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Abstract 
 
In this paper we propose a novel Crypto-System with Embedded Error Control (CSEEC). The 
system supports data security and reliability using forward error correction codes (FEC). Security 
is provided through the use of a new symmetric encryption algorithm, while reliability is provided 
through the support of FEC codes. The system also supports joint security and reliability in which 
encryption and encoding are performed in a single step. The system aims at speeding up the 
encryption and encoding operations and reduces the hardware dedicated to each of these 
operations.In addition, the proposed system allows users to achieve secure and reliable 
communication in which they can alternate between a priority onsecurity and reliabilityand scale 
their choice to the desired level in order to attain communication quality and fulfill application 
needs. The system targets resource constrained nodes such as remote sensor nodes operating 
in noisy environments. 
 
Keywords: Joint Encryption and Error Correction, Data Security, Data Reliability, Erasure 
Coding, Forward Error Correction. 

 
 
1. INTRODUCTION 

Data security and reliability are integral aspects of modern communication systems. They are 
achieved through encryption and forward error correction (FEC). Conventional encryption 
schemes provide a high level of protection at the expense of processing time and energy. These 
methods force devices with constrained resources to settle for either low or no strength schemes. 
 
Security and reliability operations have always been dealt with separately due to their 
contradicting objectives. There have been some efforts to combine them by joining encryption 
and coding into a single step. The aim was to have a faster more efficient communication in terms 
of time, energy, and area[1]. However, many efforts [2]–[5]did not get a lot of attention due to their 
large key size, high overhead or inefficient correction capability, while others[2], [4], [6]–[8]did not 
achieve enough strength to compete with conventional encryption schemes. 
 
With consideration to the work that has been done previously in the area of joint security and 
reliability, we propose a novel Crypto-System with Embedded Error Control (CSEEC) for secure 
and reliable communication. Thissystem supports data security and reliability. In addition to the 
support of these functions separately, the systemalso supports the joint functionality when 
encryption and encoding are combined in a single process. CSEEC provides all these 
functionsusing forward error correction (FEC) codes. FEC codes are commonly used to achieve 
data reliability. However in this system, they are combined with specially designed operations 
thatallow them achieve data security as well. 
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To achieve data security we propose a new symmetric encryption scheme with a 128-bit key. The 
idea is based on the ability of erasure codes to recover from errors only when the exact locations 
of these errors are determined. Thus to encrypt a block of data, it is first encoded using the FEC 
code, then an amount equal to the amount of added redundancy is intentionally deleted. The 
deletion process is controlled by the encryption key. Thus, only those who possess the key are 
able to recover the original data. However, the idea of deletion by itself is not enough to achieve 
confusion and diffusion, the two properties that characterize a secure system[9]. Hence the 
deletion operation is combined with other operations,as well as permutation and randomization. 
Permutation rearranges the bits within a block while mixing combines the processed data with a 
random sequence. The proposed encryption scheme is not a strict block encryption sinceit does 
not have a traditional S-box. It is not a strict stream encryption either sinceit processes the stream 
of bits in fixed-sized blocks. 
 
The support of data reliability or error control capability intuitively comes from the support of 
forward error correction code. This capability can be used to detect errors, correct errors, or 
correct erasures. The exact function will be determined by the application, the channel, and the 
amount of redundancy added. To achieve joint security and reliability, we extend the encryption 
scheme by making the amount of redundancy deleted less than the amount of redundancy 
added. Thus, the extra amount can be used to control the errors introduced by the channel. Due 
to our ability to range the amount of data deleted, the security and reliability levels are easily 
scaled. 
 
CSEEC is different from previous proposals [3], [4], [11]. It does not incur any communication 
overhead when FEC codes are used as a mean of security. This is due to the notion of erasures, 
as opposite to errors. Erasure allows CSEEC to maintain the ciphertext size equal to the plaintext 
size. It also uses dynamic random permutations in which each processed block is permuted 
differently. In addition, it has a reasonable key size(128-bit)from whichall components are 
initialized or derived.  
 
The rest of the paper is organized as follows. In Section 2 we discuss related work. In Section3 
we describe the proposed encryption scheme. In Section 4 we present the joint reliability and 
security scheme. In Section 5 we provide an analysis of results showing the superiority of our 
method. And finally, in Section 6, we conclude the paper and describe directions for future work. 

 
2. RELATED WORK 

The first effort in the field of joint encryption and error correction was contributed by McElience[2]. 
McEliece introduced a public key cryptosystem based on algebraic coding theory. His idea was 
based on the fact that the decoding problem for an arbitrary linear code is NP-complete. The 
system was based on a class of error correcting code known as the Goppa code. The McEliece 
system is inefficient in terms of error correction capability because it requires very large public 
keys and large block sizes to correct the large number of errors,which result in high 
computational overhead. Also, the original system has been shown to be vulnerable to chosen-
ciphertext attacks [12]. More work, with mixed results,have been done to extend theMcEliece 
system. However, the large key size remains an unsolved problem for McEliece-based systems.  
 
A general encryption scheme based on MDS codes was proposed by Xu[13]. Xu proposed 
combining cryptographically strong random key stream generators with erasure correction codes. 
In general, the scheme makes use of any ��, ��MDS code, where � � �. A ciphertext 
corresponding to � symbols plaintext is chosen to be � symbols selected from the � symbols 
codeword generated from encoding the plaintext. The symbols are selected based on a sequence 
generated from the random number generator each time a plaintext block is to be encrypted. 
Clearly, as in stream ciphers, the security of the scheme depends on the strength of the random 
number generator. Further analysis is required to assess the system. 
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Another scheme that makes use of erasure codes was proposed in [4], a secure erasure coding 
scheme(SEC) for peer-to-peer storage systems. The scheme aims at ensuring the confidentiality 
of long term archive data through the use of the proposed encryption scheme along with fragment 
naming and placement procedures. SEC uses a customized version of the Reed-Solomon 
erasure code in whicha secret generator matrix is constructed from a user specified key by 
customizing the Cauchy matrix. The encryption scheme is susceptible to known plaintext attack 
when used in stand-alone mode. 
 
In [3], a symmetric encryption scheme based on erasure correction codes is presented. The 
scheme starts by compressing and permuting the plaintext. Then, the result was encoded using 
an erasure correction code. The encoding phase was followed by intentional data loss through 
which a number of columns were removed from the block. Finally, another transposition was 
applied. This scheme, however, suffers from a couple of problems. The first one is the use of 
compression. Although compression removes redundancy, it does not add randomness [14]. In 
addition, compression may increase the data size when encrypting previouslycompressed data. 
The second issue is the key that includes all encryption parameters. This results in a large and 
variable key size.  
 
An error correction cipher calleda High Diffusion (HD) cipher is presented in[5]. They used the 
Advanced Encryption Standard (AES) structure and replaced its diffusion layer with an error 
correcting code. They proposed usingHD codes that possess maximum diffusion and achieve 
optimal error correction. The cipher is composed of multiple iterations of the round function and 
key mixing operations. Though the system provides both data security and reliability, it is highly 
complex. 
 
A more recent work is presented in [11], Error Correction-Based Cipher (ECBC). It is a scheme 
that combines error correction and security. ECBC is hardware based and designed for wireless 
networks. It is based on the McEliece scheme and employs a block chaining technique. The 
ciphertext is generated by adding a randomly generated error vector to a permuted block where 
the permuted block is the result of multiplying a nonlinearly transformed encoded plaintext viaa 
permutation matrix. In [15], it was found that ECBC is vulnerable to chosen plaintext attacks. 
 

3. THE ENCRYPTION SCHEME 
We propose symmetric encryption with a 128-bit key. The idea is to make use of the fact that a 
plaintext block can be recovered from a subset of the encoded block provided that enough 
information is available. Based on that, we intentionally introduce erasures by deleting part of the 
encoded block in the encryption process and later use the decoding algorithm to recoverthe 
deleted values from those erasures. The success of the decryption process depends on the 
knowledge of how erasures are introduced in the first place. Thus to prevent anyone from 
decrypting the data, erasures are introduced in a way known only to communicating parties. 
 
3.1. System Parameters 
Before processing the data, the sender and receiver must agree on a number of parameters. The 
parameters are: the error correction code �, block size determined by the number of rows � and 
columns 	, number of parity columns 
, number of parity columns used toward reliability �, and a 
pseudo random number generator PRNG. 
 �can be any correction code with erasure correction capability. The erasure correction codes can 
correct any number of erasures up to the number of added redundancy. Usually, the error 
correction code supports specific block sizes. Therefore, the sender and receiver must choose a 
suitable block size and, accordingly, determine �and 	. For example, in Linear codes for Erasure 
error Correction (LEC) [16],	 has to be prime and � is set at	 � 1. The selected size will depend 
on the application and the supported hardware capabilities and it should be chosen for fast 
decoding and high throughput. 
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represents the number of extra columns that will be generated by the error correction code. Out 
of these 
columns, � columns will be used toward reliability. Thus, 
 � � columns will be 
intentionally discarded and will not be included in the output. When the system is used for 
encryption only, � is set to zero. This means that an amount equal to the amount of added 
redundancywill be deletedfrom the encoded block. However, what is deleted does not necessary 
have to be part of the original block; it could be part of the added redundancy. This is determined 
by the key. 
 
PRNG is used to generate a random sequence that is added to the processed block. This 
component is used to achieve the desired confusion. The selected generator will be initialized 
with a secret key and an initialization vector (IV). Overall, the generator should be selected with 
speed, efficiency, and security in mind. 
 
3.2. Initialization 
The initialization process is the same for encryption and decryption. In this process, the system 
state is determined and the necessary components are initialized with the shared secret key. The 
two main components are PRNG and a number of random permutation arrays. 
 
The PRNGisused to generate random sequences ����� that will be mixed with the encoded block. 
The initialization process is dependent on the generator in use. Generally, this process ismade 
sensitive to key changes such that small changes in the key will be reflected in the generator 
output. It is also necessary to use a different initialization vector (IV) every time the PRNG is 
initialized. This is a measure taken to make sure that no relationships can be deduced from 
ciphertexts encrypted with same key at different sessions. 
 
The random permutation arrays have two purposes. They are used to shuffle or arrange bits 
within a block and identify the columns that will be deleted from the encoded block. For these 
purposes three random permutations are required: 
 

1. 
1: is a bit permutation that will enable permuting bits within a block of size� � 	. 
2. 
2: is another bit permutation that will enable permuting bits within a block of size� � �	 ���. 
3. 
3: is a column permutation that will specify the order of	 � 
 columns within a block. 

 
We propose using a modified version ofthe RC4 key scheduling algorithm to derive these 
permutations. We are not restricted to this specific algorithm; any other algorithm maybe used as 

1  procedure permutations-initialization(key,KeyLen,c,r,P,R)  

2     forifrom 0 to (r*c)-1 

3        P1[i] ←←←←i 

4     enfor 

5     forifrom 0 to (r*(c+R))-1 

6        P2[i] ←←←←i 

7     enfor 

8     forifrom 0 to c+P-1 

9        P3 [i] ←←←←i 

10    enfor 

11    j ←←←← 0 

12    forifrom 0 to (r*(c+R))-1 

13      j ←←←←(j+Key[i mod KeyLen]+P1[i mod(r*c)])mod (r*c) 

14      SWAP(P1[imod (r*c)], P1[j]) 

15      j ←←←←(j+Key[i mod KeyLen]+P2[i]) 

16      SWAP(P2[i] , P2[j]) 

17      j ←←←←(j+Key[i mod KeyLen]+P3[i mod c+P])modc+P 

18      SWAP(P3[imodc+P], P3 [j]) 

19    enfor 

20    return (P1,P2,P3) 

FIGURE 1: Permutation Generation Pseudo Code. 
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long as it can achieve the desired results and it is sensitive to small changes in the key. In other 
words, two keys that differ in a very small number of bits will produce two completely different 
sets of random permutation arrays. Furthermore, the algorithm must not be known to have any 
structural weaknesses that could be used later to attack the system. 
 
To generate these arrays, we start by filling each one of them with the identity permutation and 
then permute them according to a key in the same way RC4 uses its key to setup its internal 
state. Specifically, weuse two indices and loop over all positionsand, at each iteration, swap the 
contents pointed by these two indices. One of these indices is incremented as a counter, while 
the other is incrementedrandomly using the key. To generate multiple permutation arrays, we 
chain them together instead of generating each one independently from the other as describe in 
Figure 1. 
 
3.3. Encryption 
As mentioned earlier the main idea of encryption is the partial deletion of the encoded block. 
However, the deletion by itself is not enough to achieve the two properties identified by Shannon 
[9]: diffusion and confusion. For that purpose we use dynamic permutations combined with 
randomization. The encryption process is described in Figure 2. 

 
To encrypt, start by permuting the bits of the input block �� using the permutation array  
1. 
Figure 3 illustrates how a permutation array is applied to a small input block of size 3 � 3. 

�� � ��
1�  
 
Then, encode the permuted block �� using the agreed on �. The encoding process will generate 
 
parity columns, thus extending the size of the output block ��to� � �	 � 
�: �� � ����� 
 
Next, the encoded block �� is randomized by XORing it with the random sequence ����� from 
PRNG. The block in this step is processed row by row to make the maximum continuous 
sequence available from the PRNG after deletion is no more than 	 � 
 bits. 
 �� � �������� 

 

 
FIGURE 2: Encryption. 
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=  ��5 �1 �6 �7 �8 �4 �2 �0 �3$  

  

FIGURE 3: Permutation Example. 

This is followed by the delete step where
 out of the 	 � 
 columns are selected and removed 
from the randomized block. The selection is determined using 
3. The first 
 entries of 
3specify 
the ids of the columns that will be removed. Figure 4 illustrates this step. It shows the deletion of 
two columns from a 3 � 4data block using a permutation array. 
 

+� � ��
3�  
 
The objective of performing the XOR operation after encoding and before deletion is to increase 
the complexity of the PRNG cryptanalysis. In this case, part of the generator output will be 
deleted and there is no way to recover what is deleted especially when is not protected by the 
correction code. Thus, an attacker will not have a continuous output sequence from the PRNG. 
Therefore, he will not have reliable knowledge as a basis for his cryptanalysis. 
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FIGURE 4: Delete Step Illustration. 
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Finally, generate the ciphertext-� by performing another bit permutation: 
 

-� � +�
2�  
 
At the end of processing each block, a new set of permutation is generated. This new set allows 
different columns to be deleted as well as different bit permutations to be performed every time a 
block is encrypted. The new set is derived from the existing set using the encryption key. For that 
purpose, a slightly modified version of the permutation generation algorithm is used. In this 
version, start with the existing permutations and loop over the key bytes rather than the array 
entries. This means that, for those arrays with a number of entries more than the number of bytes 
in the key, common or fixed entries may be found in the initial set and the derived one. However, 
that should not affect the security of the system as a whole since the key and the initial and 
derived permutations are all kept secret. The update permutation algorithm is described in   
Figure 5. 
 

 
 

FIGURE 5: Update Permutations Pseudo Code. 

 

3.4. Decryption 
The success of the decryption is based on theability to identify the exact positions of the deleted 
data for the decoding algorithm. It is not necessary to decrypt previous blocks successfully. 
However, it is necessary to be synchronized with the encryption process to maintain the right 
system state in terms of the permutation arrays and the PRNG state. The decryption process is 
described in Figure 6.  
 
To decrypt, start by reversing the post-permutation: 
 +� � -�
2�. 
 
Then, identify deleted columns using 
3 and rearrange them into their proper order. This step will 
expand the block to include the deleted columns. This is an important step for successful 
decryption for a number of reasons:(1) to ensure that the XORing with the random sequence is 
performed correctly and (2)because the order of symbols is as important as the value of symbols 
to decoding. ��/ � +�
3�. 
 
Once the columns are put in order, the data can be extracted by adding �����: 
 ��/ � ��/������ 
 
Next, reconstruct the 
 deleted columns using the decoding algorithm of  �: 
 �� � �01���/� 

1  procedure Update-Permutations(key,KeyLen,c,r,P,R,P1,P2,P3)  

2     j=0 

3     forkfrom 0 to keyLen-1 

4        j ←←←← (j+Key[k]+P1[k])modc+P 

5        SWAP(P1[k], P1[j]) 

6        j ←←←← (j+Key[k]+P2[k]) mod r*(c+R) 

7        SWAP(P2[k] , P2[j]) 

8        j ←←←← (j+Key[k]+P3[kmod r])modc+P 

9        SWAP(P3[kmodc+P], P3 [j]) 

10    endfor 

11    return(P1,P2,P3) 
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Finally, recover the plaintext�� by reversing the bit permutation: �� � ��
1�.  
 

 
As in encryption, after processing a block, a new set of permutation arrays are generated. They 
are derived from the existing one using the algorithm described in Figure 3. The permutation 
update function in decryption must be identical to the one in theencryption ifupcoming blocksare 
to be decrypted successfully. 
 

4. JOINT SECURITY AND RELIABILITY 
Joint securityand reliability allows us to perform encryption and error control simultaneously in a 
single process. This process is an extension ofencryption where the number of deleted columns 
is less than the number of added parity. In this scenario, when determining 
 one needs to 
consider how many columns will be deleted and how many will be added for error control 
purposes. 
 
The number of deleted columns is set with the amount of securitythat is required in mind. The 
more columns deleted the more complex the attacks on the system get, and the more columns 
need to be reconstructed. Generally, the decoding process is more expensive than the encoding 
one,which means the more columns recovered the more delay one may expect. Overall, the 
number of columns deleted should not affect the system performanceand, at the same time, 
should achieve the desired security level. 
 
As to those columns added for error control, one needs to determine what type of error control is 
required: error detection vs. error correction. This will be determined by application needs and 
thecommunication channel. Based on the channel, the type and number of errors expected may 
beidentified. Consequently, � is determined suitably. In case � is set to be equal to 
, then no 
columns will be removed and the securityof the data will be maintained only by the randomization 
and permutations. 
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Once the system parameters are determined, the initialization process can be followed as in 
Section 3.2. In this process the key is used to set up the system by initializing the PRNG and 
deriving the random permutations. Upon successful initialization the blocks can be processed, 
essentially, as in the encryption case(Figure 2). First, the bits of �� are permuted within the whole 
block. Then, the permuted block is encoded by � where 
 extra columns are generated. Next, the 
encoded block is XORedwith a random sequence generated from the PRNG. This is followed by 
the deletion step where the encryption and the joint functions differ. In this case, 
 � � columns 
are deleted using 
3 where the first 
 � �entries determine the ids of those columns. Finally, 
coded ciphertext is generated by permuting the bits within the whole block where the masked 
parity and data bits are mixed together. The encoded ciphertext -� is expressed as follows:  
 

-� � 2�2��
1� 3 � �����3
3� 
2�  

 
Error control can only be performed by those who possess the key. To be able to at least detect 
channel errors, the permutation and XOR steps must be reversed first before applying the 
decoding process. Those two operations—although performed on data as well as parity bits—do 
not propagate errors when they occur.  
 
To decrypt an encoded ciphertext -�, proceed as in Figure 6. First, the bit permutation is 
reversed. Then, the deleted columns are identified and the remaining ones are rearranged in their 
proper order with the use of 
3. Next, the random sequence is extracted by XORing it back with 
the block. The decoding algorithm is then applied to recover the deleted columns and detect or 
correct communication errors. Communication errors can only be handled if they are within the 
capability of the correction code. Finally, the bit permutation is reversed to obtain the plaintext 
block �� back. 
 �� �  �01�-�
2�.
3�.   � ������ 
1�.  
 
4.1. Data Reliability  
Data reliability, where no security measures are required, is achieved through the use of forward 
correction codes. These codes are used to detect errors, correct errors, or correct erasures. The 
exact functionality is determined by the application and communication channel. These two 
factors also determine the number of parity added to the data. In this case, � is set to be equal to 
and only the correction code is used without the other operations.  
 
For reliable communication, data is encoded using the agreed on error correction code. The 
encoding process generates 
 parity columns. Then, the data along with the parity are sent to the 
destination. At the other end, the decoding algorithm is executed to detect errors and if possible 
correct them, or, in case of erasures, if they are identified, they are corrected in orderto recover 
the original data. 
 

5. ANALYSIS 
This section provides an assessment of the proposed scheme in terms of security, randomness, 
and highlights the system performance. In terms of the correction capability, the analysis is the 
same as the analysis applied to the error correction code as no modification is applied on the 
code itself. However, when considering the correction capabilities of the code with respect to 
communication errors, one needs to consider the amount of redundancy assigned to the reliability 
rather than the amount of redundancy generated from the code. 
 
5.1. Security 
The security of the system depends on how hard it is to find the encryption key. CSEEC key is 
used in two ways: to initialize the PRNG and to derive the random permutations. Extracting the 
key from the random permutation is a very challenging task for a number of reasons. First, these 
permutations are kept secret. Second, the permutations are updated every time a block is 
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processed, which means there will not be enough blocks that use the same permutations for 
analysis. Third, the randomization and deletion add an extra burden on the process of extracting 
the key. Thus, extracting the key from the PRNG output sequence isa more applicable approach 
in determiningthe key. 
 
For known PRNGs, there are a set of attacks that can be applied to determine the key used to 
initialize the PRNG state. However, any attack can only be applied on reliable knowledge of the 
output sequence, which is not the case here. All the PRNG sequences used to encrypt any 
ciphertext are randomly permuted and partially deleted. Thus, before applying any attack, the 
effect of the random permutation and deletion need to be reversed first to be able to identify the 
PRNG sequence. These operations are guided by the unknown key that we want to find and the 
only way to reverse these operations is by trying every possibilityin which these operations can 
be performed. 
 
For known plaintext attacks, the number of possible PRNG sequences used in randomizing a 
single block is determined by the number of possible pre-permutations, post-permutations, 
number of ways to select deleted columns, andthe values ofthe deleted columns. These 
possibilities are determined as follows: 
 

• The number of permutations that result in unique sequences is determined by the 
number of ones or zeros in a sequence, and that number is maximal when the sequence 

is balanced. Thus, the maximum number of possible pre-permutations is 4 � � 	� � 	 2⁄ 6 and 

post-permutations is 7 � � �	 � ��
� � �	 � �� 2⁄ 8.  

• The number of possible ways to select P-R columns from a block with 	 � 
 columns is 

4	 � 

 � �6. 

 

• The number of possible values that can be assigned to
 � � deleted columns is 29:�;0<�. 
 

Using the above possibilities brings the number of possible sequences generated from the PRNG 
for a single block to 
 

 4 � � 	� � 	 2⁄ 6 : 4	 � 

 � �6 : 29:�;0<� :  7 � � �	 � ��
� � �	 � �� 2⁄ 8 1 

 
Fora chosen plaintext attack, the ability to customize a plaintext can reduce the number of 
possible PRNG sequences. In this case, the effectof the pre-permutation can be eliminated by 
setting the plaintext to all zeros or all ones.  Thus, the number of possible PRNG sequences is 
reduced to: 
 

 4	 � 

 � �6 : 29:�;0<� :  7 � � �	 � ��
� � �	 � �� 2⁄ 8 2

 
Once the possible sequences are determined, then an attack is applied on each candidate 
sequence until the right key is determined. However if the attack in consideration requires a long 
sequence of size =that expands multiple blocks, then the above enumeration is repeated for each 
block until a sequence with the desired length is obtained.This sums up the total number of 
possible candidates for known plaintext attacks to: 
 
 

>4 � � 	� � 	 2⁄ 6 : 4	 � 

 � �6 : 29:�;0<� :  7 � � �	 � ��
� � �	 � �� 2⁄ 8?

@
A��BCD�

 3
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And for chosen plaintext attacks to: 
 
 

>4	 � 

 � �6 : 29:�;0<� :  7 � � �	 � ��
� � �	 � �� 2⁄ 8?

@
A��BCD�

 4

 
The above formulas are used to express how much it takes just to prepare the data before 
applying an attack. This is the amount by which the complexity of an attack is increased.  
 
It is clear that the security of CSEEC depends on the security of the PRNG. The level of security 
also depends on the combination of parameters. This dependence allowsusing less secure more 
efficient PRNG without compromising the confidentiality of information. Therefore, when setting 
these parameters one should consider the effect of these choices on the overall security of the 
system and whether these choices result in reachingthe targeted security level. 
 
If it is necessary to use the same key again, then a distinct initialization vector must be used for 
every PRNG initialization process. This is a necessary condition to ensure the following: 
 -1�-E F -1/�-E/ 
 
where -1, -E, -1/ and -E/ are the ciphertexts that correspond to the following plaintexts �1 , �E, �1/  and �E/  respectively and the plaintexts satisfy the following: 
 �1��E � �1/ ��E/  
 
5.2. Randomness 
One of the criteria used to evaluate any cipher is the assessment of its suitability as a source of 
randomness. A good cipher is a cipher that can be considered a true random number generator. 
Randomness testing is used for that purpose. Such tests do not guarantee that the generator is 
indeed random, however, the more tests the generator passes, the more confidence they give in 
its randomness. 
 
We used the National Institute of Standard and Technology (NIST) statistical test suite for random 
number generators [17]. The suite consists of 15 core tests that are extended to 188 tests under 
different parameter inputs [18].  
 
For the purpose of evaluation, we selectedthe Reed-Solomon code with two stream ciphers as 
random number generators, Grain-128 [19] and A5/1. Grain-128 is a 128-bit stream cipher 
designed for highly restricted environments. A5/1 is a 64-bit stream cipher used in GSM 
communications. The key setup process for A5/1 is extended to incorporate all the 128 key bits 
used by CSEEC. Both of these selections have good statistical properties and are chosen for 
their efficient hardware evaluations.  
 
To evaluate the system against randomness, we developed two data sets. The first data set 
evaluated the randomness of the ciphertexts. A sequence in this set wasthe result of 
concatenating ciphertexts formed from encrypting random plaintexts and one random key 
wasused per sequence. The second one evaluated the correlation between plaintexts and 
ciphertexts. Each sequence in this set consisted of blocks formed from XORing a plaintext with 
the corresponding ciphertext.One random key was used per sequence.  
 
As for the system parameters, �was set to 8, 	 to 16 and 
 to 3. We ranged � from zero to 
 for 
each data set. A total of 16 samples were generated, each with300 sequences. Then, all the 188 
tests were applied with the default parameters.  
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R 0 1 2 3 

Ciphertext block Size 128 136 144 152 

Sequence Length 1,048,576 1,048,696 1,048,608 1,048,648 

Data Set 1 0/188 0/188 0/188 0/188 

Data Set 2 0/188 0/188 0/188 0/188 

     
TABLE 1: NIST Tests Result for Grain-128 and A5/1. 

The results of the two generators were the same: all tests were passed. Table 1 shows the 
number of failed tests for each data set and the range of values for �. The results obviously 
depend on the randomness of the PRNG in use. As expected, the randomness of CSEEC output 
depends heavily on the randomness of the random number generator. However, the goal of these 
tests is to examine the effect of the other operations: permutations and, specifically, deletion on 
the output of the PRNG and whether these operations change the statistical properties of the 
output sequence. Asthe results indicate, the permutations and deletion do not affect the 
randomness of the PRNG in use. 
 
5.3. Implementation 
The scheme was implemented in software and hardware as a proof of concept. The goal of the 
software implementation was to verify the correctness of the algorithm and to generate the data 
for randomness testing. On the other hand, the goal of the hardware implementation was to 
understand the complexity associated with each operation. 
 
An RTL implementation was made for the described algorithm and Altera Quartus II was used to 
simulate the design using a Stratix III device (EP35E50F780C2). The implementation generates 3 
parity symbols using Reed-Solomon (RS) encoding for each block of size 8 � 8. Thus, up to 3 
columns can be deleted from a block. The implementation results are shown in Table 2. The 
numbers in this table do not include the area dedicated to the PRNG nor the error correction code 
because it is assumed that a system that implements CSEEC will already have these two 
functions implemented. The throughput of encryption is 96 Mbps and decryption is 95 Mbps. 
Comparingthese numbers with other encryption schemes indicates that CSEEC has good 
processing speed. However, comparing the joint functionality of CSEEC with encryption schemes 
combined with error correction codes shows that CSEEC exceeds them since the time it takes to 
process a block does not change whether the scheme is used for security or for joint security and 
reliability. On the other hand, when any encryption scheme is combined with error correction code 
then the time to process a block isincreased by the amount it take to encode or decode a block.  
 

Operation Encryption Decryption 

Frequency 53.75 MHz 79.28 MHz 

Logic Utilization 14% 21% 

Combinational ALUTs 3,964 6,279 

   
TABLE 2: Hardware Implementation Results. 

 

6. CONCLUSION AND FUTURE WORK 
A novel systemthat provides data reliability and security using FEC is proposed. The user is given 
the option to choose both or either services depending on his/her needs. Data security is 
achieved through a new encryption scheme based on intentional deletion. Joint securityand 
reliability is achieved through the extension of the encryption scheme by intentionally deleting an 
amount less than the amount of added redundancy. 
 
The system was implemented withthe Reed-Solomon code and two possible PRNGs, Grain-128 
and A5/1. The system design is general enough that it can use any forward error correction code 
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and any PRNG. Thus, users have the ability to use existing implementations with minimum 
additional operations. It is shown that the system security depends on the strength of the 
combination of its components, not on the individual security of each one of them. Moreover, the 
randomness of the PRNG is preserved and reflected in the system output. Also the 
implementations show the applicability and superiority of the scheme. 
 
Currently, the hardware implementation is being optimized and possible enhancements to the 
algorithm are being investigated. It is expected that processing speed can be further enhanced. 
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