
Neelam Bawane & C.V.Srikrishna

International Journal of Computer Science and Security, Volume 3: Issue (6) 508

A Novel Method for Quantitative Assessment of Software Quality

Neelam Bawane neelambawane@yahoo.com
Assistant Prof., Dept. of MCA
PES Institute Technology
Bangalore, 560085, India

C. V. Srikrishna cvsrikrishna@yahoo.co.in
Prof. & Head, Dept. of MCA
PES Institute Technology
Bangalore, 560085, India

Abstract

This paper deals with quantitative quality model that needs to be practiced
formally through out the software development life cycle at each phase.
Proposed quality model emphasizes that various stakeholders need to be
consulted for quality requirements. The quality goals are set through various
measurements and metrics. Software under development is evaluated against
expected value of set of metrics. The use of proposed quantitative model is
illustrated through a simple case study. The unaddressed quality attribute
reusability in ISO 9126 is also discussed.

Keywords- quality assurance, quality metrics, quality model, stakeholders

1. INTRODUCTION

Quality can not be added to the system as an afterthought, instead it must be built into the system
from the beginning. This paper proposes a quantitative software quality model which can evaluate
requirements engineering phase of system development rigorously. The objective of this paper is
to identify the need of a software quality model to be used as a foundation to Software Quality
Engineering. The paper illustrates the use of the proposed model during system analysis & design
and demonstrates usefulness through a case study. Software quality related literature in section II
and a brief description of existing quality models in section III presents background knowledge
about the topic considered in this paper. In Section IV, authors propose a quality model where
need of early quality analysis and importance of collecting the requirements from various
stakeholders are shown. A case study to demonstrate the application of proposed model is
presented in Section V.

2. RELATED LITERATURE

According to Gordon [12], software quality is an important characteristic affecting overall system
development lifecycle cost, performance and useful life. Increasing demands from the marketplace
for a greater emphasis on quality in software products are promising to revolutionize good practice
of software engineering [4].

It is now well established that production is meaningless without assessment of product quality.
"Quality is a complex and multifaceted concept." Garvin [10] describes quality from five different
perspectives: transcendental view, user view, manufacturers view, product view, and value-based
view.

Neelam Bawane & C.V.Srikrishna

International Journal of Computer Science and Security, Volume 3: Issue (6) 509

Kitchenham and Pfleeger [7] have recently discussed Garvin’s [9] approach in the context of
software product quality, accordingly Garvin’s model is a useful starting point not as a quality
model in its own right but rather as a specification of a set of requirements for quality models or
alternatively as a set criteria for evaluating product quality models.

The fact “quality must be monitored from the early phase such as requirements analysis and
design” provides need of Software Quality Assurance (SQA) [5]. The aim of the SQA organization
is to assure that the standards, procedures and policies used during software development are
adequate to provide the level of confidence required for the process or product. SQA is defined as
“a planned and systematic pattern of all actions necessary to provide adequate confidence that the
item or product conforms to established technical requirements”.

With increasing importance placed on standard quality assurance methodologies by large
companies and government organizations, software companies have implemented rigorous quality
assurance (QA) processes to ensure that these standards are met [20]. Various software quality
assurance models have been developed by different organizations to ensure that specific
standards are met and to give guidelines on achieving these standards [15].

Bourque [27] also suggests that the implementation of quality in a software product is an effort that
should be formally managed throughout the Software Engineering lifecycle. Such an approach to
the implementation of quality leads to Software Quality Engineering (SQE). Suryn [34] has
suggested that SQE is an application of a continuous, systematic, disciplined, quantifiable
approach to the development and maintenance of quality of software products and systems.
Georgiadou [10] demonstrated that more mature the process and its underlying lifecycle model,
earlier the identification of errors in the deliverables.

Thus, to achieve quality in software processes and products, it is necessary to develop systematic
measurement programs, compatible with the organizational objectives and tailored to the quality
aspects that are being considered [30]. There is a need to establish baselines of performance for
quality, productivity and customer satisfaction by the organizations. These baselines are used to
document current performance and improvements by showing deviations from the baseline. In
order to establish a baseline, a model must be established [26]. A quality model is a schema for
better explanation of our view on quality. Some existing quality models can predict fault-proneness
with reasonable accuracy in certain contexts. Few standard models are discussed in next section.

3. STANDARD MODELS

In the past years the scientific and industrial communities have proposed many QA standards and
models. According to Moore [20] "there are more than 300 standards developed and maintained
by more than 50 different organizations." Most popular model is ISO/IEC 9126 [16], which specify
requirements for a quality management system within an organization.

The metrics listed in ISO/IEC TR 9126-2 are not intended to be an exhaustive set. Users can
select or modify and apply metrics and measures from ISO/IEC TR 9126-2:2003 or may define
application-specific metrics for their individual application domain. Software metrics are the only
mechanized tools for assessing the value of internal attributes [17]. Software metrics are defined
as “standard measurements, used to judge the attributes of something being measured, such as
quality or complexity, in an objective manner” [24].

ISO/IEC 9000:2005 [13] provides guidance for the use of the series of International Standards
named Software product Quality Requirements and Evaluation (SQuaRE). Software Quality in the
Development Process (SQUID) [18] allows the specification, planning, evaluation and control of
software quality through the software development process. SQUID uses external and internal
quality measures defined in ISO 9126. Although the existence of documentation is a key
requirement of a functional ISO 9001 Quality Management System (QMS), it is not in itself
sufficient. To develop and implement a fully functional ISO 9001 QMS, it is essential that a
small/medium-sized enterprises correctly identifies the initial state of its QMS and the path it will
follow to achieve the desired state [1].

Neelam Bawane & C.V.Srikrishna

International Journal of Computer Science and Security, Volume 3: Issue (6) 510

Capability Maturity Model (CMM) proposed by Software Engineering Institute (SEI) provides a
framework for continuous software process improvement [31]. The key notion is that CMM
provides guidelines for conducting audits, testing activities, and for process improvement. The
CMM approach classifies the maturity of the software organization and practices into five levels
describing an evolutionary process from chaos to discipline [31] as Initial (chaotic), Repeatable
(project management), Defined (institutionalized), Managed (quantified), Optimizing (process
improvement).

McCall's model [19] of software quality incorporates 11 criteria encompassing three main
perspectives for characterizing the quality attributes of a software product. These perspectives are
Product revision (ability to change), Product transition (adaptability to new environments), and
Product operations (basic operational characteristics)

Boehm's model [8] is based on a wider range of characteristics and incorporates 19 criteria. At the
highest level of his model, Boehm defined three primary uses (basic software requirements), these
three primary uses are as-is utility, the extent to which the as-is software can be used (i.e. ease of
use, reliability and efficiency), Maintainability, ease of identifying what needs to be changed as well
as ease of modification and retesting, Portability, ease of changing software to accommodate a
new environment

FURPS developed by Hewlett-Packard takes five characteristics of quality attributes -
Functionality, Usability, Reliability, Performance and Supportability. When the FURPS model is
used, two steps are considered: setting priorities and defining quality attributes that can be
measured [21]. One disadvantage of this model is that it does not take into account the software
product’s portability [25].

Dromey [29] proposes a working framework for building and using a practical quality model to
evaluate requirement determination, design and implementation phases. Dromey includes high-
level quality attributes: functionality, reliability, efficiency, usability, maintainability, portability,
reusability and process mature. In comparing to ISO 9126, additional characteristics like process
maturity and reusability are noticeable.

Georgiadou [11] developed a generic, customizable quality model (GEQUAMO) which enables
any stakeholder to construct their own model depending on their requirements. In a further attempt
to differentiate between stakeholders, Siaka et al [22] studied the viewpoints of users, sponsors
and developers as three important constituencies/stakeholders and suggested attributes of interest
to each constituency as well as level of interest. More recently, Siaka and Georgiadou [23]
reported the results of a survey amongst practitioners on the importance placed on product quality
characteristics. Using their empirical results they extended ISO 9126 by adding two new
characteristics namely Extensibility and Security which have gained in importance in today’s global
and inter-connected environment.

Basili and Rombach [33] define a goal-based measurement program. The concept of the
goal/question/metric paradigm is to identify goals, translate into the questions that need to be
answered to determine if one is meeting or moving towards these goals, and then selecting
metrics that provide information to help answer these questions.

The criteria in all above models are not independent. They interact with each other and often
cause conflict, especially when software providers try to incorporate them into the software
development process. There are a number of difficulties in the direct application of any of the
above models. The models are static since they do not describe how to project the metrics from
current values to values at subsequent project milestones. It is important to relate software metrics
to progress and to expected values at the time of delivery of the software [3].

To formulate the requirements of a quantitative quality model for software development, three
issues must be addressed: the different interest groups need to be identified; the intended
applications of the model need to be spelled out; and it is necessary to establish the quality needs
or perspectives/views of the different interest groups [28].

Neelam Bawane & C.V.Srikrishna

International Journal of Computer Science and Security, Volume 3: Issue (6) 511

4. PROPOSED QUALITY MODEL

According to Dromey [28] “The first task in building a software product quality model is to identify
what the intended applications of the model are and to address the needs of the different interest
groups that will use the model in different applications.” The attributes of a quality model should be
sufficient to meet the needs of all interest groups associated with the software.

Proposed quantitative model (Figure 1) keeps quality attributes a central consideration during
application analysis and design. There are often a number of stakeholders involved in the design
process with each having different quality goals. The model suggests the method of analyzing the
stakeholders’ quality requirements and computes the relative priorities among the quality attributes
and their subcharacteristics.

FIGURE1: Quantitative Quality Model

An integral part of an effective user-centered development is the collection of requirements and the
identification of common user tasks. A number of methods can be used to gather the requirements
and to identify the task groups. For quantifying the relative priorities of quality attributes and their
subcharacteristics of software design, the constant sum pair wise comparison method of Analytical
Hierarchy Process (AHP) [2, 32] is employed. Proposed quality model has four major phases
which are discussed in following sections:

4.1 Software Quality Requirements Analysis (SQRA)
In managing customer’s quality expectations, relevant views and attributes need to be reviewed
first, because different quality attribute may have different levels of importance to different
customers and users [16]. For example, reliability is a prime concern for the business and
commercial software systems because of people reliance on them and the substantial financial
loss if they malfunction. SQRA is customized by software category, development phase and users’
requirements.

Considering all requirements, quality factors are chosen from the set of factors given by McCall
quality model [19] and ISO 9126. Each quality factor is further defined by a set of attributes, called
criteria, which provide the qualitative knowledge about customers’ quality expectations. This
qualitative knowledge helps to quantify the goals in the software quality design (SQD). SQRA can
be carried out as follows:

1) Identification & classification of stakeholders
Authors emphasize focus on identification of important stakeholders. Interview is a common
method that can be employed in requirements analysis. Each stakeholder will have an idea of their
expectation and visualization of their requirements. Various stakeholders may be grouped based
on similar characteristics. The proposed model classifies stakeholders based on their jobs as
these are directly related to quality preferences.

Neelam Bawane & C.V.Srikrishna

International Journal of Computer Science and Security, Volume 3: Issue (6) 512

2) Identification of stakeholders’ quality requirements
Stakeholders’ quality requirements can be gathered through existing requirements gathering
techniques such as Win Win requirement gathering method [6] and the goal oriented requirement
gathering method [30]. External review team reviews the requirements and may add a set of
quality requirements. Requirements of various groups are tabulated (see case study).

4.2 Software Quality Design (SQD)
Once all the quality requirements are listed, each attribute is quantified by individual metric as
measurement is essential if quality is to be achieved. Various metrics are available for different
quality characteristics. Requirements are customized to products and users, thus expected values
of the corresponding metrics are determined for the product under development. Necessary steps
can be followed to determine priorities of quality characteristics, related metrics and expected
values which are as follows:

1) Specify quality attributes and their corresponding characteristics to satisfy stakeholders’ quality
requirements
Quality attributes and their subcharacteristics are specified for each stakeholder group based on
ISO 9126. It is not easy to translate a user requirement (informal quality requirements) into a set of
quality characteristics (formal specification of the software quality as defined in ISO/IEC 9126)

2) Determine the relative priorities of subcharacteristics of each quality attribute
The relative priorities of quality characteristics are computed for each stakeholders group. 100
points are allocated between each pair of quality attribute at a time based on their preferences for
the attributes to make comparative judgment. The AHP [32] is applied to transform judgment
values to normalized measures. The use of AHP to obtain the initial values is systematic
quantification of the stakeholders’ expectations, as it is the subjective judgments of the
stakeholders.

3) Select the metrics for each characteristic
Metrics can be selected for each of the characteristics based on the concept of
goal/question/metric.

4) Set the standard value for each metric
Based on the priorities and standards defined by ISO/IEC TR 9126, a standard value is associated
with each metric to achieve the characteristic expected by stakeholders’ groups. Once specific
quality goals, expectations, measurements and metrics are set, related tools, techniques and
procedures to achieve these goals can be selected.

4.3 Software Quality Measurement
The measurement offers visibility into the ways in which the processes, products, resources,
methods, and technologies of software development relate to one another. According to the
ISO/IEC 15939 Software Engineering – Software Measurement Standard decision criteria are the
“thresholds, targets, or patterns used to determine the need for action or further investigation or to
describe the level of confidence in a given result”.

1) Measure the actual value
During development life cycle, in each phase, the values of selected metrics can be measured,
compared and analyzed with respect to standard set values.

4.4 Software Quality Improvement
The feed back on measurement step enables the software engineers to assess the quality at each
development stage and in turn helps to improve whenever violation from set goals is found.

1) Compare the actual value with standard value for each metric
Deviations may be encountered in the project plan, process description, applicable standards or
technical work. Recommendations derived from the interpretation of actual value and established
of the metrics are provided to the development engineers for improvement.

Neelam Bawane & C.V.Srikrishna

International Journal of Computer Science and Security, Volume 3: Issue (6) 513

2) Address the deviations
The product can be adjusted to make things better and improved. It is important to establish a
follow up procedure to ensure that items on the issues list have been properly corrected.

5. CASE STUDY

The case study considered in this paper is related to an automated application for job consultancy
firm. A survey is carried out for various stakeholders based on their knowledge, interest and job
responsibilities. Stakeholders are classified in three groups as given in table-1.

No. Group
1 Manager
2 Developer
3 User

TABLE 1: STAKEHOLDERS GROUPS

The quality requirements for the system under development, identified by different stakeholders’
groups are tabulated in table-2.

No Group Quality requirements
1 Manager Team size Cost Delivery time
2 Developer Maintainability Portability Reusability
3 User Reliability Usability Efficiency

TABLE 2: QUALITY REQUIREMENTS OF STAKEHOLDERS GROUPS

Quality attributes listed in table-2 under group developer are maintainability, portability, reusability
that is further divided into subcharacteristics. This division follows quality analysis framework given
by ISO 9126. Quality attributes and their subcharacteristics for the developer group are shown in
table-3 as a sample. However reusability is not part of quality framework given by ISO 9126 and is
addressed in this paper.

Analyzability (SC11)
Changeability (SC12)
Stability (SC13)

Maintainability (QA1)

Testability (SC14)
Adaptability (SC21)
Installability (SC22)
Conformance (SC23)

Portability (QA2)

Replaceability (SC24)
Coupling (SC31)
Comprehensibility (SC32)

Reusability (QA3)

Interoperability (SC33)

TABLE 3: QUALITY ATTRIBUTES AND SUBCHARACTERISTICS FOR DEVELOPER GROUP

A total of 100 points is distributed between each two attributes. This distribution shows their ratio
scale for prioritizing quality attributes and their corresponding subcharacteristics. The relative
priorities are computed by AHP constant sum method. Three experts from the developer group are
identified for prioritization considering three related attributes and corresponding subcharacteristics
(refer appendix A). Average and relative of the priorities of quality attributes and their
subcharacteristics are computed.

5.1 Average Priorities
QA1 = Maintainability, QA2 = Portability, QA3=Reusability

QA1 60 QA1 45 QA2 45
QA2 40 QA3 55 QA3 55

Neelam Bawane & C.V.Srikrishna

International Journal of Computer Science and Security, Volume 3: Issue (6) 514

SC11 = Analyzability, SC12 = Changeability, SC13 = Stability, SC14 = Testability

SC11 60 SC11 60 SC11 60
SC12 40 SC13 40 SC14 40
SC12 40 SC12 40 SC13 50
SC13 60 SC14 60 SC14 50

SC21 = Adaptability, SC22 = Installability, SC23 = Conformance, SC24 = Replaceability

SC21 55 SC21 60 SC21 55
SC22 45 SC23 40 SC24 45
SC22 50 SC22 45 SC23 40
SC23 50 SC24 55 SC24 60

SC31 = Coupling, SC32 = Comprehensibility, SC33 = Interoperability

SC31 55 SC32 45 SC31 60
SC32 45 SC33 55 SC33 40

5.2 Relative Priorities

QA = {0.354, 0.271, 0.375}
SC1 = {0.332, 0.180, 0.244, 0.244,
SC2 = {0.302, 0.223, 0.202, 0.273}
SC3 = {0.403, 0.289, 0.308}

For each required characteristic, appropriate metrics are chosen and their expected values are set
based on the priorities calculated. Few relevant metrics are shown in table-4 (Source: ISO9126).

Reliability index

Comment percentage Analyzability (SC11)

Cyclomatic complexity

Code duplication
Changeability (SC12)

Maximum number of references violation

Correlation of complexity / size
Stability (SC13)

Global variables usage

Maintainability
(QA1)

Testability (SC14) Cyclomatic complexity

Adaptability(SC21) Mean efforts to adapt

Installation efforts in Man-months
Installability (SC22)

Parameter change ratio

Conformance (SC23) Standard conformance ration

Function change ratio

Portability
(QA2)

Replaceability (SC24)
Source code change ratio

Coupling (SC31) Cohesion and coupling metrics (Fan-in & Fan-out)

Comprehensibility (SC32) Comment percentage
Reusability

(QA3)
Interoperability (SC33) Size of domain independent part

TABLE 4: METRICS AND THEIR EXPECTED VALUES FOR QUALITY SUBCHARACTERISTICS

Similarly, other users’ quality requirements are analyzed and specified. All the metrics are
measured during development as and when required, and compared with the expected values for
the conformance of quality characteristics expected by various stakeholders. On occurrence of any
deviation, desired changes are made that shows improvement in product quality.

Neelam Bawane & C.V.Srikrishna

International Journal of Computer Science and Security, Volume 3: Issue (6) 515

6. CONCLUSION

Aim of this research paper is to provide the model to establish the quality requirements expected
by various stakeholders and to incorporate these requirements in the product under development.
Proposed quantitative quality model takes a set of quality requirements as input for the
development of a software application. The model is dynamic and allows product deliverables to
be compared with set goals by various stakeholders through measurements and metrics
throughout the development life cycle. The case study validates the suitability and usefulness of
the proposed model. The quality attribute reusability is discussed in addition to other quality
attributes of ISO 9126.

ACKNOWLEDGEMENT
The authors acknowledge the support extended by the management of PES Institute during the
course of research.

7. REFERENCES

[1] Andres Sousa-Poza, Mert Altinkilinc, Cory Searcy, “Implementing a Functional ISO 9001
Quality Management System in Small and Medium-Sized Enterprises”, International
Journal of Engineering, v. 3 Issue 3, 2009

[2] Arun Sharma, Rajesh Kumar, P.S. Grover, "Dependency Analysis for Component-
Based Software Systems", ACM SIGSOFT Software Engineering Notes, v.34 n.4, July
2009 [DOI: 10.1145/1543405.1543424]

[3] Arun Sharma, Rajesh Kumar, P.S. Grover, “Managing Component-Based Systems With
Reusable Components”, International Journal of Computer Science and Security, v. 1 Issue
2, 2007

[4] Ashley Williams, “The documentation of quality engineering: applying use cases to drive
change in software engineering models”, SIGDOC '04: Proceedings of the 22nd annual
international conference on Design of communication: The engineering of quality
documentation, October 2004

[5] Avadhesh Kumar, Rajesh Kumar, P.S. Grover, “An Evaluation of Maintainability of Aspect-
Oriented Systems: a Practical Approach”, International Journal of Computer Science and
Security, v. 1 Issue 2, 2007

[6] B. Boehm et al., “Win Win requirements negotiation process: A multi project analysis”,
Proceedings of the International Conference on Software Process, Chicago, 1998

[7] B. Kitchenham, S. L. Pfleeger, “Software Quality: The Elusive Target”, IEEE Software, vol.
13(1), pp.12-21, 1996

[8] B. W. Boehm, J. R. Brown, H. Kaspar, M. Lipow, G. McLeod, and M. Merritt,
“Characteristics of Software Quality”, North Holland, (1978)

[9] D. Garvin, "What Does 'Product Quality' Really Mean?" Sloan Management Review, Fall,
pp 25-45, 1984

[10] E. Georgiadou “Software Process and Product Improvement: A Historical Perspective”,
International Journal of Cybernetics, Volume 1, No1, pp172-197, Jan 2003

[11] E. Georgiadou, “GEQUAMO– A Generic, Multilayered, Customisable, Software Quality
Model”, International Journal of Cybernetics, Volume 11, Number 4 , pp 313-323 November
2003

[12] Gordon W. Skelton, “Integrating total quality management with software engineering
education”, ACM SIGCSE Bulletin, Volume 25 Issue 2, June 1993

[13] ISO 9000:2005 Quality management systems Fundamentals and vocabulary, 2005
[14] ISO 9001:2000 Quality management systems Requirements, 2001
[15] ISO 9004:2000 Quality management systems Guidelines for performance improvement,

2000
[16] ISO/IEC, IS 9126-1, “Software Engineering – Product Quality – Part 1: Quality Model”,

Geneva Switzerland: International Organization for Standardization, 2001
[17] ISO: ISO/IEC 14598-1. International Standard Information technology software product

evaluation, 1999
[18] J. Bøegh, S. DePanfilis, B. Kitchenham, A. Pasquini, “A Method for Software Quality

Planning, Control and Evaluation”. IEEE Software, 69-77, March/April 1999

Neelam Bawane & C.V.Srikrishna

International Journal of Computer Science and Security, Volume 3: Issue (6) 516

[19] J.A. McCall, P.K. Richards and G. F. Walters, “Factors in software quality”, Griffiths Air
Force Base, N.Y. : Rome Air Development Center Air Force Systems Command, 1977

[20] J.W. Moore, “Software Engineering Standards: A User’s Road Map”, IEEE Computer
Society, Los Alamitos, CA, 1998

[21] K. Khosravi, & Y.G. Gueheneuc, “A quality model for design patterns”,
http://www.yann_gael.gueheneuc.net/work/Tutoring/Documents/041021+Khosravi+Technic
al+Report. doc.pdf, 2004

[22] K.V. Siaka, E. Berki, E. Georgiadou, C. Sadler, “The Complete Alphabet of Quality
Software Systems: Conflicts and Compromises”, 7th World Congress on Total Quality &
Qualex 97, New Delhi, India, 17-19, February 1997

[23] K.V. Siaka, E. Georgiadou, “PERFUMES: A Scent of Product Quality Characteristics”,
SQM, UK, March 2005

[24] M. Lorenz, J. Kidd, “Object-Oriented Software Metrics”, 1st Ed. Prentice Hall,1994
[25] M. Ortega, M. Perez, & T. Rojas, “Construction of a systemic quality model for evaluating a

software product”, Software Quality Journal 11: 219-242, 2003
[26] N. E. Fenton, and M. Neil, “A Critique of Software Defect Prediction Models”, IEEE

Transactions on Software Engineering (25:5), pp.675-689, September/October 1999
[27] P. Bourque, R. Dupuis, A. Abran, J.W. Moore, L.L. Trippet S. Wolff, “Fundamental

Principles of Software Engineering - A Journey”, Journal of Systems and Software, 2000
[28] R. G. Dromey, “A Model for Software Product Quality”, IEEE Trans. Soft. Eng., pp 146-162,

1995
[29] R. G. Dromey, “Software product quality: Theory, model and practice. Software Quality

Institute,” Griffith University, Brisbane, Technical Report, 1999
[30] S. Godbole, “Software Quality Assurance: Principles and Practices”, Alpha Science

International Ltd., 2004
[31] Software Engineering Institute, “The Capability Maturity Model: Guidelines for Improving

the Software Process”, MA: Addison-Wesley, 1994
[32] T. L. Saaty, “The Analytic Hierarchy Process”, McGraw Hill, Inc., New York NY, 1980
[33] V.R. Basili and H.D. Rombach, “The TAME projects: Towards improvement-oriented

software environment”, IEEE Transactions in Software Engineering, 14, no.6, Nov 1988
[34] W. Suryn, “Course notes SYS861”, École de Technologie Supérieure, Montréal, 2003

APPENDIX
Developer group
a) Preferences of stakeholder 1
QA1 = Maintainability, QA2 = Portability, QA3 = Reusability

QA1 60 QA1 50 QA2 45
QA2 40 QA3 50 QA3 55

SC11 = Analyzability, SC12 = Changeability, SC13 = Stability, SC14 = Testability

SC11 65 SC11 60 SC11 55
SC12 35 SC13 40 SC14 45
SC12 40 SC12 35 SC13 50
SC13 60 SC14 65 SC14 50

SC21 = Adaptability, SC22 = Installability, SC23 = Conformance, SC24 = Replaceability

SC21 55 SC21 60 SC21 50
SC22 45 SC23 40 SC24 50
SC22 50 SC22 45 SC23 45
SC23 50 SC24 55 SC24 55

SC31 = Coupling, SC32 = Comprehensibility, SC33 = Interoperability

SC31 60 SC32 45 SC31 60

Neelam Bawane & C.V.Srikrishna

International Journal of Computer Science and Security, Volume 3: Issue (6) 517

SC32 40 SC33 55 SC33 40
b) Preferences of stakeholder 2
QA1 = Maintainability, QA2 = Portability, QA3 = Reusability

QA1 65 QA1 55 QA2 45
QA2 35 QA3 45 QA3 55

SC11 = Analyzability, SC12 = Changeability, SC13 = Stability, SC14 = Testability

SC11 60 SC11 65 SC11 55
SC12 40 SC13 35 SC14 35
SC12 45 SC12 40 SC13 55
SC13 55 SC14 60 SC14 45

SC21 = Adaptability, SC22 = Installability, SC23 = Conformance, SC24 = Replaceability

SC21 60 SC21 55 SC21 55
SC22 40 SC23 45 SC24 45
SC22 50 SC22 50 SC23 40
SC23 50 SC24 50 SC24 60

SC31 = Coupling, SC32 = Comprehensibility, SC33 = Interoperability

SC31 55 SC32 50 SC31 55
SC32 45 SC33 50 SC33 45

c) Preferences of stakeholder 3
QA1 = Maintainability, QA2 = Portability, QA3 = Reusability

QA1 55 QA1 40 QA2 45
QA2 45 QA3 60 QA3 55

SC11 = Analyzability, SC12 = Changeability, SC13 = Stability, SC14 = Testability

SC11 55 SC11 55 SC11 60
SC12 45 SC13 45 SC14 40
SC12 45 SC12 40 SC13 50
SC13 55 SC14 60 SC14 50

SC21 = Adaptability, SC22 = Installability, SC23 = Conformance, SC24 = Replaceability

SC21 50 SC21 65 SC21 50
SC22 50 SC23 35 SC24 50
SC22 55 SC22 40 SC23 40
SC23 45 SC24 60 SC24 60

SC31 = Coupling, SC32 = Comprehensibility, SC33 = Interoperability

SC31 55 SC32 40 SC31 60
SC32 45 SC33 60 SC33 40

