190 0.922 0.021 0.533 0.804* 0.550 7.732* 0.034 0.708* 0.943 

Random-Forest-Bagging Cross Val 0.094 0.094 0.188 0.045 0.683* 0.190 0.922 0.018 0.532 0.804* 0.548 7.722* 0.033 0.706* 0.943 

Random-Forest-Boosting Cross Val 0.063 0.063 0.209 0.058 0.613* 0.182 0.879 0.000 0.519 0.831* 0.527 8.732* 0.029 0.613* 0.940 

Random-Forest Cross Val 0.091 0.091 0.194 0.048 0.617* 0.189 0.874 0.000 0.535 0.797* 0.551 8.157* 0.035 0.635* 0.940 

Random-Forest Platt 0.091 0.091 0.194 0.048 0.569 0.198 0.874 0.000 0.550 0.702 0.573 7.147 0.042 0.655* 0.939 

Random-Forest-Boosting Platt 0.069 0.069 0.211 0.060 0.633* 0.188 0.879 0.001 0.545 0.812* 0.558 8.148* 0.033 0.646* 0.938 

MultiLayerPerceptron Cross Val 0.067 0.067 0.205 0.055 0.655 0.193 0.921 0.000 0.651 0.713 0.688 9.310 0.039 0.692 0.938 

J48 Cross Val 0.082 0.082 0.215 0.058 0.653* 0.199 0.809 0.002 0.583 0.733* 0.623 6.507* 0.046 0.697* 0.935 

J48 Platt 0.082 0.082 0.215 0.058 0.653* 0.199 0.809 0.002 0.583 0.732* 0.624 6.496* 0.046 0.697* 0.935 

Decision-Table FixedSplit 0.091 0.091 0.215 0.056 0.760* 0.199 0.784 0.013 0.524 0.892* 0.541 6.731* 0.038 0.810* 0.934 

PART Cross Val 0.074 0.074 0.219 0.061 0.611 0.184 0.819 0.000 0.600 0.713 0.615 7.903 0.034 0.642 0.933 

PART Platt 0.074 0.074 0.219 0.061 0.611 0.184 0.819 0.000 0.600 0.713 0.615 7.900 0.034 0.642 0.933 

IB-k Cross Val 0.070 0.070 0.225 0.068 0.575 0.212 0.804 0.000 0.572 0.612 0.632 5.612 0.052 0.617 0.932 

ADTree-Boosting Cross Val 0.088 0.088 0.205 0.054 0.608 0.197 0.915 0.003 0.600 0.717 0.627 8.891 0.049 0.648 0.932 

REPTree Cross Val 0.090 0.090 0.214 0.057 0.658* 0.201 0.866 0.006 0.587 0.729* 0.631 8.442* 0.051 0.705* 0.931 

REPTree Platt 0.090 0.090 0.214 0.057 0.659* 0.202 0.866 0.006 0.588 0.728* 0.633 8.434* 0.052 0.706* 0.931 

MultiLayerPerceptron Platt 0.099 0.099 0.219 0.057 0.640 0.201 0.921 0.001 0.624 0.670 0.736 6.983 0.046 0.666 0.931 

ADTree-Bagging FixedSplit 0.155 0.155 0.216 0.058 0.735* 0.212 0.928 0.043 0.578 0.868* 0.604 7.704* 0.054 0.789* 0.930 

IB-k Platt 0.091 0.091 0.229 0.068 0.580 0.217 0.805 0.015 0.577 0.604 0.651 5.415 0.056 0.625 0.929 

ADTree FixedSplit 0.160 0.160 0.226 0.063 0.703* 0.197 0.909 0.033 0.554 0.854* 0.574 7.540* 0.047 0.766* 0.921 

ADTree-Bagging Cross Val 0.164 0.164 0.233 0.067 0.629* 0.212 0.915 0.027 0.549 0.769* 0.611 10.975* 0.078 0.681* 0.919 

ADTree-Bagging Platt 0.171 0.171 0.238 0.067 0.636* 0.212 0.915 0.041 0.551 0.768* 0.624 10.670* 0.078 0.683* 0.918 

ADTree-Boosting Platt 0.138 0.138 0.232 0.063 0.591 0.216 0.915 0.019 0.572 0.625 0.720 5.406 0.066 0.625 0.918 

Decision-Table Cross Val 0.109 0.109 0.243 0.071 0.616* 0.193 0.786 0.008 0.480 0.739* 0.542 6.739* 0.057 0.669* 0.918 

Decision-Table Platt 0.109 0.109 0.243 0.071 0.616* 0.197 0.786 0.008 0.480 0.736* 0.546 6.733* 0.061 0.670* 0.917 

SimpleLogistic FixedSplit 0.163 0.163 0.251 0.080 0.682* 0.203 0.894 0.051 0.605 0.828* 0.627 11.102* 0.056 0.745* 0.917 

SMO FixedSplit 0.085 0.085 0.265 0.085 0.674* 0.203 0.791 0.000 0.601 0.794* 0.639 9.390* 0.057 0.740* 0.915 

ADTree Cross Val 0.166 0.166 0.240 0.070 0.555 0.207 0.898 0.016 0.541 0.716 0.604 9.097 0.077 0.610 0.913 

ADTree Platt 0.179 0.179 0.247 0.073 0.704* 0.218 0.898 0.036 0.486 0.791* 0.571 5.199* 0.092 0.794* 0.911 

Decision-Stump-Boosting FixedSplit 0.134 0.134 0.230 0.065 0.627* 0.182 0.891 0.015 0.484 0.858* 0.507 7.824* 0.042 0.683* 0.910 

SimpleLogistic Cross Val 0.133 0.133 0.237 0.068 0.583 0.194 0.904 0.002 0.572 0.741 0.615 10.959 0.072 0.646 0.906 

ID3 FixedSplit 0.148 0.148 0.342 0.147 0.527 0.188 0.758 0.000 0.522 0.636 0.557 4.928 0.044 0.590 0.905 

BayesNetGenerator Platt 0.154 0.154 0.255 0.078 0.587 0.208 0.911 0.009 0.561 0.686 0.691 8.212 0.082 0.635 0.902 

Decision-Stump-Boosting Cross Val 0.142 0.142 0.245 0.075 0.578* 0.180 0.884 0.010 0.511 0.702* 0.561 8.087* 0.062 0.647* 0.900 

BayesNetGenerator Cross Val 0.113 0.113 0.249 0.080 0.621 0.215 0.911 0.000 0.615 0.690 0.715 8.804 0.087 0.693 0.900 

BayesNetGenerator FixedSplit 0.112 0.112 0.251 0.076 0.630 0.239 0.919 0.000 0.625 0.685 0.740 7.883 0.087 0.702 0.900 

SMO Platt 0.108 0.108 0.293 0.102 0.609* 0.184 0.767 0.006 0.535 0.736* 0.603 9.765* 0.069 0.674* 0.897 

Decision-Stump-Boosting Platt 0.182 0.182 0.263 0.079 0.587* 0.190 0.884 0.030 0.519 0.655* 0.623 6.355* 0.069 0.658* 0.897 

SimpleLogistic Platt 0.188 0.188 0.266 0.079 0.546 0.192 0.904 0.020 0.523 0.655 0.644 7.325 0.079 0.602 0.890 

SMO Cross Val 0.112 0.112 0.308 0.112 0.594* 0.207 0.763 0.000 0.521 0.717* 0.610 9.509* 0.083 0.668* 0.888 

Decision-Stump-Bagging FixedSplit 0.188 0.188 0.282 0.091 0.522* 0.179 0.810 0.074 0.309 0.756* 0.402 2.503* 0.073 0.771* 0.871 

Decision-Stump FixedSplit 0.187 0.187 0.285 0.094 0.623* 0.175 0.774 0.082 0.308 0.759* 0.397 2.508* 0.070 0.767* 0.871 

Naïve-Bayes-Simple FixedSplit 0.143 0.143 0.303 0.105 0.557 0.238 0.900 0.000 0.545 0.629 0.702 6.546 0.108 0.640 0.869 

Decision-Stump Cross Val 0.211 0.211 0.305 0.106 0.516* 0.161 0.742 0.073 0.300 0.697* 0.376 5.283* 0.078 0.633* 0.866 

Decision-Stump Platt 0.225 0.225 0.308 0.107 0.516* 0.161 0.742 0.099 0.300 0.697* 0.376 5.283* 0.078 0.633* 0.866 

Decision-Stump-Bagging Platt 0.225 0.225 0.307 0.106 0.516* 0.161 0.756 0.098 0.300 0.696* 0.376 5.240* 0.078 0.633* 0.866 

Decision-Stump-Bagging Cross Val 0.212 0.212 0.304 0.105 0.514* 0.164 0.756 0.075 0.298 0.692* 0.379 5.268* 0.081 0.632* 0.865 

Naïve-Bayes-Simple Cross Val 0.145 0.145 0.303 0.110 0.540 0.219 0.890 0.000 0.527 0.631 0.674 7.458 0.114 0.626 0.864 

ID3 Platt 0.137 0.137 0.342 0.137 0.398 0.123 0.683 0.000 0.372 0.593 0.404 4.895 0.038 0.450 0.863 

Naïve-Bayes-Simple Platt 0.183 0.183 0.305 0.106 0.482 0.218 0.890 0.008 0.456 0.657 0.641 8.310 0.113 0.555 0.861 

LibSVM FixedSplit 0.145 0.145 0.319 0.145 0.474* 0.084 0.652 0.000 0.325 0.761* 0.308 8.570* 0.004 0.557* 0.855 

ID3 Cross Val 0.337 0.337 0.518 0.337 0.401* 0.104 0.669 0.000 0.343 0.559* 0.370 5.225* 0.034 0.447* 0.849 

LibSVM Platt 0.163 0.163 0.328 0.163 0.661* 0.175 0.654 0.000 0.326 0.770* 0.413 8.217* 0.104 0.646* 0.837 

LibSVM Cross Val 0.221 0.221 0.384 0.221 0.620* 0.259 0.618 0.000 0.246 0.663* 0.440 7.596* 0.204 0.593* 0.779 

ZeroR FixedSplit 0.279 0.279 0.348 0.139 NaN* 0.100 0.500 0.221 0.000 0.501* 0.100 1* 0.100 0.668* 0.777 

ZeroR Cross Val 0.307 0.307 0.366 0.157 NaN* 0.300 0.500 0.250 0.000 0.311* 0.300 1* 0.300 0.445* 0.683 

ZeroR Platt 0.307 0.307 0.366 0.157 NaN* 0.300 0.500 0.250 0.000 0.311* 0.300 1* 0.300 0.445* 0.683 

     Table 4: Average performances for each learning algorithm by metric (average over ten problems) 
 
 



 

 

Algorithm Val./Cal. Adult CovType Celegans Droso DS1_100 Letter PenDigits Satellite Shuttle Tic2000 Average 

IB-k FixedSplit 0.7889 0.9789 0.9304 0.9765 0.9727 0.9715 0.9968 0.9426 0.9991 0.9007 0.9458 

Decision Table LogitBoost 0.8449 0.9797 0.9670 0.9837 0.9762 0.9156 0.9594 0.8032 0.9798 0.9349 0.9344 

Decision-Table FixedSplit 0.8516 0.9777 0.9421 0.9832 0.9773 0.8487 0.9196 0.9019 0.9989 0.9405 0.9341 

Ibk LogitBoost 0.7833 0.9765 0.9304 0.9765 0.9672 0.9717 0.9898 0.8294 0.9992 0.9054 0.9330 

Ibk AddReg 0.7834 0.9673 0.9383 0.9813 0.9690 0.9710 0.9908 0.8250 0.9992 0.9036 0.9329 

IB-k CrossVal 0.7851 0.9761 0.9306 0.9761 0.9656 0.9706 0.9890 0.8256 0.9990 0.9058 0.9324 

IB-k PlattScaling 0.7851 0.9761 0.9161 0.9691 0.9651 0.9703 0.9890 0.8242 0.9990 0.8946 0.9289 

Decision-Table CrossVal 0.8515 0.9379 0.9420 0.9839 0.9795 0.8318 0.9087 0.8041 0.9982 0.9386 0.9176 

Decision-Table PlattScaling 0.8518 0.9382 0.9420 0.9839 0.9795 0.8275 0.9062 0.8073 0.9982 0.9386 0.9173 

Decision Stump LogitBoost 0.8519 0.9784 0.9567 0.9841 0.9700 0.7383 0.8650 0.8125 0.9984 0.9390 0.9094 

Decision-Stump FixedSplit 0.7608 0.9220 0.9421 0.9832 0.9699 0.6712 0.7101 0.8789 0.9266 0.9405 0.8705 

Decision-Stump CrossVal 0.7596 0.9524 0.9420 0.9839 0.9581 0.6678 0.7063 0.8230 0.9279 0.9390 0.8660 

Decision-Stump PlattScaling 0.7596 0.9524 0.9420 0.9839 0.9581 0.6678 0.7063 0.8230 0.9279 0.9390 0.8660 

Decision Table AddReg 0.7802 0.9437 0.9487 0.9839 0.9704 0.6745 0.7934 0.6885 0.9276 0.9382 0.8649 

LibSVM FixedSplit 0.7609 0.9671 0.9421 0.9832 0.9815 0.9713 0.5045 0.5525 0.9482 0.9399 0.8551 

LibSVM PlattScaling 0.7597 0.9809 0.9420 0.9839 0.9831 0.9717 0.5113 0.3584 0.9427 0.9390 0.8373 

LibSVM LogitBoost 0.7595 0.9743 0.9432 0.9832 0.9813 0.9772 0.5117 0.3584 0.9490 0.9224 0.8360 

Decision Stump AddReg 0.7888 0.9249 0.9420 0.9839 0.9713 0.5215 0.6225 0.8277 0.7885 0.9390 0.8310 

LibSVM AddReg 0.7596 0.9235 0.9420 0.9839 0.9713 0.5029 0.5113 0.6416 0.7885 0.9390 0.7964 

ZeroR AddReg 0.7596 0.9235 0.9420 0.9839 0.9713 0.5029 0.5113 0.6416 0.7885 0.9390 0.7964 

Decision Stump IsoReg 0.7596 0.9235 0.9420 0.9839 0.9713 0.5029 0.5113 0.6416 0.7885 0.9390 0.7964 

Decision Table IsoReg 0.7596 0.9235 0.9420 0.9839 0.9713 0.5029 0.5113 0.6416 0.7885 0.9390 0.7964 

Ibk IsoReg 0.7596 0.9235 0.9420 0.9839 0.9713 0.5029 0.5113 0.6416 0.7885 0.9390 0.7964 

LibSVM IsoReg 0.7596 0.9235 0.9420 0.9839 0.9713 0.5029 0.5113 0.6416 0.7885 0.9390 0.7964 

ZeroR IsoReg 0.7596 0.9235 0.9420 0.9839 0.9713 0.5029 0.5113 0.6416 0.7885 0.9390 0.7964 

LibSVM CrossVal 0.7597 0.9809 0.9420 0.9839 0.9831 0.9717 0.5113 0.3584 0.3584 0.9390 0.7788 

ZeroR FixedSplit 0.7608 0.8286 0.9421 0.9832 0.9699 0.5013 0.5045 0.5525 0.7887 0.9405 0.7772 

ZeroR CrossVal 0.7596 0.0765 0.9420 0.9839 0.9713 0.4971 0.5113 0.3584 0.7885 0.9390 0.6828 

ZeroR PlattScaling 0.7596 0.0765 0.9420 0.9839 0.9713 0.4971 0.5113 0.3584 0.7885 0.9390 0.6828 

ZeroR LogitBoost 0.7596 0.0765 0.9420 0.9839 0.9713 0.4971 0.5113 0.3584 0.7885 0.9390 0.6828 
Table 5: Accuracy of selected algorithms across Fixed Split, Cross Validation and all four types of Calibration methods over ten problems and their mean performances in descending order 

 

 
Algorithm Val/Cal. Abs_Err Rel_Err RMSE Sqr_Err Corr. Pre_Avg AUC Margin Kappa Preci. Recall LIFT Fallout F_Mea. Acc. 

IB-k FixedSplit 0.056 0.056 0.199 0.054 0.613 0.219 0.819 0.000 0.612 0.658 0.641 5.350 0.033 0.647 0.9458 

Decision Table LogitBoost 0.089 0.089 0.205 0.050 0.622 0.208 0.917 0.002 0.604 0.755 0.621 9.641 0.047 0.649 0.9344 

Decision-Table FixedSplit 0.091 0.091 0.215 0.056 0.760* 0.199 0.784 0.013 0.524 0.892* 0.541 6.731* 0.038 0.810* 0.9341 

Ibk LogitBoost 0.068 0.068 0.223 0.067 0.577 0.211 0.800 0.000 0.574 0.615 0.631 5.682 0.051 0.619 0.9330 

Ibk AddReg 0.068 Inf + 0.220 0.066 0.570 0.211 0.000 1.000 0.552 0.564 0.624 5.108 0.069 0.565 0.9329 

IB-k CrossVal 0.070 0.070 0.225 0.068 0.575 0.212 0.804 0.000 0.572 0.612 0.632 5.612 0.052 0.617 0.9324 

IB-k PlattScaling 0.091 0.091 0.229 0.068 0.580 0.217 0.805 0.015 0.577 0.604 0.651 5.415 0.056 0.625 0.9289 

Decision-Table CrossVal 0.109 0.109 0.243 0.071 0.616* 0.193 0.786 0.008 0.480 0.739* 0.542 6.739* 0.057 0.669* 0.9176 

Decision-Table PlattScaling 0.109 0.109 0.243 0.071 0.616* 0.197 0.786 0.008 0.480 0.736* 0.546 6.733* 0.061 0.670* 0.9173 

Decision Stump LogitBoost 0.138 0.138 0.238 0.071 0.534 0.187 0.893 0.005 0.516 0.730 0.562 10.203 0.062 0.583 0.9094 

Decision-Stump FixedSplit 0.187 0.187 0.285 0.094 0.623* 0.175 0.774 0.082 0.308 0.759* 0.397 2.508* 0.070 0.767* 0.8705 

Decision-Stump CrossVal 0.211 0.211 0.305 0.106 0.516* 0.161 0.742 0.073 0.300 0.697* 0.376 5.283* 0.078 0.633* 0.8660 

Decision-Stump PlattScaling 0.225 0.225 0.308 0.107 0.516* 0.161 0.742 0.099 0.300 0.697* 0.376 5.283* 0.078 0.633* 0.8660 

Decision Table AddReg 0.122 Inf + 0.238 0.067 0.600 0.215 0.000 1.000 0.274 0.204 1.000 1.000 1.000 0.304 0.8649 

LibSVM FixedSplit 0.145 0.145 0.319 0.145 0.474* 0.084 0.652 0.000 0.325 0.761* 0.308 8.570* 0.004 0.557* 0.8551 

LibSVM PlattScaling 0.163 0.163 0.328 0.163 0.661* 0.175 0.654 0.000 0.326 0.770* 0.413 8.217* 0.104 0.646* 0.8373 

LibSVM LogitBoost 0.166 0.166 0.311 0.142 0.439* 0.179 0.695 0.024 0.336 0.698* 0.426 7.067* 0.107 0.445* 0.8360 

Decision Stump AddReg 0.167 Inf + 0.260 0.079 0.542 0.223 0.000 1.000 0.108 0.204 1.000 1.000 1.000 0.304 0.8310 

LibSVM AddReg 0.485 Inf + 0.526 0.341 1.38E-07* 0.078 0.000 1.000 0.000 0.204 1.000 1.000 1.000 0.304 0.7964 

ZeroR AddReg 0.485 Inf + 0.526 0.341 1.38E-07* 0.078 0.000 1.000 0.000 0.204 1.000 1.000 1.000 0.304 0.7964 

Decision Stump IsoReg 0.263 Inf + 0.366 0.157 1.02E-07* 0.271 0.000 1.000 0.000 0.204 1.000 1.000 1.000 0.304 0.7964 

Decision Table IsoReg 0.263 Inf + 0.366 0.157 1.02E-07* 0.271 0.000 1.000 0.000 0.204 1.000 1.000 1.000 0.304 0.7964 

Ibk IsoReg 0.263 Inf + 0.366 0.157 1.02E-07* 0.271 0.000 1.000 0.000 0.204 1.000 1.000 1.000 0.304 0.7964 

LibSVM IsoReg 0.263 Inf + 0.366 0.157 1.02E-07* 0.271 0.000 1.000 0.000 0.204 1.000 1.000 1.000 0.304 0.7964 

ZeroR IsoReg 0.263 Inf + 0.366 0.157 1.02E-07* 0.271 0.000 1.000 0.000 0.204 1.000 1.000 1.000 0.304 0.7964 

LibSVM CrossVal 0.221 0.221 0.384 0.221 0.620* 0.259 0.618 0.000 0.246 0.663* 0.440 7.596* 0.204 0.593* 0.7788 

ZeroR FixedSplit 0.279 0.279 0.348 0.139 NaN* 0.100 0.500 0.221 0.000 0.501* 0.100 1* 0.100 0.668* 0.7772 

ZeroR CrossVal 0.307 0.307 0.366 0.157 NaN* 0.300 0.500 0.250 0.000 0.311* 0.300 1* 0.300 0.445* 0.6828 

ZeroR PlattScaling 0.307 0.307 0.366 0.157 NaN* 0.300 0.500 0.250 0.000 0.311* 0.300 1* 0.300 0.445* 0.6828 

ZeroR LogitBoost 0.307 0.307 0.366 0.157 NaN* 0.300 0.500 0.250 0.000 0.311* 0.300 1* 0.300 0.445* 0.6828 
Table 6:   Average performances for selected learning algorithm by metric  across Fixed Split, Cross Validation and all four types of Calibration methods  (average over ten problems) 
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         REPTree  Random Forest          ADTree       Simple Logistic  SMO    

 
Figure 7: ROC graphs of twenty algorithms for Adult problem (X Axis-False Positive Rate, Y-Axis True Positive Rate). 
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Figure 8: Precision/Recall graphs of twenty algorithms for Adult problem (X Axis-Recall, Y Axis-Precision). 
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7. Comparison of results 
 
Results of supervised learning techniques depend upon many things like type of dataset, number of 
instances in dataset, algorithm used for testing, process used for producing output etc. Data mining is a 
study of knowledge discovery in large datasets. First of all we present the comparison of different 
datasets based on average accuracy through different processes followed by the performance of different 
algorithm based on their average accuracy over three processes of major study. Figure 9 includes 
average performance of different problems from major study. Droso problem has performed best with an 
average accuracy of 97.78%, whereas Letter problem has performed worst with average performance 
with 80.57% average accuracy. 
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Figure 9: Average performance of different processes for different problems 
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Figure 10: Average of average performances from five algorithms over all ten datasets included in minor study. 

 
Figure 10 includes the average performance of all the processes from the average of five algorithms over all ten 
datasets included in minor study. Fixed split is highest performer, but its performance is over fitted, whereas post 
pruning through isotonic regression is least performer with 79.64% performance. Cross Validation and other three 
post pruning methods have pruned the models more appropriately.  Among these four LogitBoost has performed 
best, whereas cross validation has performed least. Reason behind low performance of cross validation is exclusion 
of one tenth of training dataset while processing final model.  

 
Other dimension of comparison includes two comprehensive studies that have been performed yet. First 
one is Statlog (King et al. [15]) and other is recent one (Caruana et al. [7]). One of the major differences 
between earlier two studies and current study, is about the selection of datasets i. e. earlier studies were 
mostly based on small datasets, whereas present study includes most of the datasets that are bigger in 
size and simple rule of probability states that increasing number of instances produces more accurate 
results and minimizes the chances of deviation. When Statlog study was conducted, algorithms like 
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Random Forest etc. were not being developed and data mining was in its initial phase of development. 
During last two decades data mining field has become mature enough. Statlog study presented the 
results for individual datasets. We compiled and processed the data for comparison and found that 
piecewise linear classifier DIPOL92 to be performing best for their tests, whereas Decision Tree was 
ranked second followed by the Back Propagation and kNN (k Nearest Neighbor) etc. Clearly, the absence 
of better algorithms like Random Forest at that time kept the high quality performances far away from 
current standards. Today, we have far better results than the results presented in Statlog. 
 
Other recently conducted study (Caruana et al. [7]) presented the results that Boosted decision tree with 
platt scaling algorithm is the best performer, whereas Random Forest with platt scaling is the second best 
performer. Bagging and Boosting was not applied upon Random Forest. Experiments were performed 
through cross validation, Platt Scaling and Isotonic Regression. Top performers were Boosted Decision 
Tree, Random Forest, Bagged decision tree, SVM (Support Vector Machine), ANN (Artificial Neural 
Network) etc. Results of our study have marked Bagged Random Forest to be the best performer 
followed by J48, PART, Multi Layer Perceptron and IBk etc.  
 
Finally results of present study are compared with the best known results ever claimed for problems 
included in study. For adult dataset best possible result is claimed for FSS Naïve Bayes in the description 
of datasets of UCI repositories (Blake et al. [5]) having 85.95% accuracy, where 32561 instances were 
used for training and 16281 instances for testing. Present study has used 9768 instances for training and 
39074 instances for testing and best result is 85.50% for ADTree-Boosting algorithm with cross validation, 
which confirms our claim that training with twenty percent training instances for large datasets achieve 
significant maturity in results. For other problems as well results are up to the mark with best possible 
results ever being obtained. 

 
8. Conclusion and Future Directions 
 
Data mining has marked substantial progress in last two decades. Learning methods such as boosting, 
random forests, bagging and IBk etc. have achieved excellent performance that would have been difficult 
to obtain just fifteen years ago. Calibration with either Platt's method, Logit Boost, Additive Regression or 
Isotonic Regression is remarkably effective at obtaining excellent performance on the probability metrics 
from learning algorithms that performed well on the ordering metrics. Calibration dramatically improves 
the performance of Random Forests, ADTree, Decision stumps and Naive Bayes etc. and provides a 
noticeable improvement for random forests. With excellent performance over all fifteen metrics, calibrated 
Random Forest trees were the best learning algorithms overall. ADTree, IBk, J48 and MultiLayer 
Perceotron were quite close to it. Algorithm ZeroR has registered worst performance, but has registered a 
little improvement through Additive Regression based calibration. As the environmental factors like type 
of problems, size of dataset etc. may affect the performance of the algorithm, even better algorithms 
sometimes may result in bad results. Even after having a significant margin between best and worst 
performances, there exist chances for improvement. Authors will continue to work for the improvement of 
the processing environment of badly performing algorithms and for the improvement of the best 
algorithms as well as for the development of new algorithms for the field. 
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